Dataset Viewer
The dataset viewer is not available for this dataset.
Cannot get the config names for the dataset.
Error code:   ConfigNamesError
Exception:    TypeError
Message:      'module' object is not callable
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/dataset/config_names.py", line 66, in compute_config_names_response
                  config_names = get_dataset_config_names(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/inspect.py", line 165, in get_dataset_config_names
                  dataset_module = dataset_module_factory(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1664, in dataset_module_factory
                  raise e1 from None
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 1621, in dataset_module_factory
                  return HubDatasetModuleFactoryWithoutScript(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/load.py", line 992, in get_module
                  dataset_infos = DatasetInfosDict.from_dataset_card_data(dataset_card_data)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/info.py", line 386, in from_dataset_card_data
                  dataset_info = DatasetInfo._from_yaml_dict(dataset_card_data["dataset_info"])
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/info.py", line 317, in _from_yaml_dict
                  yaml_data["features"] = Features._from_yaml_list(yaml_data["features"])
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/features/features.py", line 2035, in _from_yaml_list
                  return cls.from_dict(from_yaml_inner(yaml_data))
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/features/features.py", line 2031, in from_yaml_inner
                  return {name: from_yaml_inner(_feature) for name, _feature in zip(names, obj)}
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/features/features.py", line 2031, in <dictcomp>
                  return {name: from_yaml_inner(_feature) for name, _feature in zip(names, obj)}
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/features/features.py", line 2020, in from_yaml_inner
                  Value(obj["dtype"])
                File "<string>", line 5, in __init__
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/features/features.py", line 528, in __post_init__
                  self.pa_type = string_to_arrow(self.dtype)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/features/features.py", line 145, in string_to_arrow
                  return pa.__dict__[datasets_dtype]()
              TypeError: 'module' object is not callable

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

🕯️ Light-Stage OLAT Subsurface-Scattering Dataset

Companion data for the paper "Subsurface Scattering for 3D Gaussian Splatting"

This README documents only the dataset.
A separate repo covers the training / rendering code: https://github.com/cgtuebingen/SSS-GS

Dataset overview

Overview

Subsurface scattering (SSS) gives translucent materials (wax, soap, jade, skin) their distinctive soft glow. Our paper introduces SSS-GS, the first 3D Gaussian-Splatting framework that jointly reconstructs shape, BRDF and volumetric SSS while running at real-time framerates. Training such a model requires dense multi-view ⇄ multi-light OLAT data.

This dataset delivers exactly that:

  • 25 objects – 20 captured on a physical light-stage, 5 rendered in a synthetic stage
  • > 37k images (≈ 1 TB raw / ≈ 30 GB processed) with known camera & light poses
  • Ready-to-use JSON transform files compatible with NeRF & 3D GS toolchains
  • Processed to 800 px images + masks; raw 16 MP capture available on request

Applications

  • Research on SSS, inverse-rendering, radiance-field relighting, differentiable shading
  • Benchmarking OLAT pipelines or light-stage calibration
  • Teaching datasets for photometric 3D reconstruction

Quick Start

# Download and extract one real-world object
curl -L https://…/real_world/candle.tar | tar -x

Directory Layout

dataset_root/
├── real_world/          # Captured objects (processed, ready to train)
│   └── <object>.tar     # Each tar = one object (≈ 4–8 GB)
└── synthetic/           # Procedurally rendered objects
    ├── <object>_full/   # full-resolution (800 px)
    └── <object>_small/  # 256 px "quick-train" version

Inside a real-world tar

<object>/
├── resized/                 # θ_φ_board_i.png  (≈ 800 × 650 px)
├── transforms_train.json    # (train-set only) ⇄  camera / light metadata
├── transforms_test.json     # (test-set only) ⇄  camera / light metadata
├── light_positions.json     # all θ_φ_board_i → (x,y,z)
├── exclude_list.json        # bad views (lens flare, matting error, …)
└── cam_lights_aligned.png   # sanity-check visualisation

Raw capture Full-resolution, unprocessed RGB-bayer images (~ 1 TB per object) are kept offline—contact us to arrange transfer.

Inside a synthetic object folder

<object>_full/
├── <object>.blend         # Blender scene with 112 HDR stage lights
├── train/                 # r_<cam>_l_<light>.png (= 800 × 800 px)
├── test/                  # r_<cam>_l_<light>.png (= 800 × 800 px)
├── eval/                  # only in "_small" subsets
├── transforms_train.json  # (train-set only) ⇄  camera / light metadata
└── transforms_test.json   # (test-set only) ⇄  camera / light metadata

The small variant differs only in image resolution & optional eval/.

Data Collection

Real-World Subset

Capture Setup:

  • Stage: 4 m diameter light-stage with 167 individually addressable LEDs
  • Camera: FLIR Oryx 12 MP with 35 mm F-mount, motorized turntable & vertical rail
  • Processing: COLMAP SfM, automatic masking (SAM + ViTMatte), resize → PNG
Objects Avg. Views Lights/View Resolution Masks
20 158 167 800×650 px α-mattes

Preprocessing pipeline

Synthetic Subset

Rendering Setup:

  • Models: Stanford 3D Scans and BlenderKit
  • Renderer: Blender Cycles with spectral SSS (Principled BSDF)
  • Lights: 112 positions (7 rings × 16), 200 test cameras on NeRF spiral path
Variant Images Views × Lights Resolution Notes
_full 11,200 100 × 112 800² Filmic tonemapping
_small 1,500 15 × 100 256² Quick prototyping

File & Naming Conventions

  • Real imagestheta_<θ>_phi_<φ>_board_<id>.png
    θ, φ in degrees; board 0-195 indexes the LED PCBs.
  • Synthetic imagesr_<camera>_l_<light>.png
  • JSON schema
    {
      "camera_angle_x": 0.3558,
      "frames": [{
        "file_paths": ["resized/theta_10.0_phi_0.0_board_1", …],
        "light_positions": [[x,y,z], …],   // metres, stage origin
        "transform_matrix": [[...], ...],  // 4×4 extrinsic
        "width": 800, "height": 650, "cx": 400.0, "cy": 324.5
      }]
    }
    
    For synthetic files: identical structure, naming r_<cam>_l_<light>.

Licensing & Third-Party Assets

Asset Source License / Note
Synthetic models Stanford 3-D Scans Varies (non-commercial / research)
BlenderKit CC-0, CC-BY or Royalty-Free (check per-asset page)
HDR env-maps Poly Haven CC-0
Code MIT (see repo)

The dataset is released for non-commercial research and educational use.
If you plan to redistribute or use individual synthetic assets commercially, verify the upstream license first.

Citation

If you use this dataset, please cite the paper:

@inproceeding{sss_gs,
 author = {Dihlmann, Jan-Niklas and Majumdar, Arjun and Engelhardt, Andreas and Braun, Raphael and Lensch, Hendrik P.A.},
 booktitle = {Advances in Neural Information Processing Systems},
 editor = {A. Globerson and L. Mackey and D. Belgrave and A. Fan and U. Paquet and J. Tomczak and C. Zhang},
 pages = {121765--121789},
 publisher = {Curran Associates, Inc.},
 title = {Subsurface Scattering for Gaussian Splatting},
 url = {https://proceedings.neurips.cc/paper_files/paper/2024/file/dc72529d604962a86b7730806b6113fa-Paper-Conference.pdf},
 volume = {37},
 year = {2024}
}

Contact & Acknowledgements

Questions, raw-capture requests, or pull-requests?
📧 jan-niklas.dihlmann (at) uni-tuebingen.de

This work was funded by DFG (EXC 2064/1, SFB 1233) and the Tübingen AI Center.

Downloads last month
328