Datasets:
Modalities:
Image
Languages:
English
Size:
10K<n<100K
Tags:
computer-vision
3d-reconstruction
subsurface-scattering
gaussian-splatting
inverse-rendering
photometric-stereo
License:
feat: Readme
Browse files- README.md +150 -0
- other/dataset.png +3 -0
- other/preprocessing.png +3 -0
README.md
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# 🕯️ Light-Stage OLAT Subsurface-Scattering Dataset
|
2 |
+
|
3 |
+
*Companion data for the paper **"Subsurface Scattering for 3D Gaussian Splatting"***
|
4 |
+
|
5 |
+
> **This README documents *only the dataset*.**
|
6 |
+
> A separate repo covers the training / rendering **code**: <https://github.com/cgtuebingen/SSS-GS>
|
7 |
+
|
8 |
+
<p align="center">
|
9 |
+
<img src="other/dataset.png" width="80%" alt="Dataset overview"/>
|
10 |
+
</p>
|
11 |
+
|
12 |
+
## Overview
|
13 |
+
|
14 |
+
Subsurface scattering (SSS) gives translucent materials (wax, soap, jade, skin) their distinctive soft glow. Our paper introduces **SSS-GS**, the first 3D Gaussian-Splatting framework that *jointly* reconstructs shape, BRDF and volumetric SSS while running at real-time framerates. Training such a model requires dense **multi-view ⇄ multi-light OLAT** data.
|
15 |
+
|
16 |
+
This dataset delivers exactly that:
|
17 |
+
|
18 |
+
* **25 objects** – 20 captured on a physical light-stage, 5 rendered in a synthetic stage
|
19 |
+
* **> 37k images** (≈ 1 TB raw / ≈ 30 GB processed) with **known camera & light poses**
|
20 |
+
* Ready-to-use JSON transform files compatible with NeRF & 3D GS toolchains
|
21 |
+
* Processed to 800 px images + masks; **raw 16 MP capture** available on request
|
22 |
+
|
23 |
+
### Applications
|
24 |
+
|
25 |
+
* Research on SSS, inverse-rendering, radiance-field relighting, differentiable shading
|
26 |
+
* Benchmarking OLAT pipelines or light-stage calibration
|
27 |
+
* Teaching datasets for photometric 3D reconstruction
|
28 |
+
|
29 |
+
## Quick Start
|
30 |
+
|
31 |
+
```bash
|
32 |
+
# Download and extract one real-world object
|
33 |
+
curl -L https://…/real_world/candle.tar | tar -x
|
34 |
+
```
|
35 |
+
|
36 |
+
## Directory Layout
|
37 |
+
```
|
38 |
+
dataset_root/
|
39 |
+
├── real_world/ # Captured objects (processed, ready to train)
|
40 |
+
│ └── <object>.tar # Each tar = one object (≈ 4–8 GB)
|
41 |
+
└── synthetic/ # Procedurally rendered objects
|
42 |
+
├── <object>_full/ # full-resolution (800 px)
|
43 |
+
└── <object>_small/ # 256 px "quick-train" version
|
44 |
+
```
|
45 |
+
|
46 |
+
### Inside a **real-world** tar
|
47 |
+
```
|
48 |
+
<object>/
|
49 |
+
├── resized/ # θ_φ_board_i.png (≈ 800 × 650 px)
|
50 |
+
├── transforms_train.json # (train-set only) ⇄ camera / light metadata
|
51 |
+
├── transforms_test.json # (test-set only) ⇄ camera / light metadata
|
52 |
+
├── light_positions.json # all θ_φ_board_i → (x,y,z)
|
53 |
+
├── exclude_list.json # bad views (lens flare, matting error, …)
|
54 |
+
└── cam_lights_aligned.png # sanity-check visualisation
|
55 |
+
```
|
56 |
+
*Raw capture* Full-resolution, unprocessed RGB-bayer images (~ 1 TB per object) are kept offline—contact us to arrange transfer.
|
57 |
+
|
58 |
+
### Inside a **synthetic** object folder
|
59 |
+
```
|
60 |
+
<object>_full/
|
61 |
+
├── <object>.blend # Blender scene with 112 HDR stage lights
|
62 |
+
├── train/ # r_<cam>_l_<light>.png (= 800 × 800 px)
|
63 |
+
├── test/ # r_<cam>_l_<light>.png (= 800 × 800 px)
|
64 |
+
├── eval/ # only in "_small" subsets
|
65 |
+
├── transforms_train.json # (train-set only) ⇄ camera / light metadata
|
66 |
+
└── transforms_test.json # (test-set only) ⇄ camera / light metadata
|
67 |
+
```
|
68 |
+
The *small* variant differs only in image resolution & optional `eval/`.
|
69 |
+
|
70 |
+
## Data Collection
|
71 |
+
|
72 |
+
### Real-World Subset
|
73 |
+
|
74 |
+
**Capture Setup:**
|
75 |
+
- **Stage**: 4 m diameter light-stage with 167 individually addressable LEDs
|
76 |
+
- **Camera**: FLIR Oryx 12 MP with 35 mm F-mount, motorized turntable & vertical rail
|
77 |
+
- **Processing**: COLMAP SfM, automatic masking (SAM + ViTMatte), resize → PNG
|
78 |
+
|
79 |
+
| Objects | Avg. Views | Lights/View | Resolution | Masks |
|
80 |
+
|---------|------------|-------------|------------|-------|
|
81 |
+
| 20 | 158 | 167 | 800×650 px | α-mattes |
|
82 |
+
|
83 |
+
<p align="center">
|
84 |
+
<img src="other/preprocessing.png" width="60%" alt="Preprocessing pipeline"/>
|
85 |
+
</p>
|
86 |
+
|
87 |
+
### Synthetic Subset
|
88 |
+
|
89 |
+
**Rendering Setup:**
|
90 |
+
- **Models**: Stanford 3D Scans and BlenderKit
|
91 |
+
- **Renderer**: Blender Cycles with spectral SSS (Principled BSDF)
|
92 |
+
- **Lights**: 112 positions (7 rings × 16), 200 test cameras on NeRF spiral path
|
93 |
+
|
94 |
+
| Variant | Images | Views × Lights | Resolution | Notes |
|
95 |
+
|---------|--------|----------------|------------|-------|
|
96 |
+
| _full | 11,200 | 100 × 112 | 800² | Filmic tonemapping |
|
97 |
+
| _small | 1,500 | 15 × 100 | 256² | Quick prototyping |
|
98 |
+
|
99 |
+
## File & Naming Conventions
|
100 |
+
* **Real images** `theta_<θ>_phi_<φ>_board_<id>.png`
|
101 |
+
*θ, φ* in degrees; *board* 0-195 indexes the LED PCBs.
|
102 |
+
* **Synthetic images** `r_<camera>_l_<light>.png`
|
103 |
+
* **JSON schema**
|
104 |
+
```jsonc
|
105 |
+
{
|
106 |
+
"camera_angle_x": 0.3558,
|
107 |
+
"frames": [{
|
108 |
+
"file_paths": ["resized/theta_10.0_phi_0.0_board_1", …],
|
109 |
+
"light_positions": [[x,y,z], …], // metres, stage origin
|
110 |
+
"transform_matrix": [[...], ...], // 4×4 extrinsic
|
111 |
+
"width": 800, "height": 650, "cx": 400.0, "cy": 324.5
|
112 |
+
}]
|
113 |
+
}
|
114 |
+
```
|
115 |
+
For synthetic files: identical structure, naming `r_<cam>_l_<light>`.
|
116 |
+
|
117 |
+
## Licensing & Third-Party Assets
|
118 |
+
| Asset | Source | License / Note |
|
119 |
+
|-------|--------|----------------|
|
120 |
+
| Synthetic models | [Stanford 3-D Scans](https://graphics.stanford.edu/data/3Dscanrep/) | Varies (non-commercial / research) |
|
121 |
+
| | [BlenderKit](https://www.blenderkit.com/) | CC-0, CC-BY or Royalty-Free (check per-asset page) |
|
122 |
+
| HDR env-maps | [Poly Haven](https://polyhaven.com/) | CC-0 |
|
123 |
+
| Code | MIT (see repo) |
|
124 |
+
|
125 |
+
The dataset is released **for non-commercial research and educational use**.
|
126 |
+
If you plan to redistribute or use individual synthetic assets commercially, verify the upstream license first.
|
127 |
+
|
128 |
+
## Citation
|
129 |
+
If you use this dataset, please cite the paper:
|
130 |
+
|
131 |
+
```bibtex
|
132 |
+
@inproceeding{sss_gs,
|
133 |
+
author = {Dihlmann, Jan-Niklas and Majumdar, Arjun and Engelhardt, Andreas and Braun, Raphael and Lensch, Hendrik P.A.},
|
134 |
+
booktitle = {Advances in Neural Information Processing Systems},
|
135 |
+
editor = {A. Globerson and L. Mackey and D. Belgrave and A. Fan and U. Paquet and J. Tomczak and C. Zhang},
|
136 |
+
pages = {121765--121789},
|
137 |
+
publisher = {Curran Associates, Inc.},
|
138 |
+
title = {Subsurface Scattering for Gaussian Splatting},
|
139 |
+
url = {https://proceedings.neurips.cc/paper_files/paper/2024/file/dc72529d604962a86b7730806b6113fa-Paper-Conference.pdf},
|
140 |
+
volume = {37},
|
141 |
+
year = {2024}
|
142 |
+
}
|
143 |
+
|
144 |
+
```
|
145 |
+
|
146 |
+
## Contact & Acknowledgements
|
147 |
+
Questions, raw-capture requests, or pull-requests?
|
148 |
+
📧 `jan-niklas.dihlmann (at) uni-tuebingen.de`
|
149 |
+
|
150 |
+
This work was funded by DFG (EXC 2064/1, SFB 1233) and the Tübingen AI Center.
|
other/dataset.png
ADDED
![]() |
Git LFS Details
|
other/preprocessing.png
ADDED
![]() |
Git LFS Details
|