|
|
""" |
|
|
create_cloze_qa_dataset.py |
|
|
------------------------------------- |
|
|
Generate Cloze-style QA dataset from WikiText-2. |
|
|
Each sentence produces one 'fill-in-the-blank' question |
|
|
with a single correct answer. |
|
|
|
|
|
Output: JSONL files for train / validation / test. |
|
|
""" |
|
|
|
|
|
from datasets import load_dataset |
|
|
import re |
|
|
import json |
|
|
from pathlib import Path |
|
|
import random |
|
|
|
|
|
|
|
|
print("🔹 Loading WikiText-2 dataset ...") |
|
|
dataset = load_dataset("wikitext", "wikitext-2-raw-v1") |
|
|
|
|
|
|
|
|
output_dir = Path("cloze_qa_dataset") |
|
|
output_dir.mkdir(exist_ok=True, parents=True) |
|
|
|
|
|
def create_cloze_question(sentence: str): |
|
|
""" |
|
|
Convert a sentence into a Cloze-style question by masking one entity/keyword. |
|
|
Returns (question, answer) or None if unsuitable. |
|
|
""" |
|
|
words = re.findall(r"\b[A-Z][a-zA-Z]+\b", sentence) |
|
|
if not words: |
|
|
return None |
|
|
|
|
|
answer = random.choice(words) |
|
|
question = sentence.replace(answer, "____", 1) |
|
|
if question == sentence or len(answer) < 3: |
|
|
return None |
|
|
|
|
|
return question.strip(), answer.strip() |
|
|
|
|
|
def generate_qa_split(split_name, data): |
|
|
""" |
|
|
Generate QA pairs for each sentence in the given split. |
|
|
""" |
|
|
output_path = output_dir / f"{split_name}.jsonl" |
|
|
count = 0 |
|
|
with open(output_path, "w", encoding="utf-8") as f: |
|
|
for doc_id, text in enumerate(data["text"]): |
|
|
if not text.strip(): |
|
|
continue |
|
|
sentences = re.split(r'(?<=[.!?]) +', text.strip()) |
|
|
for sent_id, sent in enumerate(sentences): |
|
|
qa = create_cloze_question(sent) |
|
|
if qa: |
|
|
question, answer = qa |
|
|
record = { |
|
|
"doc_id": doc_id, |
|
|
"sent_id": sent_id, |
|
|
"title": None, |
|
|
"question": question, |
|
|
"answer": answer |
|
|
} |
|
|
f.write(json.dumps(record, ensure_ascii=False) + "\n") |
|
|
count += 1 |
|
|
print(f" Saved {count} QA pairs to {output_path}") |
|
|
|
|
|
|
|
|
for split in ["train", "validation", "test"]: |
|
|
generate_qa_split(split, dataset[split]) |
|
|
|
|
|
print("\nAll splits processed and saved successfully") |