text
stringlengths 3
370
|
---|
100 100 |
136 1166 |
116 1055 |
115 1126 |
32 581 |
55 801 |
157 1311 |
174 1359 |
157 1301 |
78 826 |
183 1322 |
81 929 |
158 1267 |
132 1220 |
11 374 |
163 1268 |
117 1068 |
142 1237 |
75 913 |
146 1298 |
166 1272 |
78 954 |
61 758 |
81 895 |
65 768 |
184 1440 |
103 1017 |
148 1200 |
181 1313 |
33 565 |
180 1324 |
65 792 |
67 783 |
26 547 |
177 1444 |
11 349 |
146 1206 |
73 855 |
148 1273 |
13 379 |
178 1321 |
24 579 |
96 1008 |
29 569 |
129 1090 |
146 1134 |
19 511 |
152 1202 |
117 1162 |
115 1073 |
169 1270 |
80 922 |
43 693 |
128 1113 |
58 763 |
179 1329 |
174 1318 |
64 819 |
51 729 |
166 1212 |
106 1100 |
144 1249 |
65 886 |
22 502 |
75 925 |
45 719 |
137 1220 |
16 443 |
149 1239 |
48 714 |
148 1180 |
86 989 |
180 1351 |
23 481 |
109 1121 |
40 664 |
83 926 |
110 1095 |
79 886 |
41 662 |
124 1057 |
132 1119 |
125 1119 |
160 1256 |
184 1292 |
74 877 |
17 471 |
121 1143 |
165 1325 |
129 1056 |
13 438 |
37 615 |
72 908 |
107 1029 |
179 1296 |
109 1121 |
101 1104 |
138 1252 |
11 351 |
69 861 |
FrontierCO: Benchmark Dataset for Frontier Combinatorial Optimization
Overview
FrontierCO is a curated benchmark suite for evaluating ML-based solvers on large-scale and real-world Combinatorial Optimization (CO) problems. The benchmark spans 8 classical CO problems across 5 application domains, providing both training and evaluation instances specifically designed to test the frontier of ML and LLM capabilities in solving NP-hard problems.
code for evaluating agent https://github.com/sunnweiwei/CO-Bench?tab=readme-ov-file#evaluation-on-frontierco
code for running classifical solver, generate training data, evaluating neural solver: https://github.com/sunnweiwei/FrontierCO
Dataset Structure
Each subdirectory corresponds to a specific CO task:
FrontierCO/
βββ CFLP/
β βββ easy_test_instances/
β βββ hard_test_instances/
β βββ valid_instances/
β βββ config.py
βββ CPMP/
βββ CVRP/
βββ FJSP/
βββ MIS/
βββ MDS/
βββ STP/
βββ TSP/
βββ ...
Each task folder contains:
easy_test_instances/
: Benchmark instances that are solvable by SOTA human-designed solvers.hard_test_instances/
: Instances that remain computationally intensive or lack known optimal solutions.valid_instances/
(if applicable): Additional instances for validation or development.config.py
: Metadata about instance format, solver settings, and reference solutions.
Tasks Covered
The benchmark currently includes the following problems:
- MIS β Maximum Independent Set
- MDS β Minimum Dominating Set
- TSP β Traveling Salesman Problem
- CVRP β Capacitated Vehicle Routing Problem
- CFLP β Capacitated Facility Location Problem
- CPMP β Capacitated p-Median Problem
- FJSP β Flexible Job-shop Scheduling Problem
- STP β Steiner Tree Problem
Each task includes:
- Easy and hard test sets with varying difficulty and practical relevance
- Training and validation instances where applicable, generated using problem-specific generators
- Reference results for classical and ML-based solvers
Data Sources
Instances are sourced from a mix of:
- Public repositories (e.g., TSPLib, CVRPLib)
- DIMACS and PACE Challenges
- Synthetic instance generators used in prior ML and optimization research
- Manual curation from recent SOTA solver evaluation benchmarks
For tasks lacking open benchmarks, we include high-quality synthetic instances aligned with real-world difficulty distributions.
Usage
To use this dataset, clone the repository and select the task of interest. Each config.py
file documents the format and how to parse or evaluate the instances.
git clone https://huggingface.co/datasets/CO-Bench/FrontierCO
cd FrontierCO/CFLP
Load a data instance
from config import load_data
instance = load_data('easy_test_instances/i1000_1.plc')
print(instance)
Generate a solution
# Your solution generation code goes here.
# For example:
solution = my_solver_func(**instance)
Evaluate a solution
from config import eval_func
score = eval_func(**instance, **solution)
print("Evaluation score:", score)
Citation
If you use FrontierCO in your research or applications, please cite the following paper:
@misc{feng2025comprehensive,
title={A Comprehensive Evaluation of Contemporary ML-Based Solvers for Combinatorial Optimization},
author={Shengyu Feng and Weiwei Sun and Shanda Li and Ameet Talwalkar and Yiming Yang},
year={2025},
}
License
This dataset is released under the MIT License. Refer to LICENSE
file for details.
- Downloads last month
- 2,456