File size: 8,534 Bytes
fc707cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import networkx as nx
import os
import pathlib
import pickle

DESCRIPTION = '''The Maximum Independent Set (MIS) problem is a fundamental NP-hard optimization problem in graph theory. Given an undirected graph G = (V, E), where V is a set of vertices and E is a set of edges, the goal is to find the largest subset S ⊆ V such that no two vertices in S are adjacent (i.e., connected by an edge).'''


def solve(**kwargs):
    """
    Solve the Maximum Independent Set problem for a given test case.

   Input:
        kwargs (dict): A dictionary with the following keys:
            - graph (networkx.Graph): The graph to solve

    Returns:
        dict: A solution dictionary containing:
            - mis_nodes (list): List of node indices in the maximum independent set
    """
    # TODO: Implement your MIS solving algorithm here. Below is a placeholder.
    # Your function must yield multiple solutions over time, not just return one solution
    # Use Python's yield keyword repeatedly to produce a stream of solutions
    # Each yielded solution should be better than the previous one
    while True:
        yield {
            'mis_nodes': [0, 1, ...],
        }


def load_data(file_path):
    """
    Load test data for MIS problem
    
    Args:
        file_path (str or pathlib.Path): Path to the file
        
    Returns:
        dict: A dictionary containing a test case with graph data
    """
    file_path = pathlib.Path(file_path)

    if not file_path.exists():
        raise FileNotFoundError(f"File not found: {file_path}")

    if file_path.suffix != '.mis':
        raise ValueError(f"Expected .dimacs file, got {file_path.suffix}")

    try:
        # Create an empty graph
        G = nx.Graph()

        with open(file_path, 'r') as f:
            lines = f.readlines()

        for line in lines:
            line = line.strip()

            # Skip empty lines
            if not line:
                continue

            # Parse the line
            parts = line.split()

            # Problem line (p edge NODES EDGES)
            if parts[0] == 'p' and parts[1] == 'edge':
                num_nodes = int(parts[2])
                # Pre-add all nodes
                G.add_nodes_from(range(1, num_nodes + 1))

            # Edge line (e NODE1 NODE2)
            elif parts[0] == 'e':
                node1 = int(parts[1])
                node2 = int(parts[2])
                G.add_edge(node1, node2)

        # Create a test case dictionary
        test_case = {
            'graph': G
        }

        return [test_case]

    except Exception as e:
        raise Exception(f"Error loading graph from {file_path}: {e}")


def eval_func(**kwargs):
    """
    Evaluate a Maximum Independent Set solution for correctness.

    Args:
        name (str): Name of the test case
        graph (networkx.Graph): The graph that was solved
        mis_nodes (list): List of nodes claimed to be in the maximum independent set
        mis_size (int): Claimed size of the maximum independent set

    Returns:
        dict: Evaluation results containing:
            - is_valid (bool): Whether the solution is a valid independent set
            - actual_size (int): The actual size of the provided solution
            - score (int): The score of the solution (0 if invalid, actual_size if valid)
            - error (str, optional): Error message if any constraint is violated
    """

    graph = kwargs['graph']
    mis_nodes = kwargs['mis_nodes']

    # Check if mis_nodes is a list
    if not isinstance(mis_nodes, list):
        raise Exception("mis_nodes must be a list")

    # Check if all nodes in mis_nodes exist in the graph
    node_set = set(graph.nodes())
    for node in mis_nodes:
        if node not in node_set:
            raise Exception(f"Node {node} in solution does not exist in graph")

    # Check for duplicates in mis_nodes
    if len(mis_nodes) != len(set(mis_nodes)):
        raise Exception("Duplicate nodes in solution")

    # Check if mis_size matches the length of mis_nodes
    actual_size = len(mis_nodes)

    # Most important: Check if it's an independent set (no edges between any nodes)
    for i in range(len(mis_nodes)):
        for j in range(i + 1, len(mis_nodes)):
            if graph.has_edge(mis_nodes[i], mis_nodes[j]):
                raise Exception(f"Not an independent set: edge exists between {mis_nodes[i]} and {mis_nodes[j]}")

    return actual_size

def norm_score(results):
    optimal_scores = {'easy_test_instances/C1000.9.mis': [68.0], 'easy_test_instances/C125.9.mis': [34.0], 'easy_test_instances/C2000.5.mis': [16.0], 'easy_test_instances/C2000.9.mis': [80.0], 'easy_test_instances/C250.9.mis': [44.0], 'easy_test_instances/C4000.5.mis': [18.0], 'easy_test_instances/C500.9.mis': [57.0], 'easy_test_instances/DSJC1000.5.mis': [15.0], 'easy_test_instances/DSJC500.5.mis': [13.0], 'easy_test_instances/MANN_a27.mis': [126.0], 'easy_test_instances/MANN_a45.mis': [345.0], 'easy_test_instances/MANN_a81.mis': [1100.0], 'easy_test_instances/brock200_2.mis': [12.0], 'easy_test_instances/brock200_4.mis': [17.0], 'easy_test_instances/brock400_2.mis': [29.0], 'easy_test_instances/brock400_4.mis': [33.0], 'easy_test_instances/brock800_2.mis': [24.0], 'easy_test_instances/brock800_4.mis': [26.0], 'easy_test_instances/gen200_p0.9_44.mis': [44.0], 'easy_test_instances/gen200_p0.9_55.mis': [55.0], 'easy_test_instances/gen400_p0.9_55.mis': [55.0], 'easy_test_instances/gen400_p0.9_65.mis': [65.0], 'easy_test_instances/gen400_p0.9_75.mis': [75.0], 'easy_test_instances/hamming10-4.mis': [40.0], 'easy_test_instances/hamming8-4.mis': [16.0], 'easy_test_instances/keller4.mis': [11.0], 'easy_test_instances/keller5.mis': [27.0], 'easy_test_instances/keller6.mis': [59.0], 'easy_test_instances/p_hat1500-1.mis': [12.0], 'easy_test_instances/p_hat1500-2.mis': [65.0], 'easy_test_instances/p_hat1500-3.mis': [94.0], 'easy_test_instances/p_hat300-1.mis': [8.0], 'easy_test_instances/p_hat300-2.mis': [25.0], 'easy_test_instances/p_hat300-3.mis': [36.0], 'easy_test_instances/p_hat700-1.mis': [11.0], 'easy_test_instances/p_hat700-2.mis': [44.0], 'easy_test_instances/p_hat700-3.mis': [62.0]}
    optimal_scores = optimal_scores | {'hard_test_instances/frb100-40.mis': [98.0], 'hard_test_instances/frb50-23-1.mis': [50.0], 'hard_test_instances/frb50-23-2.mis': [50.0], 'hard_test_instances/frb50-23-3.mis': [50.0], 'hard_test_instances/frb50-23-4.mis': [50.0], 'hard_test_instances/frb50-23-5.mis': [50.0], 'hard_test_instances/frb53-24-1.mis': [53.0], 'hard_test_instances/frb53-24-2.mis': [53.0], 'hard_test_instances/frb53-24-3.mis': [53.0], 'hard_test_instances/frb53-24-4.mis': [53.0], 'hard_test_instances/frb53-24-5.mis': [53.0], 'hard_test_instances/frb59-26-1.mis': [59.0], 'hard_test_instances/frb59-26-2.mis': [59.0], 'hard_test_instances/frb59-26-3.mis': [59.0], 'hard_test_instances/frb59-26-4.mis': [59.0], 'hard_test_instances/frb59-26-5.mis': [59.0]}
    optimal_scores = optimal_scores | {'valid_instances/RB_800_1200_0.mis': [47.0], 'valid_instances/RB_800_1200_1.mis': [50.0], 'valid_instances/RB_800_1200_10.mis': [37.0], 'valid_instances/RB_800_1200_11.mis': [50.0], 'valid_instances/RB_800_1200_12.mis': [49.0], 'valid_instances/RB_800_1200_13.mis': [44.0], 'valid_instances/RB_800_1200_14.mis': [41.0], 'valid_instances/RB_800_1200_15.mis': [45.0], 'valid_instances/RB_800_1200_16.mis': [43.0], 'valid_instances/RB_800_1200_17.mis': [40.0], 'valid_instances/RB_800_1200_18.mis': [40.0], 'valid_instances/RB_800_1200_19.mis': [36.0], 'valid_instances/RB_800_1200_2.mis': [36.0], 'valid_instances/RB_800_1200_3.mis': [50.0], 'valid_instances/RB_800_1200_4.mis': [44.0], 'valid_instances/RB_800_1200_5.mis': [47.0], 'valid_instances/RB_800_1200_6.mis': [45.0], 'valid_instances/RB_800_1200_7.mis': [38.0], 'valid_instances/RB_800_1200_8.mis': [38.0], 'valid_instances/RB_800_1200_9.mis': [50.0]}

    normed = {}
    for case, (scores, error_message) in results.items():
        if case not in optimal_scores:
            continue  # Skip if there's no optimal score defined.
        optimal_list = optimal_scores[case]
        normed_scores = []
        # Compute normalized score for each index.
        for idx, score in enumerate(scores):
            if isinstance(score, (int, float)):
                normed_scores.append(1 - abs(score - optimal_list[idx]) / max(score, optimal_list[idx]))
            else:
                normed_scores.append(score)
        normed[case] = (normed_scores, error_message)

    return normed