File size: 3,968 Bytes
8e62344
 
 
 
 
 
 
4d13354
1ead477
 
 
 
 
 
83799cd
 
 
 
71141e3
 
1ead477
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68beaf6
1ead477
68beaf6
 
 
 
 
 
 
 
 
 
 
 
 
cf7de12
68beaf6
 
 
 
 
 
 
1ead477
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
---
license: apache-2.0
task_categories:
- text-generation
tags:
- code
---

# FrontierCO: Benchmark Dataset for Frontier Combinatorial Optimization

## Overview

**FrontierCO** is a curated benchmark suite for evaluating ML-based solvers on large-scale and real-world **Combinatorial Optimization (CO)** problems. The benchmark spans **8 classical CO problems** across **5 application domains**, providing both training and evaluation instances specifically designed to test the frontier of ML and LLM capabilities in solving NP-hard problems.

code for evaluating agent https://github.com/sunnweiwei/CO-Bench?tab=readme-ov-file#evaluation-on-frontierco

code for running classifical solver, generate training data, evaluating neural solver: https://github.com/sunnweiwei/FrontierCO

Evaluation Code: https://github.com/sunnweiwei/FrontierCO

---

## Dataset Structure

Each subdirectory corresponds to a specific CO task:

```
FrontierCO/
β”œβ”€β”€ CFLP/
β”‚   β”œβ”€β”€ easy_test_instances/
β”‚   β”œβ”€β”€ hard_test_instances/
β”‚   β”œβ”€β”€ valid_instances/
β”‚   └── config.py
β”œβ”€β”€ CPMP/
β”œβ”€β”€ CVRP/
β”œβ”€β”€ FJSP/
β”œβ”€β”€ MIS/
β”œβ”€β”€ MDS/
β”œβ”€β”€ STP/
β”œβ”€β”€ TSP/
└── ...
```

Each task folder contains:

* `easy_test_instances/`: Benchmark instances that are solvable by SOTA human-designed solvers.
* `hard_test_instances/`: Instances that remain computationally intensive or lack known optimal solutions.
* `valid_instances/` *(if applicable)*: Additional instances for validation or development.
* `config.py`: Metadata about instance format, solver settings, and reference solutions.

---

## Tasks Covered

The benchmark currently includes the following problems:

* **MIS** – Maximum Independent Set
* **MDS** – Minimum Dominating Set
* **TSP** – Traveling Salesman Problem
* **CVRP** – Capacitated Vehicle Routing Problem
* **CFLP** – Capacitated Facility Location Problem
* **CPMP** – Capacitated p-Median Problem
* **FJSP** – Flexible Job-shop Scheduling Problem
* **STP** – Steiner Tree Problem

Each task includes:

* Easy and hard test sets with varying difficulty and practical relevance
* Training and validation instances where applicable, generated using problem-specific generators
* Reference results for classical and ML-based solvers

---

## Data Sources

Instances are sourced from a mix of:

* Public repositories (e.g., [TSPLib](http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/), [CVRPLib](http://vrp.galgos.inf.puc-rio.br/))
* DIMACS and PACE Challenges
* Synthetic instance generators used in prior ML and optimization research
* Manual curation from recent SOTA solver evaluation benchmarks

For tasks lacking open benchmarks, we include high-quality synthetic instances aligned with real-world difficulty distributions.

---

## Usage

To use this dataset, clone the repository and select the task of interest. Each `config.py` file documents the format and how to parse or evaluate the instances.

```bash
git clone https://huggingface.co/datasets/CO-Bench/FrontierCO
cd FrontierCO/CFLP
```

Load a data instance
```python
from config import load_data
instance = load_data('easy_test_instances/i1000_1.plc')
print(instance)
```

Generate a solution
```python
# Your solution generation code goes here.
# For example:
solution = my_solver_func(**instance)
```

### Evaluate a solution
```python
from config import eval_func
score = eval_func(**instance, **solution)
print("Evaluation score:", score)
```

---

## Citation

If you use **FrontierCO** in your research or applications, please cite the following paper:

```bibtex
@misc{feng2025comprehensive,
  title={A Comprehensive Evaluation of Contemporary ML-Based Solvers for Combinatorial Optimization},
  author={Shengyu Feng and Weiwei Sun and Shanda Li and Ameet Talwalkar and Yiming Yang},
  year={2025},
}
```

---

## License

This dataset is released under the MIT License. Refer to `LICENSE` file for details.

---