|
DESCRIPTION = '''The Flexible Job Shop Scheduling Problem (FJSP) aims to assign operations of jobs to compatible machines and determine their processing sequence to minimize the makespan (total completion time). Given a set of jobs, each consisting of a sequence of operations, and a set of machines, where each operation can be processed on one or more machines with potentially different processing times, the objective is to: |
|
1. Assign each operation to exactly one compatible machine |
|
2. Determine the processing sequence of operations on each machine |
|
3. Minimize the makespan (completion time of the last operation) |
|
|
|
The problem has the following constraints: |
|
- Each operation must be processed on exactly one machine from its set of compatible machines |
|
- Operations of the same job must be processed in their predefined order (precedence constraints) |
|
- Each machine can process only one operation at a time |
|
- No preemption is allowed (once an operation starts, it must finish without interruption) |
|
- All jobs are available at time zero''' |
|
|
|
|
|
def solve(**kwargs): |
|
""" |
|
Solves the Flexible Job Shop Scheduling Problem. |
|
|
|
Input kwargs: |
|
- num_jobs (int): Number of jobs |
|
- num_machines (int): Number of machines |
|
- jobs (list): A list of jobs, where each job is a list of operations |
|
Each operation is represented as a list of machine-time pairs: |
|
[[(machine1, time1), (machine2, time2), ...], ...] |
|
where machine_i is the index of a compatible machine and time_i is the processing time |
|
|
|
Note: The input structure should match the output of load_data function. |
|
Note: Items are always 1-indexed |
|
|
|
Evaluation Metric: |
|
The objective is to minimize the makespan (completion time of the last operation). |
|
The solution must satisfy all constraints: |
|
- Each operation is assigned to exactly one compatible machine |
|
- Operations of the same job are processed in their predefined order |
|
- Each machine processes only one operation at a time |
|
- No preemption is allowed |
|
|
|
Returns: |
|
A dictionary with the following keys: |
|
'makespan': (float) The completion time of the last operation |
|
'machine_assignments': (list) A list where each element i represents the machine assigned to operation i |
|
(operations are indexed globally, in order of job and then operation index) |
|
'start_times': (list) A list where each element i represents the start time of operation i |
|
""" |
|
|
|
|
|
|
|
|
|
while True: |
|
yield { |
|
"makespan": 0.0, |
|
"machine_assignments": [], |
|
"start_times": [] |
|
} |
|
|
|
|
|
def load_data(filename): |
|
"""Read Flexible Job Shop Scheduling Problem instance from a file. |
|
|
|
Format: |
|
<number of jobs> <number of machines> |
|
<number of operations for job 1> <number of machines for op 1> <machine 1> <time 1> <machine 2> <time 2> ... <number of machines for op 2> <machine 1> <time 1> ... |
|
<number of operations for job 2> ... |
|
... |
|
|
|
Example: |
|
3 5 |
|
2 2 1 3 2 5 3 1 3 2 4 6 |
|
3 1 4 4 2 3 1 5 2 2 4 5 3 |
|
2 2 1 5 3 4 3 2 3 5 2 |
|
|
|
This example has 3 jobs and 5 machines. |
|
Job 1 has 2 operations: |
|
- Operation 1 can be processed on 2 machines: machine 1 (time 3) or machine 2 (time 5) |
|
- Operation 2 can be processed on 3 machines: machine 1 (time 3), machine 2 (time 4), or machine 4 (time 6) |
|
And so on for jobs 2 and 3. |
|
""" |
|
with open(filename, 'r') as f: |
|
lines = [line.strip() for line in f.readlines() if line.strip()] |
|
|
|
|
|
parts = lines[0].split() |
|
num_jobs = int(parts[0]) |
|
num_machines = int(parts[1]) |
|
|
|
|
|
jobs = [] |
|
for i in range(1, num_jobs + 1): |
|
if i < len(lines): |
|
job_data = list(map(int, lines[i].split())) |
|
job_operations = [] |
|
|
|
|
|
idx = 1 |
|
num_operations = job_data[0] |
|
|
|
for _ in range(num_operations): |
|
if idx < len(job_data): |
|
num_machines_for_op = job_data[idx] |
|
idx += 1 |
|
|
|
|
|
machine_time_pairs = [] |
|
for _ in range(num_machines_for_op): |
|
if idx + 1 < len(job_data): |
|
machine = job_data[idx] |
|
time = job_data[idx + 1] |
|
machine_time_pairs.append((machine, time)) |
|
idx += 2 |
|
|
|
job_operations.append(machine_time_pairs) |
|
|
|
jobs.append(job_operations) |
|
|
|
|
|
if len(jobs) != num_jobs: |
|
print(f"Warning: Expected {num_jobs} jobs, found {len(jobs)}.") |
|
|
|
case = { |
|
"num_jobs": num_jobs, |
|
"num_machines": num_machines, |
|
"jobs": jobs |
|
} |
|
|
|
return [case] |
|
|
|
|
|
|
|
def eval_func(num_jobs, num_machines, jobs, machine_assignments, start_times, **kwargs): |
|
""" |
|
Evaluates the solution for the Flexible Job Shop Scheduling Problem. |
|
|
|
Input Parameters: |
|
- num_jobs (int): Number of jobs |
|
- num_machines (int): Number of machines |
|
- jobs (list): A list of jobs, where each job is a list of operations |
|
- machine_assignments (list): A list of machine assignments for each operation |
|
- start_times (list): A list of start times for each operation |
|
- kwargs: Other parameters (not used here) |
|
|
|
Returns: |
|
A floating-point number representing the makespan if the solution is feasible. |
|
|
|
Raises: |
|
Exception: If any constraint is violated. |
|
""" |
|
|
|
flat_operations = [] |
|
for job in jobs: |
|
for operation in job: |
|
flat_operations.append(operation) |
|
|
|
|
|
for i, (operation, assigned_machine) in enumerate(zip(flat_operations, machine_assignments)): |
|
|
|
compatible_machines = [machine for machine, _ in operation] |
|
if assigned_machine not in compatible_machines: |
|
raise Exception(f"Operation {i} assigned to incompatible machine {assigned_machine}") |
|
|
|
|
|
job_op_end_times = {} |
|
op_idx = 0 |
|
|
|
|
|
for job_idx, job in enumerate(jobs): |
|
for op_idx_within_job, operation in enumerate(job): |
|
current_op_idx = op_idx |
|
|
|
|
|
assigned_machine = machine_assignments[current_op_idx] |
|
processing_time = next(time for machine, time in operation if machine == assigned_machine) |
|
|
|
start_time = start_times[current_op_idx] |
|
end_time = start_time + processing_time |
|
|
|
|
|
if op_idx_within_job > 0: |
|
prev_end_time = job_op_end_times.get((job_idx, op_idx_within_job - 1), 0) |
|
if start_time < prev_end_time: |
|
raise Exception(f"Operation {current_op_idx} starts at {start_time}, " |
|
f"before previous operation in job {job_idx} ends at {prev_end_time}") |
|
|
|
job_op_end_times[(job_idx, op_idx_within_job)] = end_time |
|
op_idx += 1 |
|
|
|
|
|
machine_schedules = {} |
|
op_idx = 0 |
|
|
|
for job in jobs: |
|
for operation in job: |
|
assigned_machine = machine_assignments[op_idx] |
|
processing_time = next(time for machine, time in operation if machine == assigned_machine) |
|
|
|
start_time = start_times[op_idx] |
|
end_time = start_time + processing_time |
|
|
|
if assigned_machine not in machine_schedules: |
|
machine_schedules[assigned_machine] = [] |
|
|
|
|
|
for other_start, other_end in machine_schedules[assigned_machine]: |
|
if not (end_time <= other_start or start_time >= other_end): |
|
raise Exception(f"Operation at time {start_time}-{end_time} overlaps with another " |
|
f"operation on machine {assigned_machine} at {other_start}-{other_end}") |
|
|
|
machine_schedules[assigned_machine].append((start_time, end_time)) |
|
op_idx += 1 |
|
|
|
|
|
makespan = max(end_time for machine_times in machine_schedules.values() |
|
for _, end_time in machine_times) |
|
|
|
return makespan |
|
|
|
|
|
def norm_score(results): |
|
optimal_scores = {'easy_test_instances/Behnke1.fjs': [90.0], 'easy_test_instances/Behnke10.fjs': [127.0], 'easy_test_instances/Behnke11.fjs': [231.0], 'easy_test_instances/Behnke12.fjs': [220.0], 'easy_test_instances/Behnke13.fjs': [231.0], 'easy_test_instances/Behnke14.fjs': [232.0], 'easy_test_instances/Behnke15.fjs': [227.0], 'easy_test_instances/Behnke16.fjs': [417.0], 'easy_test_instances/Behnke17.fjs': [406.0], 'easy_test_instances/Behnke18.fjs': [404.0], 'easy_test_instances/Behnke19.fjs': [407.0], 'easy_test_instances/Behnke2.fjs': [91.0], 'easy_test_instances/Behnke20.fjs': [404.0], 'easy_test_instances/Behnke21.fjs': [85.0], 'easy_test_instances/Behnke22.fjs': [87.0], 'easy_test_instances/Behnke23.fjs': [85.0], 'easy_test_instances/Behnke24.fjs': [87.0], 'easy_test_instances/Behnke25.fjs': [87.0], 'easy_test_instances/Behnke26.fjs': [113.0], 'easy_test_instances/Behnke27.fjs': [122.0], 'easy_test_instances/Behnke28.fjs': [114.0], 'easy_test_instances/Behnke29.fjs': [118.0], 'easy_test_instances/Behnke3.fjs': [91.0], 'easy_test_instances/Behnke30.fjs': [121.0], 'easy_test_instances/Behnke31.fjs': [226.0], 'easy_test_instances/Behnke32.fjs': [222.0], 'easy_test_instances/Behnke33.fjs': [226.0], 'easy_test_instances/Behnke34.fjs': [221.0], 'easy_test_instances/Behnke35.fjs': [214.0], 'easy_test_instances/Behnke36.fjs': [392.0], 'easy_test_instances/Behnke37.fjs': [399.0], 'easy_test_instances/Behnke38.fjs': [395.0], 'easy_test_instances/Behnke39.fjs': [393.0], 'easy_test_instances/Behnke4.fjs': [97.0], 'easy_test_instances/Behnke40.fjs': [421.0], 'easy_test_instances/Behnke41.fjs': [87.0], 'easy_test_instances/Behnke42.fjs': [87.0], 'easy_test_instances/Behnke43.fjs': [86.0], 'easy_test_instances/Behnke44.fjs': [84.0], 'easy_test_instances/Behnke45.fjs': [87.0], 'easy_test_instances/Behnke46.fjs': [115.0], 'easy_test_instances/Behnke47.fjs': [117.0], 'easy_test_instances/Behnke48.fjs': [125.0], 'easy_test_instances/Behnke49.fjs': [113.0], 'easy_test_instances/Behnke5.fjs': [91.0], 'easy_test_instances/Behnke50.fjs': [124.0], 'easy_test_instances/Behnke51.fjs': [220.0], 'easy_test_instances/Behnke52.fjs': [215.0], 'easy_test_instances/Behnke53.fjs': [213.0], 'easy_test_instances/Behnke54.fjs': [225.0], 'easy_test_instances/Behnke55.fjs': [222.0], 'easy_test_instances/Behnke56.fjs': [394.0], 'easy_test_instances/Behnke57.fjs': [393.0], 'easy_test_instances/Behnke58.fjs': [406.0], 'easy_test_instances/Behnke59.fjs': [404.0], 'easy_test_instances/Behnke6.fjs': [125.0], 'easy_test_instances/Behnke60.fjs': [402.0], 'easy_test_instances/Behnke7.fjs': [125.0], 'easy_test_instances/Behnke8.fjs': [124.0], 'easy_test_instances/Behnke9.fjs': [127.0], 'hard_test_instances/73.txt': [3723.0], 'hard_test_instances/74.txt': [3706.0], 'hard_test_instances/75.txt': [3436.0], 'hard_test_instances/76.txt': [3790.0], 'hard_test_instances/77.txt': [7406.0], 'hard_test_instances/78.txt': [7570.0], 'hard_test_instances/79.txt': [7040.0], 'hard_test_instances/80.txt': [7825.0], 'hard_test_instances/81.txt': [2276.0], 'hard_test_instances/82.txt': [2520.0], 'hard_test_instances/83.txt': [2290.0], 'hard_test_instances/84.txt': [2581.0], 'hard_test_instances/85.txt': [4901.0], 'hard_test_instances/86.txt': [5109.0], 'hard_test_instances/87.txt': [4954.0], 'hard_test_instances/88.txt': [4994.0], 'hard_test_instances/89.txt': [1810.0], 'hard_test_instances/90.txt': [1778.0], 'hard_test_instances/91.txt': [1707.0], 'hard_test_instances/92.txt': [1923.0], 'hard_test_instances/93.txt': [3553.0], 'hard_test_instances/94.txt': [3790.0], 'hard_test_instances/95.txt': [3586.0], 'hard_test_instances/96.txt': [3896.0]} |
|
|
|
normed = {} |
|
for case, (scores, error_message) in results.items(): |
|
if case not in optimal_scores: |
|
continue |
|
optimal_list = optimal_scores[case] |
|
normed_scores = [] |
|
|
|
for idx, score in enumerate(scores): |
|
if isinstance(score, (int, float)): |
|
normed_scores.append(1 - abs(score - optimal_list[idx]) / max(score, optimal_list[idx])) |
|
else: |
|
normed_scores.append(score) |
|
normed[case] = (normed_scores, error_message) |
|
|
|
return normed |
|
|
|
|