|
DESCRIPTION = '''The Traveling Salesman Problem (TSP) is a classic combinatorial optimization problem where, given a set of cities with known pairwise distances, the objective is to find the shortest possible tour that visits each city exactly once and returns to the starting city. More formally, given a complete graph G = (V, E) with vertices V representing cities and edges E with weights representing distances, we seek to find a Hamiltonian cycle (a closed path visiting each vertex exactly once) of minimum total weight.''' |
|
|
|
|
|
def solve(**kwargs): |
|
""" |
|
Solve a TSP instance. |
|
|
|
Args: |
|
- nodes (list): List of (x, y) coordinates representing cities in the TSP problem |
|
Format: [(x1, y1), (x2, y2), ..., (xn, yn)] |
|
|
|
Returns: |
|
dict: Solution information with: |
|
- 'tour' (list): List of node indices representing the solution path |
|
Format: [0, 3, 1, ...] where numbers are indices into the nodes list |
|
""" |
|
|
|
|
|
|
|
|
|
while True: |
|
yield { |
|
'tour': [], |
|
} |
|
|
|
|
|
|
|
|
|
|
|
def load_data(filepath): |
|
import re |
|
nodes = [] |
|
dimension = 0 |
|
reading_nodes = False |
|
|
|
with open(filepath, 'r') as f: |
|
for line in f: |
|
line = line.strip() |
|
|
|
|
|
if line.startswith("DIMENSION"): |
|
dimension = int(line.split(":")[1].strip()) |
|
|
|
|
|
elif line == "NODE_COORD_SECTION": |
|
reading_nodes = True |
|
|
|
|
|
elif line == "EOF": |
|
reading_nodes = False |
|
|
|
|
|
elif reading_nodes and line: |
|
|
|
parts = re.split(r'\s+', line.strip()) |
|
if len(parts) >= 3: |
|
try: |
|
|
|
x, y = float(parts[1]), float(parts[2]) |
|
nodes.append([x, y]) |
|
except ValueError: |
|
continue |
|
|
|
|
|
if dimension > 0 and len(nodes) != dimension: |
|
print(f"Warning: Expected {dimension} nodes but found {len(nodes)}") |
|
|
|
|
|
return [{'nodes': nodes}] |
|
|
|
|
|
def eval_func(nodes, tour): |
|
""" |
|
Evaluate a predicted TSP tour against a reference tour. |
|
|
|
Args: |
|
nodes (list): List of (x, y) coordinates representing cities in the TSP problem |
|
Format: [(x1, y1), (x2, y2), ..., (xn, yn)] |
|
tour (list): Predicted tour from the solver as list of node indices |
|
Format: [0, 3, 1, ...] |
|
|
|
Returns: |
|
float: Optimality gap percentage ((predicted_cost/optimal_cost - 1) * 100) |
|
or just the predicted cost if no label_tour is provided |
|
""" |
|
|
|
import math |
|
|
|
num_nodes = len(nodes) |
|
|
|
if len(tour) != num_nodes: |
|
raise Exception(f"Invalid tour length: Expected {num_nodes}, got {len(tour)}") |
|
nodes_set = set(tour) |
|
|
|
if len(nodes_set) != num_nodes: |
|
raise Exception(f"Invalid tour: Contains {len(nodes_set)} unique nodes, expected {num_nodes}") |
|
|
|
expected_nodes = set(range(num_nodes)) |
|
if nodes_set != expected_nodes: |
|
raise Exception(f"Invalid tour: Contains out-of-range or missing nodes") |
|
|
|
def calculate_tour_cost(nodes, tour): |
|
cost = 0 |
|
for i in range(len(tour)): |
|
from_node = tour[i] |
|
to_node = tour[(i + 1) % len(tour)] |
|
|
|
|
|
from_x, from_y = nodes[from_node] |
|
to_x, to_y = nodes[to_node] |
|
segment_cost = math.sqrt((to_x - from_x) ** 2 + (to_y - from_y) ** 2) |
|
|
|
cost += segment_cost |
|
|
|
return cost |
|
|
|
pred_cost = calculate_tour_cost(nodes, tour) |
|
|
|
return pred_cost |
|
|
|
|
|
def norm_score(results): |
|
optimal_scores = {'valid_instances/E1k.0': [23360648.0], 'valid_instances/E1k.1': [22985695.0], 'valid_instances/E1k.2': [23023351.0], 'valid_instances/E1k.3': [23149856.0], 'valid_instances/E1k.4': [22698717.0], 'valid_instances/E1k.5': [23192391.0], 'valid_instances/E1k.6': [23349803.0], 'valid_instances/E1k.7': [22882343.0], 'valid_instances/E1k.8': [23027023.0], 'valid_instances/E1k.9': [23356256.0]} |
|
optimal_scores = optimal_scores | {'hard_test_instances/C100k.0': [104617752.0], 'hard_test_instances/C100k.1': [105390777.0], 'hard_test_instances/C10k.0': [33001034.0], 'hard_test_instances/C10k.1': [33186248.0], 'hard_test_instances/C10k.2': [33155424.0], 'hard_test_instances/C316k.0': [186870839.0], 'hard_test_instances/C31k.0': [59545390.0], 'hard_test_instances/C31k.1': [59293266.0], 'hard_test_instances/E100k.0': [225784127.0], 'hard_test_instances/E100k.1': [225654639.0], 'hard_test_instances/E10M.0': [2253040346.0], 'hard_test_instances/E10k.0': [71865826.0], 'hard_test_instances/E10k.1': [72031630.0], 'hard_test_instances/E10k.2': [71822483.0], 'hard_test_instances/E1M.0': [713187688.0], 'hard_test_instances/E316k.0': [401301206.0], 'hard_test_instances/E31k.0': [127282138.0], 'hard_test_instances/E31k.1': [127452384.0], 'hard_test_instances/E3M.0': [1267295473.0]} |
|
optimal_scores = optimal_scores | {'easy_test_instances/brd14051.tsp': [469385.0], 'easy_test_instances/d1291.tsp': [50801.0], 'easy_test_instances/d15112.tsp': [1573084.0], 'easy_test_instances/d1655.tsp': [62128.0], 'easy_test_instances/d18512.tsp': [645238.0], 'easy_test_instances/d2103.tsp': [80450.0], 'easy_test_instances/fl1400.tsp': [20127.0], 'easy_test_instances/fl1577.tsp': [22249.0], 'easy_test_instances/fl3795.tsp': [28772.0], 'easy_test_instances/fnl4461.tsp': [182566.0], 'easy_test_instances/nrw1379.tsp': [56638.0], 'easy_test_instances/pcb1173.tsp': [56892.0], 'easy_test_instances/pcb3038.tsp': [137694.0], 'easy_test_instances/pr1002.tsp': [259045.0], 'easy_test_instances/pr2392.tsp': [378032.0], 'easy_test_instances/rl11849.tsp': [923288.0], 'easy_test_instances/rl1304.tsp': [252948.0], 'easy_test_instances/rl1323.tsp': [270199.0], 'easy_test_instances/rl1889.tsp': [316536.0], 'easy_test_instances/rl5915.tsp': [565530.0], 'easy_test_instances/rl5934.tsp': [556045.0], 'easy_test_instances/u1060.tsp': [224094.0], 'easy_test_instances/u1432.tsp': [152970.0], 'easy_test_instances/u1817.tsp': [57201.0], 'easy_test_instances/u2152.tsp': [64253.0], 'easy_test_instances/u2319.tsp': [234256.0], 'easy_test_instances/usa13509.tsp': [19982859.0], 'easy_test_instances/vm1084.tsp': [239297.0], 'easy_test_instances/vm1748.tsp': [336556.0]} |
|
normed = {} |
|
for case, (scores, error_message) in results.items(): |
|
if case not in optimal_scores: |
|
continue |
|
optimal_list = optimal_scores[case] |
|
normed_scores = [] |
|
|
|
for idx, score in enumerate(scores): |
|
if isinstance(score, (int, float)): |
|
normed_scores.append(1 - abs(score - optimal_list[idx]) / max(score, optimal_list[idx])) |
|
else: |
|
normed_scores.append(score) |
|
normed[case] = (normed_scores, error_message) |
|
|
|
return normed |
|
|