Dataset Viewer
Auto-converted to Parquet
Search is not available for this dataset
image
imagewidth (px)
128
128
End of preview. Expand in Data Studio

MUFAC (Machine Unlearning for Facial Age Classifier)

arXiv

This repository provides a cleaned and resolution-aligned (128x128) version of the MUFAC benchmark dataset.


πŸ“˜ Description

A multi-class age classification dataset featuring over 63,000 Asian facial images with annotations for age groups and personal identities.

MUFAC examples
  • Preprocessed facial images (128Γ—128 resolution)
  • CSV files (custom_train_dataset.csv, etc.) for structured training/evaluation
  • Separation of identity-forgettable vs. retained images (forget_images, retain_images)
  • Suitable for benchmarking machine unlearning algorithms, especially in task-agnostic setups

It is specifically intended for experiments where personal identities are selectively unlearned, without degrading model utility on the original task (e.g., age classification).


πŸ—‚οΈ Dataset Structure

MUFAC/
β”œβ”€β”€ forget_images/                     # 1,431 images to be unlearned
β”œβ”€β”€ retain_images/                     # 7,680 images to retain
β”œβ”€β”€ train_images_part1/                # 9,093 training images (part 1)
β”œβ”€β”€ train_images_part2/                # 18 training images (part 2)
β”œβ”€β”€ val_images/                        # 1,464 validation images
β”œβ”€β”€ test_images/                       # 1,408 test images
β”œβ”€β”€ fixed_test_dataset_negative/       # 9,319 identity-balanced test data (negative)
β”œβ”€β”€ fixed_test_dataset_positive/       # 9,319 identity-balanced test data (positive)
β”œβ”€β”€ fixed_val_dataset_negative/        # 9,462 identity-balanced val data (negative)
β”œβ”€β”€ fixed_val_dataset_positive/        # 9,424 identity-balanced val data (positive)
β”œβ”€β”€ custom_train_dataset.csv           # CSV with image paths and labels
β”œβ”€β”€ custom_val_dataset.csv             # Validation CSV
└── custom_test_dataset.csv            # Test CSV
  • CSV files follow the format: image_path, age_group, identity, forget_flag, etc.
  • All image paths are relative and usable with datasets.Image() or PIL.

πŸ”Ή How to Use

Method 1: Git Clone (Recommended)

git lfs install
git clone https://huggingface.co/datasets/Dasool/MUFAC
cd MUFAC

Method 2: Using Hugging Face Hub API

from huggingface_hub import snapshot_download

# Download entire dataset
local_dir = snapshot_download("Dasool/MUFAC", repo_type="dataset")
print(f"Dataset downloaded to: {local_dir}")

Method 3: Load CSV and Images

import pandas as pd
import os
from PIL import Image

# Load CSV
df = pd.read_csv("MUFAC/custom_train_dataset.csv")
print(f"Dataset size: {len(df)} samples")
print(df.head())

# Load sample image
sample_row = df.iloc[0]
img_path = os.path.join("MUFAC", sample_row["image_path"])
img = Image.open(img_path)
img.show()

πŸ“Š Citation

This dataset is part of the benchmark suite introduced in the following paper:

@misc{choi2023machine,
  title={Towards Machine Unlearning Benchmarks: Forgetting the Personal Identities in Facial Recognition Systems},
  author={Dasol Choi and Dongbin Na},
  year={2023},
  eprint={2311.02240},
  archivePrefix={arXiv},
  primaryClass={cs.CV}
}
Downloads last month
1,099