Dasool commited on
Commit
bd82992
Β·
verified Β·
1 Parent(s): 7053070

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +105 -3
README.md CHANGED
@@ -1,3 +1,105 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ task_categories:
4
+ - image-classification
5
+ language:
6
+ - en
7
+ ---
8
+
9
+ # MUFAC (Machine Unlearning for Facial Age Classifier)
10
+
11
+ [![arXiv](https://img.shields.io/badge/arXiv-2311.02240-b31b1b.svg)](https://arxiv.org/abs/2311.02240)
12
+
13
+ This repository provides a **cleaned and resolution-aligned (128x128) version** of the MUFAC benchmark dataset.
14
+
15
+ ---
16
+
17
+ ## πŸ“˜ Description
18
+
19
+ A multi-class age classification dataset featuring over 86,000 Asian facial images with annotations for age groups and personal identities.
20
+
21
+ <img src="https://raw.githubusercontent.com/ndb796/MachineUnlearning/main/resources/MUFAC.png" width="700" alt="MUFAC examples"/>
22
+
23
+ - Preprocessed facial images (128Γ—128 resolution)
24
+ - CSV files (`custom_train_dataset.csv`, etc.) for structured training/evaluation
25
+ - Separation of identity-forgettable vs. retained images (`forget_images`, `retain_images`)
26
+ - Suitable for benchmarking **machine unlearning** algorithms, especially in **task-agnostic setups**
27
+
28
+ It is specifically intended for experiments where **personal identities are selectively unlearned**, without degrading model utility on the original task (e.g., age classification).
29
+
30
+ ---
31
+
32
+ ## πŸ—‚οΈ Dataset Structure
33
+ ```
34
+ MUFAC/
35
+ β”œβ”€β”€ forget_images/ # 1,500 images to be unlearned
36
+ β”œβ”€β”€ retain_images/ # 8,525 images to retain
37
+ β”œβ”€β”€ train_images_part1/ # 9,999 training images (part 1)
38
+ β”œβ”€β”€ train_images_part2/ # 26 training images (part 2)
39
+ β”œβ”€β”€ val_images/ # 1,539 validation images
40
+ β”œβ”€β”€ test_images/ # 4,513 test images
41
+ β”œβ”€β”€ fixed_test_dataset_negative/ # 5,000 identity-balanced test data (negative)
42
+ β”œβ”€β”€ fixed_test_dataset_positive/ # 5,000 identity-balanced test data (positive)
43
+ β”œβ”€β”€ fixed_val_dataset_negative/ # 5,000 identity-balanced val data (negative)
44
+ β”œβ”€β”€ fixed_val_dataset_positive/ # 5,000 identity-balanced val data (positive)
45
+ β”œβ”€β”€ custom_train_dataset.csv # CSV with image paths and labels
46
+ β”œβ”€β”€ custom_val_dataset.csv # Validation CSV
47
+ └── custom_test_dataset.csv # Test CSV
48
+ ```
49
+ - CSV files follow the format: `image_path`, `age_group`, `identity`, `forget_flag`, etc.
50
+ - All image paths are relative and usable with `datasets.Image()` or `PIL`.
51
+
52
+ ---
53
+ ## πŸ”Ή How to Use
54
+ ```python
55
+ # Method 1: Git Clone (Recommended)
56
+ git lfs install
57
+ git clone https://huggingface.co/datasets/Dasool/MUFAC
58
+ cd MUFAC
59
+ ```
60
+
61
+ # Method 2: Using Hugging Face Hub API
62
+ ```
63
+ from huggingface_hub import snapshot_download
64
+
65
+ # Download entire dataset
66
+ local_dir = snapshot_download("Dasool/MUFAC", repo_type="dataset")
67
+ print(f"Dataset downloaded to: {local_dir}")
68
+ ```
69
+ # Method 3: Load CSV and Images
70
+ ```
71
+ import pandas as pd
72
+ import os
73
+ from PIL import Image
74
+
75
+ # Load CSV
76
+ df = pd.read_csv("MUFAC/custom_train_dataset.csv")
77
+ print(f"Dataset size: {len(df)} samples")
78
+ print(df.head())
79
+
80
+ # Load sample image
81
+ sample_row = df.iloc[0]
82
+ img_path = os.path.join("MUFAC", sample_row["image_path"])
83
+ img = Image.open(img_path)
84
+ img.show()
85
+ ```
86
+
87
+ ---
88
+ ## πŸ“Š Citation
89
+
90
+ This dataset is part of the benchmark suite introduced in the following paper:
91
+
92
+ ```bibtex
93
+ @misc{choi2023machine,
94
+ title={Towards Machine Unlearning Benchmarks: Forgetting the Personal Identities in Facial Recognition Systems},
95
+ author={Dasol Choi and Dongbin Na},
96
+ year={2023},
97
+ eprint={2311.02240},
98
+ archivePrefix={arXiv},
99
+ primaryClass={cs.CV}
100
+ }
101
+ ```
102
+
103
+ - πŸ”— Code for Experiments:: [https://github.com/ndb796/MachineUnlearning](https://github.com/ndb796/MachineUnlearning)
104
+
105
+ - πŸ“§ Contact: [email protected]