Datasets:
Tasks:
Image Classification
Modalities:
Image
Formats:
imagefolder
Languages:
English
Size:
10K - 100K
ArXiv:
License:
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,105 @@
|
|
1 |
-
---
|
2 |
-
license:
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
task_categories:
|
4 |
+
- image-classification
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
---
|
8 |
+
|
9 |
+
# MUFAC (Machine Unlearning for Facial Age Classifier)
|
10 |
+
|
11 |
+
[](https://arxiv.org/abs/2311.02240)
|
12 |
+
|
13 |
+
This repository provides a **cleaned and resolution-aligned (128x128) version** of the MUFAC benchmark dataset.
|
14 |
+
|
15 |
+
---
|
16 |
+
|
17 |
+
## π Description
|
18 |
+
|
19 |
+
A multi-class age classification dataset featuring over 86,000 Asian facial images with annotations for age groups and personal identities.
|
20 |
+
|
21 |
+
<img src="https://raw.githubusercontent.com/ndb796/MachineUnlearning/main/resources/MUFAC.png" width="700" alt="MUFAC examples"/>
|
22 |
+
|
23 |
+
- Preprocessed facial images (128Γ128 resolution)
|
24 |
+
- CSV files (`custom_train_dataset.csv`, etc.) for structured training/evaluation
|
25 |
+
- Separation of identity-forgettable vs. retained images (`forget_images`, `retain_images`)
|
26 |
+
- Suitable for benchmarking **machine unlearning** algorithms, especially in **task-agnostic setups**
|
27 |
+
|
28 |
+
It is specifically intended for experiments where **personal identities are selectively unlearned**, without degrading model utility on the original task (e.g., age classification).
|
29 |
+
|
30 |
+
---
|
31 |
+
|
32 |
+
## ποΈ Dataset Structure
|
33 |
+
```
|
34 |
+
MUFAC/
|
35 |
+
βββ forget_images/ # 1,500 images to be unlearned
|
36 |
+
βββ retain_images/ # 8,525 images to retain
|
37 |
+
βββ train_images_part1/ # 9,999 training images (part 1)
|
38 |
+
βββ train_images_part2/ # 26 training images (part 2)
|
39 |
+
βββ val_images/ # 1,539 validation images
|
40 |
+
βββ test_images/ # 4,513 test images
|
41 |
+
βββ fixed_test_dataset_negative/ # 5,000 identity-balanced test data (negative)
|
42 |
+
βββ fixed_test_dataset_positive/ # 5,000 identity-balanced test data (positive)
|
43 |
+
βββ fixed_val_dataset_negative/ # 5,000 identity-balanced val data (negative)
|
44 |
+
βββ fixed_val_dataset_positive/ # 5,000 identity-balanced val data (positive)
|
45 |
+
βββ custom_train_dataset.csv # CSV with image paths and labels
|
46 |
+
βββ custom_val_dataset.csv # Validation CSV
|
47 |
+
βββ custom_test_dataset.csv # Test CSV
|
48 |
+
```
|
49 |
+
- CSV files follow the format: `image_path`, `age_group`, `identity`, `forget_flag`, etc.
|
50 |
+
- All image paths are relative and usable with `datasets.Image()` or `PIL`.
|
51 |
+
|
52 |
+
---
|
53 |
+
## πΉ How to Use
|
54 |
+
```python
|
55 |
+
# Method 1: Git Clone (Recommended)
|
56 |
+
git lfs install
|
57 |
+
git clone https://huggingface.co/datasets/Dasool/MUFAC
|
58 |
+
cd MUFAC
|
59 |
+
```
|
60 |
+
|
61 |
+
# Method 2: Using Hugging Face Hub API
|
62 |
+
```
|
63 |
+
from huggingface_hub import snapshot_download
|
64 |
+
|
65 |
+
# Download entire dataset
|
66 |
+
local_dir = snapshot_download("Dasool/MUFAC", repo_type="dataset")
|
67 |
+
print(f"Dataset downloaded to: {local_dir}")
|
68 |
+
```
|
69 |
+
# Method 3: Load CSV and Images
|
70 |
+
```
|
71 |
+
import pandas as pd
|
72 |
+
import os
|
73 |
+
from PIL import Image
|
74 |
+
|
75 |
+
# Load CSV
|
76 |
+
df = pd.read_csv("MUFAC/custom_train_dataset.csv")
|
77 |
+
print(f"Dataset size: {len(df)} samples")
|
78 |
+
print(df.head())
|
79 |
+
|
80 |
+
# Load sample image
|
81 |
+
sample_row = df.iloc[0]
|
82 |
+
img_path = os.path.join("MUFAC", sample_row["image_path"])
|
83 |
+
img = Image.open(img_path)
|
84 |
+
img.show()
|
85 |
+
```
|
86 |
+
|
87 |
+
---
|
88 |
+
## π Citation
|
89 |
+
|
90 |
+
This dataset is part of the benchmark suite introduced in the following paper:
|
91 |
+
|
92 |
+
```bibtex
|
93 |
+
@misc{choi2023machine,
|
94 |
+
title={Towards Machine Unlearning Benchmarks: Forgetting the Personal Identities in Facial Recognition Systems},
|
95 |
+
author={Dasol Choi and Dongbin Na},
|
96 |
+
year={2023},
|
97 |
+
eprint={2311.02240},
|
98 |
+
archivePrefix={arXiv},
|
99 |
+
primaryClass={cs.CV}
|
100 |
+
}
|
101 |
+
```
|
102 |
+
|
103 |
+
- π Code for Experiments:: [https://github.com/ndb796/MachineUnlearning](https://github.com/ndb796/MachineUnlearning)
|
104 |
+
|
105 |
+
- π§ Contact: [email protected]
|