id
int64 -9,223,368,939,649,634,000
9,223,332,586B
| text
stringlengths 228
1.05M
| metadata
dict | line_start_n_end_idx
dict | quality_signals
dict | eai_taxonomy
dict | pid
stringclasses 23
values |
---|---|---|---|---|---|---|
-6,870,535,078,389,188,000 | Kramers-Kronig-Beziehungen
aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Die Kramers-Kronig-Beziehungen, auch Kramers-Kronig-Relation, setzen Real- und Imaginärteil bestimmter meromorpher Funktionen in Form einer Integralgleichung miteinander in Beziehung. Sie stellen damit einen Spezialfall der Hilbert-Transformation dar. Die Beziehungen wurden nach ihren Entdeckern Hendrik Anthony Kramers und Ralph Kronig benannt.
Eine wichtige Anwendung der Kramers-Kronig-Beziehungen ist der Zusammenhang zwischen der Absorption und der Dispersion der Ausbreitung von Licht in einem Medium. Weitere Anwendungen gibt es in der Hochenergiephysik.
Mathematische Formulierung[Bearbeiten]
Sei F : \mathbb{C} \rightarrow \mathbb{C} eine meromorphe Funktion, deren Polstellen in der unteren Halbebene liegen. Dieser Forderung an die Lage der Polstellen entspricht physikalisch das Kausalitätspostulat. Ferner seien \operatorname{Re}\, F|_\mathbb{R} bzw. \operatorname{Im}\, F|_\mathbb{R} Real- und Imaginärteil der Funktion F. Es sei vorausgesetzt, dass diese beiden Funktionen gerade bzw. ungerade sind. Das bedeutet, dass F durch Fourierintegration nicht aus einer beliebigen komplexen, sondern aus einer reellen Funktion gebildet werden kann.
In der Physik betrachtet man oft statt F die Funktion F/i, wodurch sich die Voraussetzungen bezüglich gerade und ungerade vertauschen. Schließlich sei \lim_{|z| \rightarrow \infty} |F(z)| = 0. Dann gelten für x \in \mathbb{R} die folgenden als Kramers-Kronig-Beziehungen bezeichnete Gleichungen:
\operatorname{Im}\, F(x) = -\frac{2}{\pi} \cdot \;\mathrm{CH}\, \int_{0}^{+\infty} \frac{x\cdot\operatorname{Re}\,F(t)}{t^2-x^2}\mathrm{d}t
\operatorname{Re}\, F(x) = \frac{2}{\pi} \cdot \;\mathrm{CH}\, \int_{0}^{+\infty} \frac{t\cdot\operatorname{Im}\,F(t)}{t^2-x^2}\mathrm{d}t
\mathrm{CH} bezeichnet den cauchyschen Hauptwert des auftretenden Integrals.
Real- und Imaginärteil der Funktion F bedingen sich also gegenseitig durch Integration. Dies findet Anwendungen in der Optik und in der Systemtheorie wenn F die Suszeptibilität eines Systems angibt, siehe Kausalität. Anwendungen finden sich auch in der Hochenergie-Physik bei den Dispersionsrelationen der S-Matrix.
Motivation (Ein Randwertproblem)[Bearbeiten]
Auf der reellen Achse \mathbb R sei eine stetige reelle Funktion \,f vorgegeben, die analog zu \operatorname{Re}\,F als gerade vorausgesetzt werden soll. Dazu soll eine in der ganzen oberen Halbebene holomorphe komplexe(!) Funktion \,F so konstruiert werden, dass \operatorname{Re}\, F|_\mathbb{R} \stackrel{!}{=} f gilt.
Es soll also ein Randwertproblem gelöst werden, wobei im Innern des betrachteten Gebietes \,G, d. h. oberhalb von \mathbb R, wegen der Holomorphie-Bedingung die Cauchy-Riemannschen Differentialgleichungen erfüllt werden müssen und auf dem Rand, \partial G=\mathbb R\,, eine stetige reelle Funktion, f, vorgegeben ist, die dort angenommen werden soll.
Eine holomorphe Funktion kann nach dem Residuensatz dargestellt werden als:
F(z) = \frac{1}{2 \pi i} \left( \int_{HK_r} \frac{F(t)}{t - z} \mathrm{d}t + \int_{-r}^r \frac{F(t)}{t - z} \mathrm{d}t \right),
wobei HK_r(0) den (positiv orientierten) Halbkreis in der oberen Halbebene mit Zentrum 0 und Radius r > 0 bezeichnet. Fällt nun F im Unendlichen schnell genug ab, so reduziert sich im Grenzübergang r \rightarrow \infty die Darstellung zu einem Integral über der reellen Achse, also:
F(z) = \frac{1}{2 \pi i} \int_{-\infty}^{+\infty} \frac{F(t)}{t-z} \mathrm{d}t
Im Falle \operatorname{Im}\, z = 0, und weil \,f bzw. \operatorname{Re}\,F(t) eine gerade Funktion sein soll, ergibt sich schließlich
\operatorname{Im} \, F(z) = - \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{\operatorname{Re}\,F(t)}{t-z} \mathrm{d}t
= - \frac{2}{\pi} \int_{0}^{+\infty} \frac{z \cdot \operatorname{Re}\,F(t)}{t^2-z^2} \mathrm{d}t,
wobei das auftretende Integral als Cauchyscher Hauptwert zu interpretieren ist (Singularität für t = z) und mit der Hilbert-Transformation von f übereinstimmt. Der Residuensatz wird hierbei auf den Integrationsweg [-r,z-\varepsilon] \cdot HK_\varepsilon(z) \cdot [z+\varepsilon, r] \cdot HK_r(0) angewendet. Diese Gleichung entspricht der einen Kramers-Kronig-Beziehung.
Man braucht jetzt zur Lösung des Randwertproblems nur die Beziehung \operatorname{Re}\, F|_\mathbb{R} {=} f einzusetzen.
Für ungerade Funktionen f verfährt man analog und erhält die andere Kramers-Kronig-Beziehung. Eine beliebige Funktion kann immer durch die Vorschrift \, f=f_+ + f_-, mit f_\pm (t) = \frac{1}{2}\left (f(t)\pm f(-t)\right ), in einen geraden bzw. ungeraden Anteil zerlegt werden.
Anwendungen[Bearbeiten]
Die Kramers-Kronig-Beziehungen finden dort Anwendung, wo eine reelle gerade Funktion zu einer holomorphen Funktion ergänzt werden soll, was meistens der Vereinfachung der auftretenden Rechnungen dient, insbesondere bei Wellenfunktionen, also hauptsächlich in der Signalverarbeitung und in der Optik, aber auch in der Statistischen Physik im Zusammenhang mit dem Fluktuations-Dissipations-Theorem. Auf diese Weise hängt die Absorption von elektromagnetischen Wellen in einem Medium mit dem Brechungsindex zusammen. Es reicht also, die Abhängigkeit einer der beiden Größen von der Frequenz zu kennen, um die andere berechnen zu können.
Die von der Kreisfrequenz abhängige Absorption lässt sich als Funktion einer von der Kreisfrequenz abhängigen Permittivität \varepsilon(\omega) ausdrücken:[1]
\operatorname{Re}(\varepsilon(\omega))=1+\frac{2}{\pi} \cdot \;\mathrm{CH}\, \int \limits_{0}^{\infty} {{\Omega \cdot \operatorname{Im}(\varepsilon(\Omega))} \over {\Omega^2-\omega^2}} \,\mathrm{d}\Omega
wobei \Omega die Kreisfrequenz als Integrationsvariable und \mathrm{CH} der cauchysche Hauptwert (engl. Cauchy principal value) des Integrals sind.
Eine alternative Betrachtungsweise ergibt sich mit dem Absorptionskoeffizienten \alpha, dem Brechungsindex n und der Lichtgeschwindigkeit c:
n(\omega)=1+\frac{c}{\pi} \cdot \;\mathrm{CH}\, \int \limits_{0}^{\infty} {{\alpha(\Omega)} \over {\Omega^2-\omega^2}} \,\mathrm{d}\Omega
Dadurch lässt sich vor allem in der nichtlinearen Optik aus einer einfachen Absorptionsmessung die komplexe Form des Brechungsindex ableiten.
Literatur[Bearbeiten]
Originalarbeiten:
• R. de L. Kronig: On the theory of dispersion of X-rays. In: Journal of the Optical Society of America. 12, Nr. 6, 1926, S. 547-556, doi:10.1364/JOSA.12.000547.
• H.A. Kramers: La diffusion de la lumiere par les atomes, In: 'Atti Cong. Intern. Fisici, (Transactions of Volta Centenary Congress) Como. Bd. 2, 1927, S. 545–557.
Weitere Literatur:
• Mansoor Sheik-Bahae: Nonlinear Optics Basics. Kramers-Krönig Relations in Nonlinear Optics. In: Robert D. Guenther (Hrsg.): Encyclopedia of Modern Optics. Academic Press, Amsterdam 2005, ISBN 0-12-227600-0, S. 234–240.
Einzelnachweise[Bearbeiten]
1. Safa Kasap, Peter Capper: Springer Handbook of Electronic and Photonic Materials. Springer, 2006, ISBN 9780387260594, S. 49. | {
"url": "http://de.wikipedia.org/wiki/Kramers-Kronig-Beziehungen",
"source_domain": "de.wikipedia.org",
"snapshot_id": "crawl=CC-MAIN-2014-10",
"warc_metadata": {
"Content-Length": "44339",
"Content-Type": "application/http; msgtype=response",
"WARC-Block-Digest": "sha1:UYWA5IA6TH2TLB523D6HLIIXSCKX5L4G",
"WARC-Concurrent-To": "<urn:uuid:202d6882-bad6-4f94-9546-e0b82c950582>",
"WARC-Date": "2014-03-17T13:55:32Z",
"WARC-IP-Address": "208.80.154.224",
"WARC-Identified-Payload-Type": null,
"WARC-Payload-Digest": "sha1:2PK63A2JN3IZDD7GNOZV7IJFIZECEMXA",
"WARC-Record-ID": "<urn:uuid:104cdaf8-3b2b-461f-a298-62efbef22ff7>",
"WARC-Target-URI": "http://de.wikipedia.org/wiki/Kramers-Kronig-Beziehungen",
"WARC-Truncated": null,
"WARC-Type": "response",
"WARC-Warcinfo-ID": "<urn:uuid:0d41a03e-7267-44e2-bd87-61c6819c763c>"
},
"warc_info": "robots: classic\r\nhostname: ip-10-183-142-35.ec2.internal\r\nsoftware: Nutch 1.6 (CC)/CC WarcExport 1.0\r\nisPartOf: CC-MAIN-2014-10\r\noperator: CommonCrawl Admin\r\ndescription: Wide crawl of the web with URLs provided by Blekko for March 2014\r\npublisher: CommonCrawl\r\nformat: WARC File Format 1.0\r\nconformsTo: http://bibnum.bnf.fr/WARC/WARC_ISO_28500_version1_latestdraft.pdf"
} | {
"line_start_idx": [
0,
27,
28,
67,
98,
99,
446,
447,
663,
664,
703,
704,
1259,
1260,
1556,
1557,
1697,
1837,
1838,
1915,
1916,
2232,
2233,
2278,
2279,
2601,
2602,
2953,
2954,
3030,
3031,
3160,
3161,
3444,
3445,
3524,
3525,
3659,
3660,
3777,
3876,
3877,
4248,
4249,
4370,
4371,
4649,
4650,
4674,
4675,
5309,
5310,
5469,
5470,
5674,
5675,
5823,
5824,
5965,
5966,
6105,
6106,
6248,
6249,
6271,
6272,
6290,
6291,
6456,
6623,
6624,
6643,
6644,
6867,
6868,
6896,
6897
],
"line_end_idx": [
27,
28,
67,
98,
99,
446,
447,
663,
664,
703,
704,
1259,
1260,
1556,
1557,
1697,
1837,
1838,
1915,
1916,
2232,
2233,
2278,
2279,
2601,
2602,
2953,
2954,
3030,
3031,
3160,
3161,
3444,
3445,
3524,
3525,
3659,
3660,
3777,
3876,
3877,
4248,
4249,
4370,
4371,
4649,
4650,
4674,
4675,
5309,
5310,
5469,
5470,
5674,
5675,
5823,
5824,
5965,
5966,
6105,
6106,
6248,
6249,
6271,
6272,
6290,
6291,
6456,
6623,
6624,
6643,
6644,
6867,
6868,
6896,
6897,
7027
]
} | {
"red_pajama_v2": {
"ccnet_original_length": 7027,
"ccnet_original_nlines": 76,
"rps_doc_curly_bracket": 0.027323180809617043,
"rps_doc_ldnoobw_words": 0,
"rps_doc_lorem_ipsum": 0,
"rps_doc_stop_word_fraction": 0.0782717615365982,
"rps_doc_ut1_blacklist": 0,
"rps_doc_frac_all_caps_words": 0.0381966196000576,
"rps_doc_frac_lines_end_with_ellipsis": 0,
"rps_doc_frac_no_alph_words": 0.38697558641433716,
"rps_doc_frac_unique_words": 0.5224242210388184,
"rps_doc_mean_word_length": 6.5721211433410645,
"rps_doc_num_sentences": 69,
"rps_doc_symbol_to_word_ratio": 0,
"rps_doc_unigram_entropy": 5.625977993011475,
"rps_doc_word_count": 825,
"rps_doc_frac_chars_dupe_10grams": 0,
"rps_doc_frac_chars_dupe_5grams": 0.03614902123808861,
"rps_doc_frac_chars_dupe_6grams": 0.02508299984037876,
"rps_doc_frac_chars_dupe_7grams": 0,
"rps_doc_frac_chars_dupe_8grams": 0,
"rps_doc_frac_chars_dupe_9grams": 0,
"rps_doc_frac_chars_top_2gram": 0.011066029779613018,
"rps_doc_frac_chars_top_3gram": 0.011066029779613018,
"rps_doc_frac_chars_top_4gram": 0.008483950048685074,
"rps_doc_books_importance": -784.515380859375,
"rps_doc_books_importance_length_correction": -784.515380859375,
"rps_doc_openwebtext_importance": -490.552001953125,
"rps_doc_openwebtext_importance_length_correction": -490.552001953125,
"rps_doc_wikipedia_importance": -352.1470642089844,
"rps_doc_wikipedia_importance_length_correction": -352.1470642089844
},
"fasttext": {
"dclm": 0.8327223062515259,
"english": 0.006652609910815954,
"fineweb_edu_approx": 2.108032703399658,
"eai_general_math": 0.6349590420722961,
"eai_open_web_math": 0.9927495121955872,
"eai_web_code": 0.1518884301185608
}
} | {
"free_decimal_correspondence": {
"primary": {
"code": "515.9",
"labels": {
"level_1": "Science and Natural history",
"level_2": "Mathematics",
"level_3": "Calculus and Mathematical analysis"
}
},
"secondary": {
"code": "535",
"labels": {
"level_1": "Science and Natural history",
"level_2": "Physics",
"level_3": "Optics and Light"
}
}
},
"bloom_cognitive_process": {
"primary": {
"code": "2",
"label": "Understand"
},
"secondary": {
"code": "3",
"label": "Apply"
}
},
"bloom_knowledge_domain": {
"primary": {
"code": "2",
"label": "Conceptual"
},
"secondary": {
"code": "3",
"label": "Procedural"
}
},
"document_type_v1": {
"primary": {
"code": "3",
"label": "Reference/Encyclopedic/Educational"
},
"secondary": {
"code": "-1",
"label": "Abstain"
}
},
"extraction_artifacts": {
"primary": {
"code": "0",
"label": "No Artifacts"
},
"secondary": {
"code": "-1",
"label": "Abstain"
}
},
"missing_content": {
"primary": {
"code": "0",
"label": "No missing content"
},
"secondary": {
"code": "-1",
"label": "Abstain"
}
},
"document_type_v2": {
"primary": {
"code": "10",
"label": "Knowledge Article"
},
"secondary": {
"code": "8",
"label": "Documentation"
}
},
"reasoning_depth": {
"primary": {
"code": "4",
"label": "Advanced Reasoning"
},
"secondary": {
"code": "3",
"label": "Intermediate Reasoning"
}
},
"technical_correctness": {
"primary": {
"code": "4",
"label": "Highly Correct"
},
"secondary": {
"code": "3",
"label": "Mostly Correct"
}
},
"education_level": {
"primary": {
"code": "4",
"label": "Graduate/Expert Level"
},
"secondary": {
"code": "3",
"label": "Undergraduate Level"
}
}
} | a246fc342e934853762e5c7f05dc3a09 |
-8,167,911,554,242,513,000 | 1 Review of complex numbers
Size: px
Start display at page:
Download "1 Review of complex numbers"
Transcription
1 1 Review of complex numbers 1.1 Complex numbers: algebra The set C of complex numbers is formed by adding a square root i of 1 to the set of real numbers: i = 1. Every complex number can be written uniquely as a + bi, where a and b are real numbers. We usually use a single letter such as z to denote the complex number a + bi. In this case a is the real part of z, written a = Re z, and b is the imaginary part of z, written b = Im z. The complex number z is real if z = Re z, or equivalently Im z = 0, and it is pure imaginary if z = (Im zi, or equivalently Re z = 0. In general a complex number is the sum of its real part and its imaginary part times i, and two complex numbers are equal if and only if they have the same real and imaginary parts. We add and multiply complex numbers in the obvious way: (a 1 + b 1 i + (a + b i = (a 1 + a + (b 1 + b i; (a 1 + b 1 i (a + b i = (a 1 a b 1 b + (a 1 b + a b 1 i. For example, ( + 3i( 5 + 4i = 7i. In this way, addition and multiplication are associative and commutative, multiplication distributes over addition, there is an additive identity 0 and additive inverses ( (a + bi = ( a + ( bi, and there is a multiplicative identity 1. Note also that Re(z 1 + z = Re z 1 + Re z, and similarly for the imaginary parts, but a corresponding statement does not hold for multiplication. Before we discuss multiplicative inverses, let us recall complex conjugation: the complex conjugate z of a complex number z = a + bi is by definition z = a bi. It is easy to see that: Re z = 1 (z + z; Im z = 1 (z z. i Thus z is real if and only if z = z and pure imaginary if and only if z = z. More importantly, we have the following formulas which can be checked by 1
2 direct calculation: z 1 + z = z 1 + z ; z 1 z = z 1 z ; z n = ( z n ; z = z; z z = a + b, where in the last line z = a + bi. Thus, z z 0, and z z = 0 if and only if z = 0. We set z = z z = a + b, the absolute value, length or modulus of z.for example, + i = 5. Note that, for all z 1, z C, z 1 z = z 1 z 1 z z = z 1 z z 1 z = (z 1 z (z 1 z = z 1 z, and hence z 1 z = z 1 z. The link between the absolute value and addition is somewhat weaker; there is only the triangle inequality z 1 + z z 1 + z. If z 0, then z has a multiplicative inverse: z 1 = z z. In terms of real and imaginary parts, this is the familiar procedure of dividing one complex number into another by rationalizing the denominator: if at least one of c, d is nonzero, then a + bi c + di = ( a + bi c + di ( c di c di = (a + bi(c di c + d. Thus it is possible to divide by any nonzero complex number. For example, to express ( + i/(3 i in the form a + bi, we write ( ( + i + i 3 + i 3 i = ( + i(3 + i = 3 i 3 + i 3 + = 4 + 7i = i. If z 0, then z n is defined for every integer n, including the case n < 0, and the formula z n = ( z n still holds.
3 1. Complex numbers: geometry Instead of thinking of a complex number z as a + bi, we can identify it with the point (a, b R. From this point of view, there is no difference between a complex number and a -vector, and we sometimes refer to C as the complex plane. The absolute value z is then the same as (a, b, the distance from the point (a, b to the origin. Addition of complex numbers then corresponds to vector addition. However, multiplication of complex numbers is more complicated. One way to understand it is to use polar coordinates: if z = a + bi, where (a, b corresponds to the polar coordinates (r, θ, then r = z and a = r cos θ, b = r sin θ. Thus we may write z = r cos θ + (r sin θi = r(cos θ + i sin θ. This is sometimes called the polar form of z; r = z is, as we have seen, called the modulus of z and θ is called the argument, sometimes written θ = arg z. Note that the argument is only well-defined up to an integer multiple of π. If z = r(cos θ + i sin θ, then clearly r is real and nonnegative and cos θ +i sin θ is a complex number of absolute value one; thus every complex number z is the product of a nonnegative real number times a complex number of absolute value 1. If z 0, then this product expression is unique. (What happens if z = 0? For example, the polar form of 1 + i is (cos(π/4 + i sin(π/4. Given two complex numbers z 1 and z, with z 1 = r 1 (cos θ 1 +i sin θ 1 and z = r (cos θ + i sin θ, we can ask for the polar form of z 1 z : z 1 z = r 1 (cos θ 1 + i sin θ 1 r (cos θ + i sin θ = r 1 r ((cos θ 1 cos θ sin θ 1 sin θ + i(cos θ 1 sin θ + cos θ sin θ 1 = r 1 r (cos(θ 1 + θ + i sin(θ 1 + θ, where we have used the standard addition formulas for sine and cosine. (We will see in a minute where these addition formulas come from. Thus the modulus of the product is the product of the moduli (this is just the formula z 1 z = z 1 z which we have already seen, but the really interesting formula is that the arguments add: arg(z 1 z = arg z 1 + arg z. Of course, this has to be understood as up to possibly adding an integer multiple of π. In this way, we can interpret geometrically the effect of multiplying by a complex number z. If z is real, multiplying by z is just ordinary scalar multiplication and has the usual geometric interpretation. If z = cos θ + i sin θ has absolute value one, then multiplying a complex number x + iy by 3
4 z is the same as rotating the point (x, y by the angle θ. For a general z, multiplying the complex number x + iy by z is a combination of these two operations: rotation by the angle θ followed by scalar multiplication by the nonnegative real number z. Using the formula for multiplication, it is easy to see that if z has polar form r(cos θ + i sin θ, then z n = r n (cos nθ + i sin nθ; z 1 = r 1 (cos( θ + i sin( θ = r 1 (cos θ sin θ. Here the first formula, which is easily proved by mathematical induction, holds for all z and positive integers n, and the second holds for z 0. From this it is easy to check that, for z 0, the first formula holds for all integers n. This formula is called De Moivre s Theorem. We can use De Moivre s Theorem to find powers and roots of complex numbers. For example, we have seen that 1 + i = (cos(π/4 + i sin(π/4. Thus (1 + i 0 = ( 0 (cos(0π/4 + i sin(0π/4 = 10 (cos(5π + i sin(5π = 10 ( 1 = 104. De Moivre s Theorem can be used to generate identities for sin nθ and cos nθ via the binomial theorem. For example, cos 3θ + i sin 3θ = (cos θ + i sin θ 3 = cos 3 θ + 3i cos θ sin θ 3 cos θ sin θ i sin 3 θ = cos 3 θ 3 cos θ sin θ + i(3 cos θ sin θ sin 3 θ. Equating real and imaginary parts, we see that cos 3θ = cos 3 θ 3 cos θ sin θ, and likewise sin 3θ = 3 cos θ sin θ sin 3 θ. It is more interesting to find roots. Let z = r(cos θ+i sin θ be a complex number, which we assume to be nonzero (since the only n th root of 0 is zero why?, and let w = s(cos ϕ + i sin ϕ. Then w n = z if and only if s n = r and nϕ = θ + kπ for some integer k. Thus s = r 1/n, and ϕ = θ/n + kπ/n for some integer k. But sometimes these numbers will be the same for different values of k: if ϕ 1 = θ/n + k 1 π/n and ϕ = θ/n + k π/n, then r 1/n (cos ϕ 1 + i sin ϕ 1 = r 1/n (cos ϕ + i sin ϕ if and only if ϕ 1 and ϕ differ by an integer multiple of π, if and only if k 1 π/n and k π/n differ by an integer multiple of π, if and only if n 4
5 divides k 1 k. Moreover, we can find a complete set of choices by taking the arguments θ/n, θ/n + π/n,..., θ/n + (n 1π/n. Thus we see: If n is a positive integer, then a nonzero complex number has exactly n distinct n th roots given by the formula above. Examples: the two square roots of i = cos(π/ + i sin(π/ are ( π ( π cos + i sin = i; ( π ( π cos 4 + π + i sin 4 + π = i. For another example, to find all of the fifth roots of 3 + i, first write ( i = + 1 ( i = cos π 6 + i sin π. 6 Thus the fifth roots are given by ( π (cos 1/ kπ 5 + i sin ( π 30 + kπ, k = 0, 1,, 3, 4. 5 We can apply the above to the complex number 1 = cos 0 + i sin 0. Thus there are exactly n complex numbers z such that z n = 1, called the n th roots of unity: namely ( kπ cos n + i sin ( kπ n, k = 0, 1,..., n 1. It is easy to see that, once we have found one n th root w of a nonzero complex number z, then all of the n th roots of z are of the form ( ( ( kπ kπ cos + i sin w, n n for k = 0, 1,..., n 1, i.e. any two n th roots of a given nonzero complex number differ by multiplying by an n th root of unity. Warning: the usual rules for fractional exponents that hold for positive real numbers do not usually hold for complex roots; this is connected with the fact that there is not in general one preferred n th root of a complex number. For example, 1 = i = 1 1 ( 1( 1 = 1 = 1. 5
6 1.3 Complex numbers: the complex exponential function Given a power series a nx n, we can try to substitute in complex values for x and see what we get. Here we shall just consider the usual power series for the exponential function e x x n =. We begin by substituting a purely n! imaginary complex number it, where t is real. This gives e it = i n t n n! = i n t n (n! + i n+1 t n+1 (n + 1!, where we have simply broken the sum up into summing over even and odd positive integers. Using i n = ( 1 n, and hence i n+1 = ( 1 n i, we see that the sum is equal to e it = ( 1 n t n (n! + i ( 1 n t n+1 (n + 1! = cos t + i sin t. This beautiful fact is known as Euler s formula. For example, e iπ = 1. We can thus write the polar form r(cos θ + i sin θ for a complex number as re iθ. Assuming the usual rules for exponents, we can see in another way that the arguments add under multiplication: r 1 e iθ 1 r e iθ = r 1 r e iθ 1 e iθ = r 1 r e iθ 1+iθ = r 1 r e i(θ 1+θ. In particular, e iθ 1 e iθ = e i(θ 1+θ. Equating real and imaginary parts, we see that this fact is equivalent to the usual addition formulas for the sine and cosine functions, and indeed is perhaps the best way of explaining why these somewhat mysterious looking addition formulas are true. Euler s formula is a fundamental link between the basic constants of mathematics, e and π, and between the exponential and trigonometric functions. For example, since e it = cos( t + i sin( t = cos t i sin t, we see that cos t = Re e it = 1 (eit + e it ; sin t = Im e it = 1 i (eit e it. Now suppose that we can substitute an arbitrary complex number z = x + iy in the expression for e x, and that the usual rules for exponentiation apply. Then e x+iy = e x e iy = e x (cos y + i sin y. 6
7 In particular, if r is a positive real number, then e ln r+iθ = r(cos θ + i sin θ. Thus every nonzero complex number z = r(cos θ + i sin θ has a logarithm. In fact the possible solutions to e w = z are w = ln r + (θ + nπi, n an integer. We call any of these values a logarithm of z and write w = log z. Of course, log is not a well-defined function. Note that, for real x, the exponential function e x is one-to-one and its values are the positive real numbers; hence ln x is defined for positive x. For complex z, the exponential function is no longer one-to-one: e z 1 = e z exactly when z = z + nπi for some integer n, and the values of the complex exponential are all nonzero complex numbers. Thus log z is defined for all z 0, but only up to adding an arbitrary integer multiple of πi. For example, log( 1 = log(e iπ = iπ + nπi = (n + 1πi, for any integer n. It is then natural to try to define an expression of the form z α, where z is a nonzero complex number and α is any complex number, by the formula z α = e α log z. Since log z is only well-defined up to adding an integer multiple of πi, this says that, given any particular choice of value, say w, for z α, then we nαπi is also a value for z α, for every integer n. If α = 1/k for some integer k, or more generally if α is a rational number, then there are only finitely many possible values for the expression z α ; for example, if α = 1/k, we just see the k different k th roots of z described earlier. But if α is not rational, then the expression z α will define infinitely many different complex numbers! For example, = log e = (ln +nπi e = e ln +n πi = e n πi = (cos(n π + i sin(n π, where, in the second line, the expression means the usual real valued expression e ln, and n is an arbitrary integer. For another example, i = e i log = e i(ln +nπi = e i ln nπ = e nπ (cos(ln + i sin(ln. 7
8 1.4 Homework 1. Write in the form a + bi: (a ( + i (3 + i; (b (1 + 4i( + 4i; (c ( 3i( + 3i.. Write in the form a + bi: 3. Write in polar form: (a + i 1 + 4i 3i ; (b ; (c 3 + i + 8i 3 + i. (a 1 3i; (b 5 + 5i; (c πi. 4. Write the complex number 3 i in polar form (using inverse trigonometric functions if necessary. 5. (i Write in the form a + bi: (a e πi/4 ; (b e 1+πi ; (c e 3+i. 6. Evaluate (in the form a + bi: ( 3 i 7 ; (1 + i Find all complex numbers z such that z 5 = i. (You can leave z in polar form. How many different ones are there? 8. Find all solutions in complex numbers z of the equation (z = z 5. (Note: you should find exactly four different solutions. 9. What are all possible values (in the form a + bi of the following expressions? (a log(1 + i (b i i (c i e (d (1 + i π. How many are real? Pure imaginary? What are all possible values of e i, interpreting e i as (a the value of the complex exponential function on i? (b as the complex number e raised to the power i? 10. Beginning with the formula cos t = 1 (eit + e it, find a formula for cos 1 x in terms of log and square roots. (Hint: let x = cos t and z = e it, so that e it = 1/z. Multiply both sides of the above formula by z and apply the quadratic formula to solve first for z and then for t. 8
Complex Numbers and the Complex Exponential
Complex Numbers and the Complex Exponential Complex Numbers and the Complex Exponential Frank R. Kschischang The Edward S. Rogers Sr. Department of Electrical and Computer Engineering University of Toronto September 5, 2005 Numbers and Equations
More information
10.4. De Moivre s Theorem. Introduction. Prerequisites. Learning Outcomes. Learning Style
10.4. De Moivre s Theorem. Introduction. Prerequisites. Learning Outcomes. Learning Style De Moivre s Theorem 10.4 Introduction In this block we introduce De Moivre s theorem and examine some of its consequences. We shall see that one of its uses is in obtaining relationships between trigonometric
More information
n th roots of complex numbers
n th roots of complex numbers n th roots of complex numbers Nathan Pflueger 1 October 014 This note describes how to solve equations of the form z n = c, where c is a complex number. These problems serve to illustrate the use of polar
More information
Complex Numbers Basic Concepts of Complex Numbers Complex Solutions of Equations Operations on Complex Numbers
Complex Numbers Basic Concepts of Complex Numbers Complex Solutions of Equations Operations on Complex Numbers Complex Numbers Basic Concepts of Complex Numbers Complex Solutions of Equations Operations on Complex Numbers Identify the number as real, complex, or pure imaginary. 2i The complex numbers are an extension
More information
DEFINITION 5.1.1 A complex number is a matrix of the form. x y. , y x
DEFINITION 5.1.1 A complex number is a matrix of the form. x y. , y x Chapter 5 COMPLEX NUMBERS 5.1 Constructing the complex numbers One way of introducing the field C of complex numbers is via the arithmetic of matrices. DEFINITION 5.1.1 A complex number is a matrix of
More information
From the first principles, we define the complex exponential function as a complex function f(z) that satisfies the following defining properties:
From the first principles, we define the complex exponential function as a complex function f(z) that satisfies the following defining properties: 3. Exponential and trigonometric functions From the first principles, we define the complex exponential function as a complex function f(z) that satisfies the following defining properties: 1. f(z) is
More information
Class XI Chapter 5 Complex Numbers and Quadratic Equations Maths. Exercise 5.1. Page 1 of 34
Class XI Chapter 5 Complex Numbers and Quadratic Equations Maths. Exercise 5.1. Page 1 of 34 Question 1: Exercise 5.1 Express the given complex number in the form a + ib: Question 2: Express the given complex number in the form a + ib: i 9 + i 19 Question 3: Express the given complex number in
More information
COMPLEX NUMBERS. a bi c di a c b d i. a bi c di a c b d i For instance, 1 i 4 7i 1 4 1 7 i 5 6i
COMPLEX NUMBERS. a bi c di a c b d i. a bi c di a c b d i For instance, 1 i 4 7i 1 4 1 7 i 5 6i COMPLEX NUMBERS _4+i _-i FIGURE Complex numbers as points in the Arg plane i _i +i -i A complex number can be represented by an expression of the form a bi, where a b are real numbers i is a symbol with
More information
PURE MATHEMATICS AM 27
PURE MATHEMATICS AM 27 AM Syllabus (015): Pure Mathematics AM SYLLABUS (015) PURE MATHEMATICS AM 7 SYLLABUS 1 AM Syllabus (015): Pure Mathematics Pure Mathematics AM 7 Syllabus (Available in September) Paper I(3hrs)+Paper II(3hrs)
More information
PURE MATHEMATICS AM 27
PURE MATHEMATICS AM 27 AM SYLLABUS (013) PURE MATHEMATICS AM 7 SYLLABUS 1 Pure Mathematics AM 7 Syllabus (Available in September) Paper I(3hrs)+Paper II(3hrs) 1. AIMS To prepare students for further studies in Mathematics and
More information
Trigonometric Functions and Equations
Trigonometric Functions and Equations Contents Trigonometric Functions and Equations Lesson 1 Reasoning with Trigonometric Functions Investigations 1 Proving Trigonometric Identities... 271 2 Sum and Difference Identities... 276 3 Extending
More information
is not a real number it follows that there is no REAL
is not a real number it follows that there is no REAL 210 CHAPTER EIGHT 8. Complex Numbers When we solve x 2 + 2x + 2 = 0 and use the Quadratic Formula we get Since we know that solution to the equation x 2 + 2x + 2 = 0. is not a real number it follows that
More information
11.7 Polar Form of Complex Numbers
11.7 Polar Form of Complex Numbers 11.7 Polar Form of Complex Numbers 989 11.7 Polar Form of Complex Numbers In this section, we return to our study of complex numbers which were first introduced in Section.. Recall that a complex number
More information
Again, the limit must be the same whichever direction we approach from; but now there is an infinity of possible directions.
Again, the limit must be the same whichever direction we approach from; but now there is an infinity of possible directions. Chapter 4 Complex Analysis 4.1 Complex Differentiation Recall the definition of differentiation for a real function f(x): f f(x + δx) f(x) (x) = lim. δx 0 δx In this definition, it is important that the
More information
Complex Numbers. Misha Lavrov. ARML Practice 10/7/2012
Complex Numbers. Misha Lavrov. ARML Practice 10/7/2012 Complex Numbers Misha Lavrov ARML Practice 10/7/2012 A short theorem Theorem (Complex numbers are weird) 1 = 1. Proof. The obvious identity 1 = 1 can be rewritten as 1 1 = 1 1. Distributing the square
More information
1. Introduction identity algbriac factoring identities
1. Introduction identity algbriac factoring identities 1. Introduction An identity is an equality relationship between two mathematical expressions. For example, in basic algebra students are expected to master various algbriac factoring identities such as
More information
THE COMPLEX EXPONENTIAL FUNCTION
THE COMPLEX EXPONENTIAL FUNCTION Math 307 THE COMPLEX EXPONENTIAL FUNCTION (These notes assume you are already familiar with the basic properties of complex numbers.) We make the following definition e iθ = cos θ + i sin θ. (1) This formula
More information
Quick Reference Guide to Linear Algebra in Quantum Mechanics
Quick Reference Guide to Linear Algebra in Quantum Mechanics Quick Reference Guide to Linear Algebra in Quantum Mechanics Scott N. Walck September 2, 2014 Contents 1 Complex Numbers 2 1.1 Introduction............................ 2 1.2 Real Numbers...........................
More information
Rotation Matrices. Suppose that 2 R. We let
Rotation Matrices. Suppose that 2 R. We let Suppose that R. We let Rotation Matrices R : R! R be the function defined as follows: Any vector in the plane can be written in polar coordinates as rcos, sin where r 0and R. For any such vector, we define
More information
Week 13 Trigonometric Form of Complex Numbers
Week 13 Trigonometric Form of Complex Numbers Week Trigonometric Form of Complex Numbers Overview In this week of the course, which is the last week if you are not going to take calculus, we will look at how Trigonometry can sometimes help in working
More information
M3 PRECALCULUS PACKET 1 FOR UNIT 5 SECTIONS 5.1 TO = to see another form of this identity.
M3 PRECALCULUS PACKET 1 FOR UNIT 5 SECTIONS 5.1 TO = to see another form of this identity. M3 PRECALCULUS PACKET FOR UNIT 5 SECTIONS 5. TO 5.3 5. USING FUNDAMENTAL IDENTITIES 5. Part : Pythagorean Identities. Recall the Pythagorean Identity sin θ cos θ + =. a. Subtract cos θ from both sides
More information
South Carolina College- and Career-Ready (SCCCR) Pre-Calculus
South Carolina College- and Career-Ready (SCCCR) Pre-Calculus South Carolina College- and Career-Ready (SCCCR) Pre-Calculus Key Concepts Arithmetic with Polynomials and Rational Expressions PC.AAPR.2 PC.AAPR.3 PC.AAPR.4 PC.AAPR.5 PC.AAPR.6 PC.AAPR.7 Standards Know
More information
Mathematics. (www.tiwariacademy.com : Focus on free Education) (Chapter 5) (Complex Numbers and Quadratic Equations) (Class XI)
Mathematics. (www.tiwariacademy.com : Focus on free Education) (Chapter 5) (Complex Numbers and Quadratic Equations) (Class XI) ( : Focus on free Education) Miscellaneous Exercise on chapter 5 Question 1: Evaluate: Answer 1: 1 ( : Focus on free Education) Question 2: For any two complex numbers z1 and z2, prove that Re (z1z2) =
More information
Complex Numbers. Subtraction and division were defined, as usual, simply as the inverses of the two operations.
Complex Numbers. Subtraction and division were defined, as usual, simply as the inverses of the two operations. Complex Numbers Introduction. Let us hark back to the first grade when the only numbers you knew were the ordinary everyday integers. You had no trouble solving problems in which you were, for instance,
More information
Montana Common Core Standard
Montana Common Core Standard Algebra 2 Grade Level: 10(with Recommendation), 11, 12 Length: 1 Year Period(s) Per Day: 1 Credit: 1 Credit Requirement Fulfilled: Mathematics Course Description This course covers the main theories in
More information
Equivalence relations
Equivalence relations Equivalence relations A motivating example for equivalence relations is the problem of constructing the rational numbers. A rational number is the same thing as a fraction a/b, a, b Z and b 0, and hence
More information
2 Complex Functions and the Cauchy-Riemann Equations
2 Complex Functions and the Cauchy-Riemann Equations 2 Complex Functions and the Cauchy-Riemann Equations 2.1 Complex functions In one-variable calculus, we study functions f(x) of a real variable x. Likewise, in complex analysis, we study functions f(z)
More information
Linear Algebra As an Introduction to Abstract Mathematics
Linear Algebra As an Introduction to Abstract Mathematics Linear Algebra As an Introduction to Abstract Mathematics Lecture Notes for MAT67 University of California, Davis written Fall 2007, last updated November 15, 2016 Isaiah Lankham Bruno Nachtergaele Anne
More information
INTRODUCTION TO LINEAR ANALYSIS
INTRODUCTION TO LINEAR ANALYSIS INTRODUCTION TO LINEAR ANALYSIS Nicholas J Rose Mathematics Department North Carolina State University REVISED EDITION Copyright c 998 Table of Contents I Difference Equations Introduction 2 Sequences
More information
Modern Geometry Homework.
Modern Geometry Homework. Modern Geometry Homework. 1. Rigid motions of the line. Let R be the real numbers. We define the distance between x, y R by where is the usual absolute value. distance between x and y = x y z = { z, z
More information
Chapter 5 Polar Coordinates; Vectors 5.1 Polar coordinates 1. Pole and polar axis
Chapter 5 Polar Coordinates; Vectors 5.1 Polar coordinates 1. Pole and polar axis Chapter 5 Polar Coordinates; Vectors 5.1 Polar coordinates 1. Pole and polar axis 2. Polar coordinates A point P in a polar coordinate system is represented by an ordered pair of numbers (r, θ). If r >
More information
MATH : HONORS CALCULUS-3 HOMEWORK 6: SOLUTIONS
MATH : HONORS CALCULUS-3 HOMEWORK 6: SOLUTIONS MATH 16300-33: HONORS CALCULUS-3 HOMEWORK 6: SOLUTIONS 25-1 Find the absolute value and argument(s) of each of the following. (ii) (3 + 4i) 1 (iv) 7 3 + 4i (ii) Put z = 3 + 4i. From z 1 z = 1, we have
More information
COMPLEX NUMBERS. -2+2i
COMPLEX NUMBERS. -2+2i COMPLEX NUMBERS Cartesian Form of Complex Numbers The fundamental complex number is i, a number whose square is 1; that is, i is defined as a number satisfying i 1. The complex number system is all numbers
More information
Construction of the Real Line 2 Is Every Real Number Rational? 3 Problems Algebra of the Real Numbers 7
Construction of the Real Line 2 Is Every Real Number Rational? 3 Problems Algebra of the Real Numbers 7 About the Author v Preface to the Instructor xiii WileyPLUS xviii Acknowledgments xix Preface to the Student xxi 1 The Real Numbers 1 1.1 The Real Line 2 Construction of the Real Line 2 Is Every Real Number
More information
(x) = lim. x 0 x. (2.1)
(x) = lim. x 0 x. (2.1) Differentiation. Derivative of function Let us fi an arbitrarily chosen point in the domain of the function y = f(). Increasing this fied value by we obtain the value of independent variable +. The value
More information
Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks
Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks Welcome to Thinkwell s Homeschool Precalculus! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson
More information
5 Indefinite integral
5 Indefinite integral 5 Indefinite integral The most of the mathematical operations have inverse operations: the inverse operation of addition is subtraction, the inverse operation of multiplication is division, the inverse
More information
Precalculus REVERSE CORRELATION. Content Expectations for. Precalculus. Michigan CONTENT EXPECTATIONS FOR PRECALCULUS CHAPTER/LESSON TITLES
Precalculus REVERSE CORRELATION. Content Expectations for. Precalculus. Michigan CONTENT EXPECTATIONS FOR PRECALCULUS CHAPTER/LESSON TITLES Content Expectations for Precalculus Michigan Precalculus 2011 REVERSE CORRELATION CHAPTER/LESSON TITLES Chapter 0 Preparing for Precalculus 0-1 Sets There are no state-mandated Precalculus 0-2 Operations
More information
Chapter 1. Isometries of the Plane
Chapter 1. Isometries of the Plane Chapter 1 Isometries of the Plane For geometry, you know, is the gate of science, and the gate is so low and small that one can only enter it as a little child. (W. K. Clifford) The focus of this first
More information
Table of Contents. Montessori Algebra for the Adolescent Michael J. Waski"
Table of Contents. Montessori Algebra for the Adolescent Michael J. Waski Table of Contents I. Introduction II. Chapter of Signed Numbers B. Introduction and Zero Sum Game C. Adding Signed Numbers D. Subtracting Signed Numbers 1. Subtracting Signed Numbers 2. Rewriting as Addition
More information
Pre-Calculus Review Problems Solutions
Pre-Calculus Review Problems Solutions MATH 1110 (Lecture 00) August 0, 01 1 Algebra and Geometry Pre-Calculus Review Problems Solutions Problem 1. Give equations for the following lines in both point-slope and slope-intercept form. (a) The
More information
Unit 8 Inverse Trig & Polar Form of Complex Nums.
Unit 8 Inverse Trig & Polar Form of Complex Nums. HARTFIELD PRECALCULUS UNIT 8 NOTES PAGE 1 Unit 8 Inverse Trig & Polar Form of Complex Nums. This is a SCIENTIFIC OR GRAPHING CALCULATORS ALLOWED unit. () Inverse Functions (3) Invertibility of Trigonometric
More information
pp. 4 8: Examples 1 6 Quick Check 1 6 Exercises 1, 2, 20, 42, 43, 64
pp. 4 8: Examples 1 6 Quick Check 1 6 Exercises 1, 2, 20, 42, 43, 64 Semester 1 Text: Chapter 1: Tools of Algebra Lesson 1-1: Properties of Real Numbers Day 1 Part 1: Graphing and Ordering Real Numbers Part 1: Graphing and Ordering Real Numbers Lesson 1-2: Algebraic Expressions
More information
Lecture 1 (Review of High School Math: Functions and Models) Introduction: Numbers and their properties
Lecture 1 (Review of High School Math: Functions and Models) Introduction: Numbers and their properties Lecture 1 (Review of High School Math: Functions and Models) Introduction: Numbers and their properties Addition: (1) (Associative law) If a, b, and c are any numbers, then ( ) ( ) (2) (Existence of an
More information
9-5 Complex Numbers and De Moivre's Theorem
9-5 Complex Numbers and De Moivre's Theorem Graph each number in the complex plane and find its absolute value 1 z = 4 + 4i 3 z = 4 6i For z = 4 6i, (a, b) = ( 4, 6) Graph the point ( 4, 6) in the complex plane For z = 4 + 4i, (a, b) = (4, 4) Graph
More information
MATHEMATICS (CLASSES XI XII)
MATHEMATICS (CLASSES XI XII) MATHEMATICS (CLASSES XI XII) General Guidelines (i) All concepts/identities must be illustrated by situational examples. (ii) The language of word problems must be clear, simple and unambiguous. (iii)
More information
Differentiation and Integration
Differentiation and Integration This material is a supplement to Appendix G of Stewart. You should read the appendix, except the last section on complex exponentials, before this material. Differentiation and Integration Suppose we have
More information
Lecture 31: Second order homogeneous equations II
Lecture 31: Second order homogeneous equations II Lecture 31: Second order homogeneous equations II Nathan Pflueger 21 November 2011 1 Introduction This lecture gives a complete description of all the solutions to any differential equation of the form
More information
Trigonometry (Chapter 6) Sample Test #1 First, a couple of things to help out:
Trigonometry (Chapter 6) Sample Test #1 First, a couple of things to help out: First, a couple of things to help out: Page 1 of 20 More Formulas (memorize these): Law of Sines: sin sin sin Law of Cosines: 2 cos 2 cos 2 cos Area of a Triangle: 1 2 sin 1 2 sin 1 2 sin 1 2 Solve the
More information
Math Spring 2014 Solutions to Assignment # 4 Completion Date: Friday May 16, f(z) = 3x + y + i (3y x)
Math Spring 2014 Solutions to Assignment # 4 Completion Date: Friday May 16, f(z) = 3x + y + i (3y x) Math 311 - Spring 2014 Solutions to Assignment # 4 Completion Date: Friday May 16, 2014 Question 1. [p 77, #1 (a)] Apply the theorem in Sec. 22 to verify that the function is entire. f(z) = 3x + y + i
More information
MATHEMATICS SPECIALIST ATAR COURSE FORMULA SHEET
MATHEMATICS SPECIALIST ATAR COURSE FORMULA SHEET MATHEMATICS SPECIALIST ATAR COURSE FORMULA SHEET 06 Copyright School Curriculum and Standards Authority, 06 This document apart from any third party copyright material contained in it may be freely copied,
More information
Prentice Hall Mathematics: Algebra 2 2007 Correlated to: Utah Core Curriculum for Math, Intermediate Algebra (Secondary)
Prentice Hall Mathematics: Algebra 2 2007 Correlated to: Utah Core Curriculum for Math, Intermediate Algebra (Secondary) Core Standards of the Course Standard 1 Students will acquire number sense and perform operations with real and complex numbers. Objective 1.1 Compute fluently and make reasonable estimates. 1. Simplify
More information
GENERAL COMMENTS. Grade 12 Pre-Calculus Mathematics Achievement Test (January 2015)
GENERAL COMMENTS. Grade 12 Pre-Calculus Mathematics Achievement Test (January 2015) GENERAL COMMENTS Grade 12 Pre-Calculus Mathematics Achievement Test (January 2015) Student Performance Observations The following observations are based on local marking results and on comments made by
More information
2. PLANAR GEOMETRY WITH COMPLEX NUMBERS
2. PLANAR GEOMETRY WITH COMPLEX NUMBERS . PLANAR GEOMETRY WITH COMPLEX NUMBERS. Distance and Angle Definition 6 Given two complex numbers z,w C then the distance between them, by Pythagoras Theorem, is q (z w ) +(z w ) = (z w )+i (z w ) = z
More information
Lesson A - Natural Exponential Function and Natural Logarithm Functions
Lesson A - Natural Exponential Function and Natural Logarithm Functions A- Lesson A - Natural Exponential Function and Natural Logarithm Functions Natural Exponential Function In Lesson 2, we explored the world of logarithms in base 0. The natural logarithm has a base of e.
More information
Algebra and Geometry Review (61 topics, no due date)
Algebra and Geometry Review (61 topics, no due date) Course Name: Math 112 Credit Exam LA Tech University Course Code: ALEKS Course: Trigonometry Instructor: Course Dates: Course Content: 159 topics Algebra and Geometry Review (61 topics, no due date) Properties
More information
MATH 461: Fourier Series and Boundary Value Problems
MATH 461: Fourier Series and Boundary Value Problems MATH 461: Fourier Series and Boundary Value Problems Chapter III: Fourier Series Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Fall 2015 [email protected] MATH 461 Chapter
More information
Engineering Mathematics II
Engineering Mathematics II PSUT Engineering Mathematics II Fourier Series and Transforms Dr. Mohammad Sababheh 4/14/2009 11.1 Fourier Series 2 Fourier Series and Transforms Contents 11.1 Fourier Series... 3 Periodic Functions...
More information
C. Complex Numbers. 1. Complex arithmetic.
C. Complex Numbers. 1. Complex arithmetic. C. Complex Numbers. Complex arithmetic. Most people think that complex numbers arose from attempts to solve quadratic equations, but actually it was in connection with cubic equations they first appeared.
More information
Thinkwell s Homeschool Algebra 2 Course Lesson Plan: 34 weeks
Thinkwell s Homeschool Algebra 2 Course Lesson Plan: 34 weeks Thinkwell s Homeschool Algebra 2 Course Lesson Plan: 34 weeks Welcome to Thinkwell s Homeschool Algebra 2! We re thrilled that you ve decided to make us part of your homeschool curriculum. This lesson
More information
5.1 Radical Notation and Rational Exponents
5.1 Radical Notation and Rational Exponents Section 5.1 Radical Notation and Rational Exponents 1 5.1 Radical Notation and Rational Exponents We now review how exponents can be used to describe not only powers (such as 5 2 and 2 3 ), but also roots
More information
Grade 11- Algebra II
Grade 11- Algebra II Albuquerque School of Excellence Math Curriculum Overview Grade 11- Algebra II Module Polynomial, Rational, and Radical Relationships( Module Trigonometric Functions Module Functions Module Inferences
More information
MTH304: Honors Algebra II
MTH304: Honors Algebra II MTH304: Honors Algebra II This course builds upon algebraic concepts covered in Algebra. Students extend their knowledge and understanding by solving open-ended problems and thinking critically. Topics
More information
Section 1.2. Angles and the Dot Product. The Calculus of Functions of Several Variables
Section 1.2. Angles and the Dot Product. The Calculus of Functions of Several Variables The Calculus of Functions of Several Variables Section 1.2 Angles and the Dot Product Suppose x = (x 1, x 2 ) and y = (y 1, y 2 ) are two vectors in R 2, neither of which is the zero vector 0. Let α and
More information
ORDERS OF ELEMENTS IN A GROUP
ORDERS OF ELEMENTS IN A GROUP ORDERS OF ELEMENTS IN A GROUP KEITH CONRAD 1. Introduction Let G be a group and g G. We say g has finite order if g n = e for some positive integer n. For example, 1 and i have finite order in C, since
More information
CHAPTER 2 FOURIER SERIES
CHAPTER 2 FOURIER SERIES CHAPTER 2 FOURIER SERIES PERIODIC FUNCTIONS A function is said to have a period T if for all x,, where T is a positive constant. The least value of T>0 is called the period of. EXAMPLES We know that =
More information
VECTOR-VALUED FUNCTIONS OF A SCALAR VARIABLE
VECTOR-VALUED FUNCTIONS OF A SCALAR VARIABLE VECTOR-VALUED FUNCTIONS OF A SCALAR VARIABLE A good example of a 2-component or 3-component function of a scalar variable is provided by the parametric representation of a curve in 2 or 3 dimensions. In
More information
Prep for Calculus. Curriculum
Prep for Calculus. Curriculum Prep for Calculus This course covers the topics shown below. Students navigate learning paths based on their level of readiness. Institutional users may customize the scope and sequence to meet curricular
More information
Pythagorean Triples, Complex Numbers, Abelian Groups and Prime Numbers
Pythagorean Triples, Complex Numbers, Abelian Groups and Prime Numbers Pythagorean Triples, Complex Numbers, Abelian Groups and Prime Numbers Amnon Yekutieli Department of Mathematics Ben Gurion University email: [email protected] Notes available at http://www.math.bgu.ac.il/~amyekut/lectures
More information
Class Notes for MATH 2 Precalculus. Fall Prepared by. Stephanie Sorenson
Class Notes for MATH 2 Precalculus. Fall Prepared by. Stephanie Sorenson Class Notes for MATH 2 Precalculus Fall 2012 Prepared by Stephanie Sorenson Table of Contents 1.2 Graphs of Equations... 1 1.4 Functions... 9 1.5 Analyzing Graphs of Functions... 14 1.6 A Library of Parent
More information
ANALYTICAL MATHEMATICS FOR APPLICATIONS 2016 LECTURE NOTES Series
ANALYTICAL MATHEMATICS FOR APPLICATIONS 2016 LECTURE NOTES Series ANALYTICAL MATHEMATICS FOR APPLICATIONS 206 LECTURE NOTES 8 ISSUED 24 APRIL 206 A series is a formal sum. Series a + a 2 + a 3 + + + where { } is a sequence of real numbers. Here formal means that we don
More information
Chapter 7: Radicals and Complex Numbers Lecture notes Math 1010
Chapter 7: Radicals and Complex Numbers Lecture notes Math 1010 Section 7.1: Radicals and Rational Exponents Definition of nth root of a number Let a and b be real numbers and let n be an integer n 2. If a = b n, then b is an nth root of a. If n = 2, the root is called
More information
Applications of Trigonometry
Applications of Trigonometry chapter 6 Tides on a Florida beach follow a periodic pattern modeled by trigonometric functions. Applications of Trigonometry This chapter focuses on applications of the trigonometry that was introduced
More information
Inverse Trigonometric Functions - Trigonometric Equations
Inverse Trigonometric Functions - Trigonometric Equations Inverse Trigonometric Functions - Trigonometric Equations Dr. Philippe B. Laval Kennesaw STate University April 0, 005 Abstract This handout defines the inverse of the sine, cosine and tangent functions.
More information
0.1 Linear Transformations
0.1 Linear Transformations .1 Linear Transformations A function is a rule that assigns a value from a set B for each element in a set A. Notation: f : A B If the value b B is assigned to value a A, then write f(a) = b, b is called
More information
4. Factor polynomials over complex numbers, describe geometrically, and apply to real-world situations. 5. Determine and apply relationships among syn
4. Factor polynomials over complex numbers, describe geometrically, and apply to real-world situations. 5. Determine and apply relationships among syn I The Real and Complex Number Systems 1. Identify subsets of complex numbers, and compare their structural characteristics. 2. Compare and contrast the properties of real numbers with the properties of
More information
6.7. The sine and cosine functions
6.7. The sine and cosine functions 35 6.7. The sine and cosine functions Surprisingly enough, angles and other notions of trigonometry play a significant role in the study of some biological processes. Here we review some basic facts from
More information
CHAPTER I THE REAL AND COMPLEX NUMBERS DEFINITION OF THE NUMBERS 1, i, AND 2
CHAPTER I THE REAL AND COMPLEX NUMBERS DEFINITION OF THE NUMBERS 1, i, AND 2 CHAPTER I THE REAL AND COMPLEX NUMBERS DEFINITION OF THE NUMBERS 1, i, AND 2 In order to mae precise sense out of the concepts we study in mathematical analysis, we must first come to terms with what the
More information
Algebra II. Larson, Boswell, Kanold, & Stiff (2001) Algebra II, Houghton Mifflin Company: Evanston, Illinois. TI 83 or 84 Graphing Calculator
Algebra II. Larson, Boswell, Kanold, & Stiff (2001) Algebra II, Houghton Mifflin Company: Evanston, Illinois. TI 83 or 84 Graphing Calculator Algebra II Text: Supplemental Materials: Larson, Boswell, Kanold, & Stiff (2001) Algebra II, Houghton Mifflin Company: Evanston, Illinois. TI 83 or 84 Graphing Calculator Course Description: The purpose
More information
Pythagorean Triples. Chapter 2. a 2 + b 2 = c 2
Pythagorean Triples. Chapter 2. a 2 + b 2 = c 2 Chapter Pythagorean Triples The Pythagorean Theorem, that beloved formula of all high school geometry students, says that the sum of the squares of the sides of a right triangle equals the square of the
More information
Advanced Higher Mathematics Course Assessment Specification (C747 77)
Advanced Higher Mathematics Course Assessment Specification (C747 77) Advanced Higher Mathematics Course Assessment Specification (C747 77) Valid from August 2015 This edition: April 2016, version 2.4 This specification may be reproduced in whole or in part for educational
More information
POLAR COORDINATES: WHAT THEY ARE AND HOW TO USE THEM
POLAR COORDINATES: WHAT THEY ARE AND HOW TO USE THEM POLAR COORDINATES: WHAT THEY ARE AND HOW TO USE THEM HEMANT D. TAGARE. Introduction. This note is about polar coordinates. I want to explain what they are and how to use them. Many different coordinate
More information
Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year.
Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the 2012-13 school year. This document is designed to help North Carolina educators teach the Common Core (Standard Course of Study). NCDPI staff are continually updating and improving these tools to better serve teachers. Algebra
More information
Prerequsites: Math 1A-1B, 53 (lower division calculus courses)
Prerequsites: Math 1A-1B, 53 (lower division calculus courses) Math 151 Prerequsites: Math 1A-1B, 53 (lower division calculus courses) Development of the rational number system. Use the number line (real line), starting with the concept of parts of a whole : fractions,
More information
CHARACTERISTIC ROOTS AND VECTORS
CHARACTERISTIC ROOTS AND VECTORS CHARACTERISTIC ROOTS AND VECTORS 1 DEFINITION OF CHARACTERISTIC ROOTS AND VECTORS 11 Statement of the characteristic root problem Find values of a scalar λ for which there exist vectors x 0 satisfying
More information
MATH 56A SPRING 2008 STOCHASTIC PROCESSES 31
MATH 56A SPRING 2008 STOCHASTIC PROCESSES 31 MATH 56A SPRING 2008 STOCHASTIC PROCESSES 3.3. Invariant probability distribution. Definition.4. A probability distribution is a function π : S [0, ] from the set of states S to the closed unit interval
More information
CHAPTER 2. Inequalities
CHAPTER 2. Inequalities CHAPTER 2 Inequalities In this section we add the axioms describe the behavior of inequalities (the order axioms) to the list of axioms begun in Chapter 1. A thorough mastery of this section is essential
More information
Alabama Course of Study Mathematics Algebra 2 with Trigonometry
Alabama Course of Study Mathematics Algebra 2 with Trigonometry A Correlation of Prentice Hall Algebra 2 to the Alabama Course of Study Mathematics THE COMPLEX NUMBER SYSTEM NUMBER AND QUANTITY Perform arithmetic operations with complex numbers. 1. Know there is a
More information
6.6 The Inverse Trigonometric Functions. Outline
6.6 The Inverse Trigonometric Functions. Outline 6.6 The Inverse Trigonometric Functions Tom Lewis Fall Semester 2015 Outline The inverse sine function The inverse cosine function The inverse tangent function The other inverse trig functions Miscellaneous
More information
Part I Preliminaries
Part I Preliminaries Part I Preliminaries Chapter An Elementary Introduction to the Discrete Fourier ransform his chapter is intended to provide a brief introduction to the discrete Fourier transform (DF) It is not intended
More information
Congruences. Robert Friedman
Congruences. Robert Friedman Congruences Robert Friedman Definition of congruence mod n Congruences are a very handy way to work with the information of divisibility and remainders, and their use permeates number theory. Definition
More information
Continued fractions and good approximations.
Continued fractions and good approximations. Continued fractions and good approximations We will study how to find good approximations for important real life constants A good approximation must be both accurate and easy to use For instance, our
More information
Polynomials and the Fast Fourier Transform (FFT) Battle Plan
Polynomials and the Fast Fourier Transform (FFT) Battle Plan Polynomials and the Fast Fourier Transform (FFT) Algorithm Design and Analysis (Wee 7) 1 Polynomials Battle Plan Algorithms to add, multiply and evaluate polynomials Coefficient and point-value representation
More information
Name: Exam 1. y = 10 t 2. y(0) = 3
Name: Exam 1. y = 10 t 2. y(0) = 3 Instructions. Answer each of the questions on your own paper. Be sure to show your work so that partial credit can be adequately assessed. Credit will not be given for answers (even correct ones) without
More information
Higher Education Math Placement
Higher Education Math Placement Higher Education Math Placement Placement Assessment Problem Types 1. Whole Numbers, Fractions, and Decimals 1.1 Operations with Whole Numbers Addition with carry Subtraction with borrowing Multiplication
More information
13 Solutions for Section 6
13 Solutions for Section 6 13 Solutions for Section 6 Exercise 6.2 Draw up the group table for S 3. List, giving each as a product of disjoint cycles, all the permutations in S 4. Determine the order of each element of S 4. Solution
More information
COMPLEX NUMBERS AND SERIES. Contents
COMPLEX NUMBERS AND SERIES. Contents COMPLEX NUMBERS AND SERIES MIKE BOYLE Contents 1. Complex Numbers Definition 1.1. A complex number is a number z of the form z = x + iy, where x and y are real numbers, and i is another number such that
More information
Fourier Series. Chapter Some Properties of Functions Goal Preliminary Remarks
Fourier Series. Chapter Some Properties of Functions Goal Preliminary Remarks Chapter 3 Fourier Series 3.1 Some Properties of Functions 3.1.1 Goal We review some results about functions which play an important role in the development of the theory of Fourier series. These results
More information
10.2. Argand Diagrams and the Polar Form. Introduction. Prerequisites. Learning Outcomes
10.2. Argand Diagrams and the Polar Form. Introduction. Prerequisites. Learning Outcomes Argand Diagrams and the Polar Form 10.2 Introduction In this Section we introduce a geometrical interpretation of a complex number. Since a complex number = x +i is comprised of two real numbers it is
More information
Precalculus Workshop - Functions
Precalculus Workshop - Functions Introduction to Functions A function f : D C is a rule that assigns to each element x in a set D exactly one element, called f(x), in a set C. D is called the domain of f. C is called the codomain of f.
More information | {
"url": "http://docplayer.net/23880177-1-review-of-complex-numbers.html",
"source_domain": "docplayer.net",
"snapshot_id": "crawl=CC-MAIN-2018-09",
"warc_metadata": {
"Content-Length": "128729",
"Content-Type": "application/http; msgtype=response",
"WARC-Block-Digest": "sha1:UWUN3KG5YCR3OAZSS44HTGKE2HQYH7EY",
"WARC-Concurrent-To": "<urn:uuid:efb9e8c8-093f-4268-b603-5706ff111ef8>",
"WARC-Date": "2018-02-20T04:06:51Z",
"WARC-IP-Address": "138.201.54.145",
"WARC-Identified-Payload-Type": "text/html",
"WARC-Payload-Digest": "sha1:DSAAP5YZVZ7R7HONSLV7EJF3RLOV44ZY",
"WARC-Record-ID": "<urn:uuid:a965918c-6a30-4124-a3fd-d903a2a2802b>",
"WARC-Target-URI": "http://docplayer.net/23880177-1-review-of-complex-numbers.html",
"WARC-Truncated": "length",
"WARC-Type": "response",
"WARC-Warcinfo-ID": "<urn:uuid:55262dd1-56fa-4b63-8ae6-740b31fb4f8f>"
},
"warc_info": "robots: classic\r\nhostname: ip-10-168-252-115.ec2.internal\r\nsoftware: Nutch 1.6 (CC)\r\nisPartOf: CC-MAIN-2018-09\r\noperator: Common Crawl Admin\r\ndescription: Wide crawl of the web for February 2018\r\npublisher: Common Crawl\r\nformat: WARC File Format 1.0\r\nconformsTo: http://bibnum.bnf.fr/WARC/WARC_ISO_28500_version1_latestdraft.pdf"
} | {
"line_start_idx": [
0,
28,
29,
38,
61,
62,
101,
102,
116,
117,
1819,
1820,
2937,
2938,
5315,
5316,
7271,
7272,
8638,
8639,
10386,
10387,
12249,
12250,
13527,
13528,
13572,
13573,
13819,
13820,
13837,
13838,
13928,
13929,
14228,
14229,
14246,
14247,
14277,
14278,
14513,
14514,
14531,
14532,
14643,
14644,
14963,
14964,
14981,
14982,
15052,
15053,
15324,
15325,
15342,
15343,
15490,
15491,
15839,
15840,
15857,
15858,
15951,
15952,
16247,
16248,
16265,
16266,
16362,
16363,
16662,
16663,
16680,
16681,
16704,
16705,
16936,
16937,
16954,
16955,
16978,
16979,
17205,
17206,
17223,
17224,
17262,
17263,
17504,
17505,
17522,
17523,
17577,
17578,
17836,
17837,
17854,
17855,
17890,
17891,
18129,
18130,
18147,
18148,
18273,
18274,
18602,
18603,
18620,
18621,
18676,
18677,
18933,
18934,
18951,
18952,
19007,
19008,
19265,
19266,
19283,
19284,
19317,
19318,
19559,
19560,
19577,
19578,
19639,
19640,
19915,
19916,
19933,
19934,
19978,
19979,
20229,
20230,
20247,
20248,
20294,
20295,
20546,
20547,
20564,
20565,
20656,
20657,
20949,
20950,
20967,
20968,
21030,
21031,
21296,
21297,
21314,
21315,
21443,
21444,
21774,
21775,
21792,
21793,
21905,
21906,
22221,
22222,
22239,
22240,
22269,
22270,
22501,
22502,
22519,
22520,
22542,
22543,
22768,
22769,
22786,
22787,
22840,
22841,
23096,
23097,
23114,
23115,
23173,
23174,
23435,
23436,
23453,
23454,
23486,
23487,
23720,
23721,
23738,
23739,
23765,
23766,
23993,
23994,
24011,
24012,
24094,
24095,
24379,
24380,
24397,
24398,
24445,
24446,
24694,
24695,
24712,
24713,
24736,
24737,
24966,
24967,
24984,
24985,
25089,
25090,
25401,
25402,
25419,
25420,
25444,
25445,
25673,
25674,
25691,
25692,
25755,
25756,
26023,
26024,
26041,
26042,
26064,
26065,
26289,
26290,
26307,
26308,
26448,
26449,
26794,
26795,
26812,
26813,
26848,
26849,
27086,
27087,
27104,
27105,
27180,
27181,
27463,
27464,
27481,
27482,
27521,
27522,
27763,
27764,
27781,
27782,
27832,
27833,
28090,
28091,
28108,
28109,
28178,
28179,
28458,
28459,
28476,
28477,
28581,
28582,
28888,
28889,
28906,
28907,
28951,
28952,
29201,
29202,
29219,
29220,
29249,
29250,
29480,
29481,
29498,
29499,
29531,
29532,
29769,
29770,
29787,
29788,
29838,
29839,
30091,
30092,
30109,
30110,
30189,
30190,
30471,
30472,
30489,
30490,
30592,
30593,
30896,
30897,
30914,
30915,
30964,
30965,
31220,
31221,
31238,
31239,
31360,
31361,
31685,
31686,
31703,
31704,
31788,
31789,
32075,
32076,
32093,
32094,
32134,
32135,
32376,
32377,
32394,
32395,
32467,
32468,
32743,
32744,
32761,
32762,
32815,
32816,
33079,
33080,
33097,
33098,
33151,
33152,
33413,
33414,
33431,
33432,
33459,
33460,
33689,
33690,
33707,
33708,
33751,
33752,
34000,
34001,
34018,
34019,
34081,
34082,
34345,
34346,
34363,
34364,
34408,
34409,
34658,
34659,
34676,
34677,
34698,
34699,
34921,
34922,
34939,
34940,
34966,
34967,
35195,
35196,
35213,
35214,
35302,
35303,
35594,
35595,
35612,
35613,
35643,
35644,
35876,
35877,
35894,
35895,
35920,
35921,
36147,
36148,
36165,
36166,
36211,
36212,
36460,
36461,
36478,
36479,
36509,
36510,
36745,
36746,
36763,
36764,
36835,
36836,
37135,
37136,
37153,
37154,
37227,
37228,
37507,
37508,
37525,
37526,
37592,
37593,
37863,
37864,
37881,
37882,
37946,
37947,
38217,
38218,
38235,
38236,
38265,
38266,
38498,
38499,
38516,
38517,
38575,
38576,
38838,
38839,
38856,
38857,
38884,
38885,
39116,
39117,
39134,
39135,
39286,
39287,
39640,
39641,
39658,
39659,
39694,
39695,
39934,
39935,
39952,
39953,
40030,
40031,
40312,
40313,
40330,
40331,
40473,
40474,
40819,
40820,
40837,
40838,
40886,
40887,
41138,
41139,
41156,
41157,
41227,
41228,
41502,
41503,
41520,
41521,
41574,
41575,
41830,
41831,
41848,
41849,
41989,
41990,
42336,
42337,
42354,
42355,
42418,
42419,
42689,
42690,
42707,
42708,
42741,
42742,
42976,
42977,
42994,
42995,
43040,
43041,
43289,
43290,
43307,
43308,
43332,
43333,
43561,
43562,
43579,
43580,
43644,
43645,
43910,
43911,
43928,
43929,
43978,
43979,
44235,
44236,
44253,
44254,
44275,
44276,
44500,
44501,
44518,
44519,
44548,
44549,
44781,
44782,
44799,
44800,
44845,
44846,
45092,
45093,
45110,
45111,
45172,
45173,
45443,
45444,
45461,
45462,
45497,
45498,
45737,
45738,
45755,
45756,
45788,
45789,
46026,
46027,
46044,
46045,
46072,
46073,
46306,
46307,
46324,
46325,
46362,
46363,
46603,
46604,
46621,
46622,
46700,
46701,
46982,
46983,
47000,
47001,
47090,
47091,
47381,
47382,
47399,
47400,
47433,
47434,
47670,
47671
],
"line_end_idx": [
28,
29,
38,
61,
62,
101,
102,
116,
117,
1819,
1820,
2937,
2938,
5315,
5316,
7271,
7272,
8638,
8639,
10386,
10387,
12249,
12250,
13527,
13528,
13572,
13573,
13819,
13820,
13837,
13838,
13928,
13929,
14228,
14229,
14246,
14247,
14277,
14278,
14513,
14514,
14531,
14532,
14643,
14644,
14963,
14964,
14981,
14982,
15052,
15053,
15324,
15325,
15342,
15343,
15490,
15491,
15839,
15840,
15857,
15858,
15951,
15952,
16247,
16248,
16265,
16266,
16362,
16363,
16662,
16663,
16680,
16681,
16704,
16705,
16936,
16937,
16954,
16955,
16978,
16979,
17205,
17206,
17223,
17224,
17262,
17263,
17504,
17505,
17522,
17523,
17577,
17578,
17836,
17837,
17854,
17855,
17890,
17891,
18129,
18130,
18147,
18148,
18273,
18274,
18602,
18603,
18620,
18621,
18676,
18677,
18933,
18934,
18951,
18952,
19007,
19008,
19265,
19266,
19283,
19284,
19317,
19318,
19559,
19560,
19577,
19578,
19639,
19640,
19915,
19916,
19933,
19934,
19978,
19979,
20229,
20230,
20247,
20248,
20294,
20295,
20546,
20547,
20564,
20565,
20656,
20657,
20949,
20950,
20967,
20968,
21030,
21031,
21296,
21297,
21314,
21315,
21443,
21444,
21774,
21775,
21792,
21793,
21905,
21906,
22221,
22222,
22239,
22240,
22269,
22270,
22501,
22502,
22519,
22520,
22542,
22543,
22768,
22769,
22786,
22787,
22840,
22841,
23096,
23097,
23114,
23115,
23173,
23174,
23435,
23436,
23453,
23454,
23486,
23487,
23720,
23721,
23738,
23739,
23765,
23766,
23993,
23994,
24011,
24012,
24094,
24095,
24379,
24380,
24397,
24398,
24445,
24446,
24694,
24695,
24712,
24713,
24736,
24737,
24966,
24967,
24984,
24985,
25089,
25090,
25401,
25402,
25419,
25420,
25444,
25445,
25673,
25674,
25691,
25692,
25755,
25756,
26023,
26024,
26041,
26042,
26064,
26065,
26289,
26290,
26307,
26308,
26448,
26449,
26794,
26795,
26812,
26813,
26848,
26849,
27086,
27087,
27104,
27105,
27180,
27181,
27463,
27464,
27481,
27482,
27521,
27522,
27763,
27764,
27781,
27782,
27832,
27833,
28090,
28091,
28108,
28109,
28178,
28179,
28458,
28459,
28476,
28477,
28581,
28582,
28888,
28889,
28906,
28907,
28951,
28952,
29201,
29202,
29219,
29220,
29249,
29250,
29480,
29481,
29498,
29499,
29531,
29532,
29769,
29770,
29787,
29788,
29838,
29839,
30091,
30092,
30109,
30110,
30189,
30190,
30471,
30472,
30489,
30490,
30592,
30593,
30896,
30897,
30914,
30915,
30964,
30965,
31220,
31221,
31238,
31239,
31360,
31361,
31685,
31686,
31703,
31704,
31788,
31789,
32075,
32076,
32093,
32094,
32134,
32135,
32376,
32377,
32394,
32395,
32467,
32468,
32743,
32744,
32761,
32762,
32815,
32816,
33079,
33080,
33097,
33098,
33151,
33152,
33413,
33414,
33431,
33432,
33459,
33460,
33689,
33690,
33707,
33708,
33751,
33752,
34000,
34001,
34018,
34019,
34081,
34082,
34345,
34346,
34363,
34364,
34408,
34409,
34658,
34659,
34676,
34677,
34698,
34699,
34921,
34922,
34939,
34940,
34966,
34967,
35195,
35196,
35213,
35214,
35302,
35303,
35594,
35595,
35612,
35613,
35643,
35644,
35876,
35877,
35894,
35895,
35920,
35921,
36147,
36148,
36165,
36166,
36211,
36212,
36460,
36461,
36478,
36479,
36509,
36510,
36745,
36746,
36763,
36764,
36835,
36836,
37135,
37136,
37153,
37154,
37227,
37228,
37507,
37508,
37525,
37526,
37592,
37593,
37863,
37864,
37881,
37882,
37946,
37947,
38217,
38218,
38235,
38236,
38265,
38266,
38498,
38499,
38516,
38517,
38575,
38576,
38838,
38839,
38856,
38857,
38884,
38885,
39116,
39117,
39134,
39135,
39286,
39287,
39640,
39641,
39658,
39659,
39694,
39695,
39934,
39935,
39952,
39953,
40030,
40031,
40312,
40313,
40330,
40331,
40473,
40474,
40819,
40820,
40837,
40838,
40886,
40887,
41138,
41139,
41156,
41157,
41227,
41228,
41502,
41503,
41520,
41521,
41574,
41575,
41830,
41831,
41848,
41849,
41989,
41990,
42336,
42337,
42354,
42355,
42418,
42419,
42689,
42690,
42707,
42708,
42741,
42742,
42976,
42977,
42994,
42995,
43040,
43041,
43289,
43290,
43307,
43308,
43332,
43333,
43561,
43562,
43579,
43580,
43644,
43645,
43910,
43911,
43928,
43929,
43978,
43979,
44235,
44236,
44253,
44254,
44275,
44276,
44500,
44501,
44518,
44519,
44548,
44549,
44781,
44782,
44799,
44800,
44845,
44846,
45092,
45093,
45110,
45111,
45172,
45173,
45443,
45444,
45461,
45462,
45497,
45498,
45737,
45738,
45755,
45756,
45788,
45789,
46026,
46027,
46044,
46045,
46072,
46073,
46306,
46307,
46324,
46325,
46362,
46363,
46603,
46604,
46621,
46622,
46700,
46701,
46982,
46983,
47000,
47001,
47090,
47091,
47381,
47382,
47399,
47400,
47433,
47434,
47670,
47671,
47687
]
} | {
"red_pajama_v2": {
"ccnet_original_length": 47687,
"ccnet_original_nlines": 623,
"rps_doc_curly_bracket": 0.00006291000318014994,
"rps_doc_ldnoobw_words": 0,
"rps_doc_lorem_ipsum": 0,
"rps_doc_stop_word_fraction": 0.29665443301200867,
"rps_doc_ut1_blacklist": 0,
"rps_doc_frac_all_caps_words": 0.0545349083840847,
"rps_doc_frac_lines_end_with_ellipsis": 0.00320513010956347,
"rps_doc_frac_no_alph_words": 0.2801198959350586,
"rps_doc_frac_unique_words": 0.15490196645259857,
"rps_doc_mean_word_length": 4.501593112945557,
"rps_doc_num_sentences": 518,
"rps_doc_symbol_to_word_ratio": 0.003287570085376501,
"rps_doc_unigram_entropy": 5.837125301361084,
"rps_doc_word_count": 8160,
"rps_doc_frac_chars_dupe_10grams": 0.2628154456615448,
"rps_doc_frac_chars_dupe_5grams": 0.39011242985725403,
"rps_doc_frac_chars_dupe_6grams": 0.3572809100151062,
"rps_doc_frac_chars_dupe_7grams": 0.3249121904373169,
"rps_doc_frac_chars_dupe_8grams": 0.3133966624736786,
"rps_doc_frac_chars_dupe_9grams": 0.2844308912754059,
"rps_doc_frac_chars_top_2gram": 0.040835220366716385,
"rps_doc_frac_chars_top_3gram": 0.010889389552175999,
"rps_doc_frac_chars_top_4gram": 0.0018512000096961856,
"rps_doc_books_importance": -4238.92529296875,
"rps_doc_books_importance_length_correction": -4238.92529296875,
"rps_doc_openwebtext_importance": -2443.841552734375,
"rps_doc_openwebtext_importance_length_correction": -2443.841552734375,
"rps_doc_wikipedia_importance": -1446.313232421875,
"rps_doc_wikipedia_importance_length_correction": -1446.313232421875
},
"fasttext": {
"dclm": 0.14286673069000244,
"english": 0.815898060798645,
"fineweb_edu_approx": 2.4383952617645264,
"eai_general_math": 0.9971625804901123,
"eai_open_web_math": 0.8591035604476929,
"eai_web_code": 0.11377031356096268
}
} | {
"free_decimal_correspondence": {
"primary": {
"code": "512.788",
"labels": {
"level_1": "Science and Natural history",
"level_2": "Mathematics",
"level_3": "Algebra"
}
},
"secondary": {
"code": "515.9",
"labels": {
"level_1": "Science and Natural history",
"level_2": "Mathematics",
"level_3": "Calculus and Mathematical analysis"
}
}
},
"bloom_cognitive_process": {
"primary": {
"code": "3",
"label": "Apply"
},
"secondary": {
"code": "2",
"label": "Understand"
}
},
"bloom_knowledge_domain": {
"primary": {
"code": "2",
"label": "Conceptual"
},
"secondary": {
"code": "3",
"label": "Procedural"
}
},
"document_type_v1": {
"primary": {
"code": "3",
"label": "Reference/Encyclopedic/Educational"
},
"secondary": {
"code": "-1",
"label": "Abstain"
}
},
"extraction_artifacts": {
"primary": {
"code": "0",
"label": "No Artifacts"
},
"secondary": {
"code": "-1",
"label": "Abstain"
}
},
"missing_content": {
"primary": {
"code": "0",
"label": "No missing content"
},
"secondary": {
"code": "-1",
"label": "Abstain"
}
},
"document_type_v2": {
"primary": {
"code": "3",
"label": "Academic Writing"
},
"secondary": {
"code": "23",
"label": "Tutorial"
}
},
"reasoning_depth": {
"primary": {
"code": "4",
"label": "Advanced Reasoning"
},
"secondary": {
"code": "3",
"label": "Intermediate Reasoning"
}
},
"technical_correctness": {
"primary": {
"code": "4",
"label": "Highly Correct"
},
"secondary": {
"code": "5",
"label": "Exceptionally Correct"
}
},
"education_level": {
"primary": {
"code": "3",
"label": "Undergraduate Level"
},
"secondary": {
"code": "4",
"label": "Graduate/Expert Level"
}
}
} | a246fc342e934853762e5c7f05dc3a09 |
-2,058,547,658,716,506,000 |
Results 1 to 2 of 2
Math Help - Translation of axes
1. #1
Member
Joined
Jan 2009
Posts
197
Translation of axes
Find the new equation of the circle of the equation x^2+y^2-4x+6y+9=0 after the translation that moves the origin to the point (2,-3)
Attempt
x=x-2
y=y+3
(x-2)^2 +(y+3)^2 -4(x-2)+6(y+3)+9=0
x^2+y^2-8x+12y+48=0
Am I correct?
Follow Math Help Forum on Facebook and Google+
2. #2
Super Member
Joined
May 2006
From
Lexington, MA (USA)
Posts
12,026
Thanks
842
Hello, mj.alawami!
Find the new equation of the circle of the equation x^2+y^2-4x+6y+9\:=\:0
after the translation that moves the origin to the point (2,-3).
Attempt: . \begin{array}{c}x\:=\:x-2 \\ y\:=\:y+3 \end{array}
(x-2)^2 +(y+3)^2 -4(x-2)+6(y+3)+9\:=\:0
x^2+y^2-8x+12y+48\:=\:0
Am I correct?
Yes! . . . Good work!
\begin{array}{cccccc}\text{The original circle is:} & (x-2)^2 + (y+2)^2 \:=\:4 &\Rightarrow& \text{Center: }(2,\,\text{-}3),\;r = 2 \\ \\[-3mm]<br />
\text{The new circle is:} & (x-4)^2 + (y+6)^2 \:=\: 4 &\Rightarrow& \text{Center: }(4,\,\text{-}6),\;r = 2 \end{array}
And this checks out . . .
Follow Math Help Forum on Facebook and Google+
Similar Math Help Forum Discussions
1. translation of axes
Posted in the Geometry Forum
Replies: 1
Last Post: November 29th 2010, 09:03 PM
2. Translation of axes
Posted in the Geometry Forum
Replies: 1
Last Post: June 22nd 2009, 06:49 AM
3. rotation of axes
Posted in the Pre-Calculus Forum
Replies: 3
Last Post: May 11th 2009, 07:37 PM
4. Semi-axes of an ellipse
Posted in the Advanced Math Topics Forum
Replies: 0
Last Post: October 25th 2007, 10:47 AM
5. ellipse axes
Posted in the Calculus Forum
Replies: 1
Last Post: October 19th 2006, 04:16 AM
Search Tags
/mathhelpforum @mathhelpforum | {
"url": "http://mathhelpforum.com/geometry/93567-translation-axes.html",
"source_domain": "mathhelpforum.com",
"snapshot_id": "crawl=CC-MAIN-2015-35",
"warc_metadata": {
"Content-Length": "37182",
"Content-Type": "application/http; msgtype=response",
"WARC-Block-Digest": "sha1:B7JH7C6X5XIQMNFA3WPCBDQZ67LXABCX",
"WARC-Concurrent-To": "<urn:uuid:125a944f-5cc1-4b62-b0bc-fbc7604c4c46>",
"WARC-Date": "2015-09-04T21:06:48Z",
"WARC-IP-Address": "66.114.149.59",
"WARC-Identified-Payload-Type": null,
"WARC-Payload-Digest": "sha1:5SODXA6NHX5TS5SDJ4Z3O3PO2LRZFV5Y",
"WARC-Record-ID": "<urn:uuid:5bc42f02-d2e2-40bf-9fbf-be3b99dbddbd>",
"WARC-Target-URI": "http://mathhelpforum.com/geometry/93567-translation-axes.html",
"WARC-Truncated": null,
"WARC-Type": "response",
"WARC-Warcinfo-ID": "<urn:uuid:e06358dd-50b2-463e-a8c9-77a9baf2855f>"
},
"warc_info": "robots: classic\r\nhostname: ip-10-171-96-226.ec2.internal\r\nsoftware: Nutch 1.6 (CC)/CC WarcExport 1.0\r\nisPartOf: CC-MAIN-2015-35\r\noperator: CommonCrawl Admin\r\ndescription: Wide crawl of the web for August 2015\r\npublisher: CommonCrawl\r\nformat: WARC File Format 1.0\r\nconformsTo: http://bibnum.bnf.fr/WARC/WARC_ISO_28500_version1_latestdraft.pdf"
} | {
"line_start_idx": [
0,
1,
2,
22,
23,
55,
56,
64,
75,
86,
99,
109,
117,
118,
142,
143,
282,
283,
295,
305,
315,
316,
357,
382,
383,
401,
452,
453,
461,
478,
479,
490,
503,
512,
536,
546,
557,
568,
576,
599,
600,
679,
748,
749,
815,
816,
861,
862,
891,
892,
910,
911,
937,
938,
939,
1093,
1212,
1213,
1243,
1244,
1295,
1296,
1332,
1333,
1358,
1391,
1406,
1450,
1475,
1508,
1523,
1563,
1585,
1622,
1637,
1676,
1705,
1750,
1765,
1808,
1826,
1859,
1874,
1917,
1918,
1930,
1931,
1932
],
"line_end_idx": [
1,
2,
22,
23,
55,
56,
64,
75,
86,
99,
109,
117,
118,
142,
143,
282,
283,
295,
305,
315,
316,
357,
382,
383,
401,
452,
453,
461,
478,
479,
490,
503,
512,
536,
546,
557,
568,
576,
599,
600,
679,
748,
749,
815,
816,
861,
862,
891,
892,
910,
911,
937,
938,
939,
1093,
1212,
1213,
1243,
1244,
1295,
1296,
1332,
1333,
1358,
1391,
1406,
1450,
1475,
1508,
1523,
1563,
1585,
1622,
1637,
1676,
1705,
1750,
1765,
1808,
1826,
1859,
1874,
1917,
1918,
1930,
1931,
1932,
1961
]
} | {
"red_pajama_v2": {
"ccnet_original_length": 1961,
"ccnet_original_nlines": 87,
"rps_doc_curly_bracket": 0.012238649651408195,
"rps_doc_ldnoobw_words": 0,
"rps_doc_lorem_ipsum": 0,
"rps_doc_stop_word_fraction": 0.15514019131660461,
"rps_doc_ut1_blacklist": 0,
"rps_doc_frac_all_caps_words": 0.01682242937386036,
"rps_doc_frac_lines_end_with_ellipsis": 0,
"rps_doc_frac_no_alph_words": 0.5327102541923523,
"rps_doc_frac_unique_words": 0.4523809552192688,
"rps_doc_mean_word_length": 4.7063493728637695,
"rps_doc_num_sentences": 17,
"rps_doc_symbol_to_word_ratio": 0.003738319966942072,
"rps_doc_unigram_entropy": 4.41912841796875,
"rps_doc_word_count": 252,
"rps_doc_frac_chars_dupe_10grams": 0.2782462239265442,
"rps_doc_frac_chars_dupe_5grams": 0.43507587909698486,
"rps_doc_frac_chars_dupe_6grams": 0.40303540229797363,
"rps_doc_frac_chars_dupe_7grams": 0.40303540229797363,
"rps_doc_frac_chars_dupe_8grams": 0.34232714772224426,
"rps_doc_frac_chars_dupe_9grams": 0.2782462239265442,
"rps_doc_frac_chars_top_2gram": 0.025295110419392586,
"rps_doc_frac_chars_top_3gram": 0.0463743694126606,
"rps_doc_frac_chars_top_4gram": 0.05059022083878517,
"rps_doc_books_importance": -266.8714294433594,
"rps_doc_books_importance_length_correction": -266.8714294433594,
"rps_doc_openwebtext_importance": -120.06047821044922,
"rps_doc_openwebtext_importance_length_correction": -120.06047821044922,
"rps_doc_wikipedia_importance": -114.64958190917969,
"rps_doc_wikipedia_importance_length_correction": -114.64958190917969
},
"fasttext": {
"dclm": 0.000057580000429879874,
"english": 0.7110618948936462,
"fineweb_edu_approx": 1.429563283920288,
"eai_general_math": 0.00043315000948496163,
"eai_open_web_math": 0.4968167543411255,
"eai_web_code": -0.000010009999641624745
}
} | {
"free_decimal_correspondence": {
"primary": {
"code": "516.35",
"labels": {
"level_1": "Science and Natural history",
"level_2": "Mathematics",
"level_3": "Geometry, Algebraic"
}
},
"secondary": {
"code": "516.3",
"labels": {
"level_1": "Science and Natural history",
"level_2": "Mathematics",
"level_3": "Geometry, Algebraic"
}
}
},
"bloom_cognitive_process": {
"primary": {
"code": "3",
"label": "Apply"
},
"secondary": {
"code": "2",
"label": "Understand"
}
},
"bloom_knowledge_domain": {
"primary": {
"code": "3",
"label": "Procedural"
},
"secondary": {
"code": "2",
"label": "Conceptual"
}
},
"document_type_v1": {
"primary": {
"code": "5",
"label": "Social/Forum"
},
"secondary": {
"code": "3",
"label": "Reference/Encyclopedic/Educational"
}
},
"extraction_artifacts": {
"primary": {
"code": "3",
"label": "Irrelevant Content"
},
"secondary": {
"code": "0",
"label": "No Artifacts"
}
},
"missing_content": {
"primary": {
"code": "0",
"label": "No missing content"
},
"secondary": {
"code": "-1",
"label": "Abstain"
}
},
"document_type_v2": {
"primary": {
"code": "18",
"label": "Q&A Forum"
},
"secondary": {
"code": "23",
"label": "Tutorial"
}
},
"reasoning_depth": {
"primary": {
"code": "2",
"label": "Basic Reasoning"
},
"secondary": {
"code": "3",
"label": "Intermediate Reasoning"
}
},
"technical_correctness": {
"primary": {
"code": "4",
"label": "Highly Correct"
},
"secondary": {
"code": "3",
"label": "Mostly Correct"
}
},
"education_level": {
"primary": {
"code": "2",
"label": "High School Level"
},
"secondary": {
"code": "3",
"label": "Undergraduate Level"
}
}
} | a246fc342e934853762e5c7f05dc3a09 |
162,838,533,270,285,660 | Answers
Solutions by everydaycalculation.com
Answers.everydaycalculation.com » Compare fractions
Compare 10/5 and 21/9
1st number: 2 0/5, 2nd number: 2 3/9
10/5 is smaller than 21/9
Steps for comparing fractions
1. Find the least common denominator or LCM of the two denominators:
LCM of 5 and 9 is 45
2. For the 1st fraction, since 5 × 9 = 45,
10/5 = 10 × 9/5 × 9 = 90/45
3. Likewise, for the 2nd fraction, since 9 × 5 = 45,
21/9 = 21 × 5/9 × 5 = 105/45
4. Since the denominators are now the same, the fraction with the bigger numerator is the greater fraction
5. 90/45 < 105/45 or 10/5 < 21/9
MathStep (Works offline)
Download our mobile app and learn to work with fractions in your own time:
Android and iPhone/ iPad
Related:
© everydaycalculation.com | {
"url": "https://answers.everydaycalculation.com/compare-fractions/10-5-and-21-9",
"source_domain": "answers.everydaycalculation.com",
"snapshot_id": "crawl=CC-MAIN-2020-24",
"warc_metadata": {
"Content-Length": "8160",
"Content-Type": "application/http; msgtype=response",
"WARC-Block-Digest": "sha1:RJSKUVWMD6WOMBXKM4NJCCGVV7NMTPL2",
"WARC-Concurrent-To": "<urn:uuid:3daa72b5-a915-43a2-9ba3-3fcf1b59b18c>",
"WARC-Date": "2020-05-29T20:18:21Z",
"WARC-IP-Address": "96.126.107.130",
"WARC-Identified-Payload-Type": "text/html",
"WARC-Payload-Digest": "sha1:F7OZ2CAKCI7YJXDHU7NWMLVLAZXP6BIN",
"WARC-Record-ID": "<urn:uuid:c5691d87-489d-4771-be3f-933fe24b1556>",
"WARC-Target-URI": "https://answers.everydaycalculation.com/compare-fractions/10-5-and-21-9",
"WARC-Truncated": null,
"WARC-Type": "response",
"WARC-Warcinfo-ID": "<urn:uuid:28ebec73-6773-427b-9546-c33f9726971a>"
},
"warc_info": "isPartOf: CC-MAIN-2020-24\r\npublisher: Common Crawl\r\ndescription: Wide crawl of the web for May/June 2020\r\noperator: Common Crawl Admin ([email protected])\r\nhostname: ip-10-67-67-236.ec2.internal\r\nsoftware: Apache Nutch 1.16 (modified, https://github.com/commoncrawl/nutch/)\r\nrobots: checked via crawler-commons 1.1-SNAPSHOT (https://github.com/crawler-commons/crawler-commons)\r\nformat: WARC File Format 1.1\r\nconformsTo: http://iipc.github.io/warc-specifications/specifications/warc-format/warc-1.1/"
} | {
"line_start_idx": [
0,
8,
9,
46,
47,
99,
100,
122,
123,
160,
161,
187,
188,
218,
219,
290,
315,
360,
392,
447,
480,
589,
624,
625,
650,
651,
726,
751,
752,
761,
762
],
"line_end_idx": [
8,
9,
46,
47,
99,
100,
122,
123,
160,
161,
187,
188,
218,
219,
290,
315,
360,
392,
447,
480,
589,
624,
625,
650,
651,
726,
751,
752,
761,
762,
787
]
} | {
"red_pajama_v2": {
"ccnet_original_length": 787,
"ccnet_original_nlines": 30,
"rps_doc_curly_bracket": 0,
"rps_doc_ldnoobw_words": 0,
"rps_doc_lorem_ipsum": 0,
"rps_doc_stop_word_fraction": 0.20603014528751373,
"rps_doc_ut1_blacklist": 0,
"rps_doc_frac_all_caps_words": 0.010050250217318535,
"rps_doc_frac_lines_end_with_ellipsis": 0,
"rps_doc_frac_no_alph_words": 0.5427135825157166,
"rps_doc_frac_unique_words": 0.572519063949585,
"rps_doc_mean_word_length": 4.335877895355225,
"rps_doc_num_sentences": 10,
"rps_doc_symbol_to_word_ratio": 0,
"rps_doc_unigram_entropy": 4.09115743637085,
"rps_doc_word_count": 131,
"rps_doc_frac_chars_dupe_10grams": 0,
"rps_doc_frac_chars_dupe_5grams": 0,
"rps_doc_frac_chars_dupe_6grams": 0,
"rps_doc_frac_chars_dupe_7grams": 0,
"rps_doc_frac_chars_dupe_8grams": 0,
"rps_doc_frac_chars_dupe_9grams": 0,
"rps_doc_frac_chars_top_2gram": 0.024647889658808708,
"rps_doc_frac_chars_top_3gram": 0,
"rps_doc_frac_chars_top_4gram": 0,
"rps_doc_books_importance": -76.38143920898438,
"rps_doc_books_importance_length_correction": -76.38143920898438,
"rps_doc_openwebtext_importance": -42.16483688354492,
"rps_doc_openwebtext_importance_length_correction": -42.164772033691406,
"rps_doc_wikipedia_importance": -22.742103576660156,
"rps_doc_wikipedia_importance_length_correction": -22.742103576660156
},
"fasttext": {
"dclm": 0.9751676321029663,
"english": 0.8900468945503235,
"fineweb_edu_approx": 1.8646352291107178,
"eai_general_math": 0.14113575220108032,
"eai_open_web_math": 0.2585902810096741,
"eai_web_code": 0.00013590000162366778
}
} | {
"free_decimal_correspondence": {
"primary": {
"code": "513.24",
"labels": {
"level_1": "Science and Natural history",
"level_2": "Mathematics",
"level_3": "Geometry"
}
},
"secondary": {
"code": "510",
"labels": {
"level_1": "Science and Natural history",
"level_2": "Mathematics",
"level_3": ""
}
}
},
"bloom_cognitive_process": {
"primary": {
"code": "2",
"label": "Understand"
},
"secondary": {
"code": "3",
"label": "Apply"
}
},
"bloom_knowledge_domain": {
"primary": {
"code": "3",
"label": "Procedural"
},
"secondary": {
"code": "1",
"label": "Factual"
}
},
"document_type_v1": {
"primary": {
"code": "3",
"label": "Reference/Encyclopedic/Educational"
},
"secondary": {
"code": "-1",
"label": "Abstain"
}
},
"extraction_artifacts": {
"primary": {
"code": "0",
"label": "No Artifacts"
},
"secondary": {
"code": "3",
"label": "Irrelevant Content"
}
},
"missing_content": {
"primary": {
"code": "0",
"label": "No missing content"
},
"secondary": {
"code": "-1",
"label": "Abstain"
}
},
"document_type_v2": {
"primary": {
"code": "23",
"label": "Tutorial"
},
"secondary": {
"code": "21",
"label": "Customer Support"
}
},
"reasoning_depth": {
"primary": {
"code": "2",
"label": "Basic Reasoning"
},
"secondary": {
"code": "3",
"label": "Intermediate Reasoning"
}
},
"technical_correctness": {
"primary": {
"code": "4",
"label": "Highly Correct"
},
"secondary": {
"code": "3",
"label": "Mostly Correct"
}
},
"education_level": {
"primary": {
"code": "2",
"label": "High School Level"
},
"secondary": {
"code": "1",
"label": "General Audience"
}
}
} | a246fc342e934853762e5c7f05dc3a09 |
2,812,631,707,506,987,000 | Vectors
Quadrants
Like a Star Trek quadrant?
First off: Nerd alert!
Secondly, yes, a quadrant is a circle cut into four parts.
What does this have to do with electricity?
Voltage and currents are constantly changing magnitude and direction. When changing direction, they actually rotate in a counterclockwise direction. They are tethered to a point of origin.
Figure 29. Quadrant point of origin
Each quadrant contains certain directions.
• Quadrant 1 has 0 to 90 degrees.
• Quadrant 2 has 90 to 180 degrees.
• Quadrant 3 has 180 to 270 degrees.
• Quadrant 4 has 270 to 360 degrees.
This is very important as it helps us to determine which vectors belong in which quadrant.
Polarity
It is also important to understand polarity when dealing with quadrants. A quadrant system is basically an X-Y graph. We use the point of origin as a reference point. On the X axis, anything to the right of the point of origin is positive and anything to the left is negative. On the Y axis, anything above the point of origin is positive and anything underneath it is negative. This means each quadrant has its own polarity, as shown in Figure 30.
Figure 30. Quadrant polarity
This too is extremely important when it comes to adding vectors.
Are you getting excited yet? This is all going to come together in one magical dance.
Video!
This video goes into greater detail about the specifics of all four quadrants.
Attributions
Quadrants and vectors. video by The Electric Academy is under a Creative Commons Attribution Licence.
Share This Book | {
"url": "https://pressbooks.bccampus.ca/trigforelectricians/chapter/quadrants/",
"source_domain": "pressbooks.bccampus.ca",
"snapshot_id": "crawl=CC-MAIN-2021-21",
"warc_metadata": {
"Content-Length": "45732",
"Content-Type": "application/http; msgtype=response",
"WARC-Block-Digest": "sha1:MWVRLWTAJDIVVVQBULDQHX3UW2USAMRA",
"WARC-Concurrent-To": "<urn:uuid:071d8e96-8902-431e-a954-e1c821fd3517>",
"WARC-Date": "2021-05-07T16:18:40Z",
"WARC-IP-Address": "206.12.29.51",
"WARC-Identified-Payload-Type": "text/html",
"WARC-Payload-Digest": "sha1:6NN74ZZSEIYAPIDBLP3URJRNUI4F7G75",
"WARC-Record-ID": "<urn:uuid:fcac364c-d57f-4d1b-b427-ccfccdbe282a>",
"WARC-Target-URI": "https://pressbooks.bccampus.ca/trigforelectricians/chapter/quadrants/",
"WARC-Truncated": null,
"WARC-Type": "response",
"WARC-Warcinfo-ID": "<urn:uuid:70f50d64-f1da-4743-8810-a5ad5a0de236>"
},
"warc_info": "isPartOf: CC-MAIN-2021-21\r\npublisher: Common Crawl\r\ndescription: Wide crawl of the web for May 2021\r\noperator: Common Crawl Admin ([email protected])\r\nhostname: ip-10-67-67-81.ec2.internal\r\nsoftware: Apache Nutch 1.18 (modified, https://github.com/commoncrawl/nutch/)\r\nrobots: checked via crawler-commons 1.2-SNAPSHOT (https://github.com/crawler-commons/crawler-commons)\r\nformat: WARC File Format 1.1\r\nconformsTo: https://iipc.github.io/warc-specifications/specifications/warc-format/warc-1.1/"
} | {
"line_start_idx": [
0,
8,
9,
19,
20,
47,
48,
71,
72,
133,
134,
178,
179,
370,
371,
373,
374,
410,
411,
454,
455,
491,
529,
568,
607,
608,
699,
700,
709,
710,
1164,
1165,
1167,
1168,
1197,
1198,
1263,
1264,
1351,
1352,
1359,
1360,
1439,
1440,
1453,
1454,
1556,
1557
],
"line_end_idx": [
8,
9,
19,
20,
47,
48,
71,
72,
133,
134,
178,
179,
370,
371,
373,
374,
410,
411,
454,
455,
491,
529,
568,
607,
608,
699,
700,
709,
710,
1164,
1165,
1167,
1168,
1197,
1198,
1263,
1264,
1351,
1352,
1359,
1360,
1439,
1440,
1453,
1454,
1556,
1557,
1572
]
} | {
"red_pajama_v2": {
"ccnet_original_length": 1572,
"ccnet_original_nlines": 47,
"rps_doc_curly_bracket": 0,
"rps_doc_ldnoobw_words": 0,
"rps_doc_lorem_ipsum": 0,
"rps_doc_stop_word_fraction": 0.3866666555404663,
"rps_doc_ut1_blacklist": 0,
"rps_doc_frac_all_caps_words": 0.01666666939854622,
"rps_doc_frac_lines_end_with_ellipsis": 0,
"rps_doc_frac_no_alph_words": 0.18333333730697632,
"rps_doc_frac_unique_words": 0.5057034492492676,
"rps_doc_mean_word_length": 4.6768059730529785,
"rps_doc_num_sentences": 29,
"rps_doc_symbol_to_word_ratio": 0,
"rps_doc_unigram_entropy": 4.5296711921691895,
"rps_doc_word_count": 263,
"rps_doc_frac_chars_dupe_10grams": 0,
"rps_doc_frac_chars_dupe_5grams": 0.06016260012984276,
"rps_doc_frac_chars_dupe_6grams": 0.06016260012984276,
"rps_doc_frac_chars_dupe_7grams": 0.06016260012984276,
"rps_doc_frac_chars_dupe_8grams": 0.06016260012984276,
"rps_doc_frac_chars_dupe_9grams": 0,
"rps_doc_frac_chars_top_2gram": 0.028455279767513275,
"rps_doc_frac_chars_top_3gram": 0.05284553021192551,
"rps_doc_frac_chars_top_4gram": 0.039024390280246735,
"rps_doc_books_importance": -90.37541961669922,
"rps_doc_books_importance_length_correction": -77.41468048095703,
"rps_doc_openwebtext_importance": -44.19045639038086,
"rps_doc_openwebtext_importance_length_correction": -44.19045639038086,
"rps_doc_wikipedia_importance": 5.611856937408447,
"rps_doc_wikipedia_importance_length_correction": 19.420251846313477
},
"fasttext": {
"dclm": 0.055350299924612045,
"english": 0.9297587275505066,
"fineweb_edu_approx": 2.8889338970184326,
"eai_general_math": 0.3689505457878113,
"eai_open_web_math": 0.4814140200614929,
"eai_web_code": 0.01256216038018465
}
} | {
"free_decimal_correspondence": {
"primary": {
"code": "537.6",
"labels": {
"level_1": "Science and Natural history",
"level_2": "Physics",
"level_3": "Electricity"
}
},
"secondary": {
"code": "516.15",
"labels": {
"level_1": "Science and Natural history",
"level_2": "Mathematics",
"level_3": "Geometry, Algebraic"
}
}
},
"bloom_cognitive_process": {
"primary": {
"code": "2",
"label": "Understand"
},
"secondary": {
"code": "3",
"label": "Apply"
}
},
"bloom_knowledge_domain": {
"primary": {
"code": "2",
"label": "Conceptual"
},
"secondary": {
"code": "3",
"label": "Procedural"
}
},
"document_type_v1": {
"primary": {
"code": "3",
"label": "Reference/Encyclopedic/Educational"
},
"secondary": {
"code": "-1",
"label": "Abstain"
}
},
"extraction_artifacts": {
"primary": {
"code": "0",
"label": "No Artifacts"
},
"secondary": {
"code": "3",
"label": "Irrelevant Content"
}
},
"missing_content": {
"primary": {
"code": "4",
"label": "Missing Images or Figures"
},
"secondary": {
"code": "-1",
"label": "Abstain"
}
},
"document_type_v2": {
"primary": {
"code": "23",
"label": "Tutorial"
},
"secondary": {
"code": "10",
"label": "Knowledge Article"
}
},
"reasoning_depth": {
"primary": {
"code": "2",
"label": "Basic Reasoning"
},
"secondary": {
"code": "3",
"label": "Intermediate Reasoning"
}
},
"technical_correctness": {
"primary": {
"code": "4",
"label": "Highly Correct"
},
"secondary": {
"code": "3",
"label": "Mostly Correct"
}
},
"education_level": {
"primary": {
"code": "2",
"label": "High School Level"
},
"secondary": {
"code": "3",
"label": "Undergraduate Level"
}
}
} | a246fc342e934853762e5c7f05dc3a09 |
-7,383,002,084,642,584,000 | Courses
Courses for Kids
Free study material
Offline Centres
More
JEE Main Mathematics Important Chapters
ffImage
Last updated date: 05th Dec 2023
Total views: 23.4k
Views today: 0.23k
JEE Main Mathematics: Important Chapters for Scoring High Marks
JEE Main Mathematics is a crucial section that requires focused preparation for success in the examination. Within the vast syllabus, there are certain chapters that carry significant weightage and are considered particularly important. These JEE Main Mathematics important chapters play a pivotal role in determining a candidate's overall score and rank. Mastering these chapters is essential for students aiming to secure a competitive rank in the JEE Main examination. In this article, we will explore the key JEE Main Mathematics important chapters that deserve special attention and discuss the benefits of prioritising them in the preparation journey.
Most Important Chapters for JEE Main Maths
The JEE Main Mathematics syllabus is made up of around 25 chapters. That is the most crucial aspect, yet it requires a lot of effort. The following are the most essential JEE Main 2023 Mathematics chapters:
• Complex Numbers And Quadratic Equations
• Circle, Conic Sections
• Integral Calculus
• Three Dimensional Geometry
• Vector Algebra
• Probability
• Trigonometry
• Permutations And Combinations
• Sequence And Series
Syllabus for JEE Main Maths Important Chapters 2024
The JEE Main Mathematics syllabus is vast, but certain chapters are considered crucial for scoring high marks. Here are the important chapters from the JEE Main Mathematics syllabus:
Most Important Chapters of Maths JEE Main 2024
Complex Numbers and Quadratic Equations
Complex numbers as ordered pairs of reals, Representation of complex numbers in the form a + ib and their representation in a plane, Argand diagram, algebra of complex number, modulus and argument (or amplitude) of a complex number, square root of a complex number, triangle inequality, Quadratic equations in real and complex number system and their solutions Relations between roots and co-efficient, nature of roots, the formation of quadratic equations with given roots.
Circle, Conic Sections
A standard form of equations of a circle, the general form of the equation of a circle, its radius and central, equation of a circle when the endpoints of a diameter are given, points of intersection of a line and a circle with the centre at the origin and condition for a line to be tangent to a circle, equation of the tangent, sections of conics, equations of conic sections (parabola, ellipse, and hyperbola) in standard forms, condition for Y = mx +c to be a tangent and point (s) of tangency.
Integral Calculus
Integral as an anti-derivative, Fundamental Integrals involving algebraic, trigonometric, exponential, and logarithms functions. Integrations by substitution, by parts, and by partial functions. Integration using trigonometric identities.
Evaluation of simple integrals of the type
$\int{\dfrac{dx}{x^2+a^2}}, \int{\dfrac{dx}{\sqrt{x^2 \pm a^2}}}, \int{\dfrac{dx}{a^2-x^2}}, \int{\dfrac{dx}{\sqrt{a^2-x^2}}}, \int{\dfrac{dx}{ax^2+bx+c}}, \int{\dfrac{dx}{\sqrt{ax^2+bx+c}}}, \int{\dfrac{(px+q)dx}{ax^2+bx+c}}, \int{\dfrac{(px+q)dx}{\sqrt{ax^2+bx+c}}}, \int{\sqrt{a^2 \pm x^2}dx}, \int{\sqrt{x^2-a^2}dx}$
Integral as limit of a sum. The fundamental theorem of calculus, properties of definite integrals. Evaluation of definite integrals, determining areas of the regions bounded by simple curves in standard form.
Three Dimensional Geometry
Coordinates of a point in space, the distance between two points, section formula, directions ratios, direction cosines, the angle between two intersecting lines. Skew lines, the shortest distance between them, and its equation. Equations of a line and a plane in different forms, the intersection of a line and a plane, and coplanar lines.
Vector Algebra
Vectors and scalars, the addition of vectors, components of a vector in two dimensions and three-dimensional space, scalar and vector products, scalar and vector triple product.
Probability
Probability of an event, addition and multiplication theorems of probability, Baye's theorem, probability distribution of a random variate, Bernoulli trials, and binomial distribution.
Trigonometry
Trigonometrical identities and equations, trigonometrical functions, inverse trigonometrical functions, and their properties, heights, and distance.
Permutations and Combinations
The fundamental principle of counting, permutation as an arrangement and combination as section, Meaning of P (n,r) and C (n,r), simple applications.
Sequence and Series
Arithmetic and Geometric progressions, insertion of arithmetic, geometric means between two given numbers, Relation between A.M and G.M sum up to n terms of special series; Sn, Sn2, Sn3. Arithmetico-Geometric progression.
Most Important Chapters of Class 11 Maths for JEE Mains: Marks Weightage
For JEE Main, the Class 11 Mathematics syllabus provides a strong foundation for the more advanced topics in Class 12. While the entire syllabus is essential, certain chapters carry more weightage in terms of marks and importance. Here are the most important chapters of Class 11 Maths for JEE Mains and their approximate marks weightage:
Chapters
No. of Questions
Weightage (%)
Limits, Continuity and Differentiability
3
12
Integral Calculus
3
12
Coordinate Geometry
3
12
Statistics and Probability
2
8
Matrices and Determinants
2
8
Vector Algebra
2
8
Three Dimensional Geometry
2
8
Complex numbers and Quadratic Equation
2
8
Sets, Relation and Function
1
4
Sequence and Series
1
4
Binomial Theorem and Its Application
1
4
Differential Equation
1
4
Differential Calculus
1
4
Permutation and Combinations
1
4
Trigonometry
1
4
Mathematical Reasoning
1
4
Statics and Dynamics
1
4
JEE Main Maths Important Chapter 2023-24: Benefits of Solving Papers With Vedantu
There are many advantages to solving Previous Years’ JEE Main papers.To begin, examining past years' question papers is the most effective technique to determine the test format. Second, it aids in determining which chapters are crucial. It also allows you to construct an effective JEE Main study schedule.
As a result, past years' questions are quite useful for applicants to practise with.
As a result, prior years' questions are extremely beneficial for applicants to practise, and there are additional grounds to think that.
1. It Reveals Your Strengths and Weaknesses.
You should thoroughly examine the past years' JEE Main question papers. Just mark the questions that you are familiar with. You'll learn which questions you know and which you don't by doing so. Candidates may then readily specify where they should focus their efforts and begin their hard work. Candidates can categorise the test as challenging, moderate, or easy by reviewing past years' JEE Main question papers. Following that, they might begin improved preparing procedures to get better results.
2. Enhances Your Time Management
Before taking any exam, time is an important consideration, and JEE Main is no different. As they begin tackling prior years' question papers, candidates must manage their time properly. One of the most effective techniques for students to enhance their time management abilities is to study past years' JEE Main question papers.
It is also regarded as an effective approach to practise and improve. It helps to increase both speed and accuracy over time. Good time management may yield excellent rewards and allow candidates to finish their assignments on time.
3.Improves Speed and Accuracy
Also, practising past years' examinations enhances pupils' speed and accuracy while dealing with various issues. Candidates might create shortcut tactics while attempting to solve problems from previous years' JEE Main examinations. These strategies can help students solve Math and Physics issues, particularly numerical problems.
4. Practice Makes One Perfect
Practice, as they say, makes perfect. Whatever that is practised on a regular basis will improve. Candidates that spend a significant amount of time practising previous year's questions are automatically likely to earn a high percentile. Also, practising prior years' JEE Main will show you how well prepared you are. As a consequence, applicants may now quickly assess their degree of preparedness. Furthermore, based on their assessment, candidates might focus on closing the preparation gap.
5. Increase Your Self- Motivation
Examine past years' question papers to increase your confidence. Because most competitive tests have a set question format, being acquainted with it can increase your confidence and prepare you for the actual exam. The JEE Main test necessitates a tremendous amount of preparation.
Many questions, for example, may be puzzling to applicants who have never taken similar ones before. You may find yourself in a difficult scenario if you go into the JEE Main test with only theoretical knowledge and no understanding of the question pattern. You may learn a lot about the test format by solving previous year's exams, which can boost your confidence in your real performance.
Conclusion
Focusing on the JEE Main Mathematics important chapters is a strategic approach to excel in the examination. These chapters carry significant weightage in terms of marks and are frequently asked in the paper. By dedicating ample time and effort to understand the concepts and solve practice problems from these chapters, students can enhance their overall performance and increase their chances of obtaining a competitive rank. However, it is important to remember that a well-rounded preparation covering the entire Mathematics syllabus is essential for success. Balancing thorough study of the important chapters with equal attention to other topics will ensure a comprehensive and effective preparation strategy for the JEE Main Mathematics section.
FAQs on JEE Main Mathematics Important Chapters
1: What are JEE Main Mathematics important chapters 2024?
JEE Main Mathematics important chapters are those topics that carry significant weightage in terms of marks and are frequently asked in the examination. These chapters are crucial for scoring high marks and securing a competitive rank in the JEE Main Mathematics section.
2: How many important chapters are there in JEE Main Mathematics?
There are several important chapters in JEE Main Mathematics, typically ranging from 10 to 15, depending on the year and the paper pattern.
3: Can I skip studying other chapters if I focus only on the important chapters for JEE Main 2024?
While focusing on important chapters is essential, it is not advisable to skip studying other chapters entirely. A balanced preparation covering the entire syllabus is necessary for a good overall score in JEE Main Mathematics.
4: How can I identify the important chapters for JEE Main Mathematics 2024?
The important chapters can be identified based on their historical weightage of marks in previous years' papers and the frequency of questions asked from these topics.
5: Should I start with the important chapters or cover the entire syllabus first for JEE Main 2024?
It is recommended to start with the important chapters first and then gradually move on to cover the entire syllabus. This approach ensures that you allocate sufficient time to master the high-weightage topics.
6: Are the important chapters the same every year for JEE Main Exam?
The important chapters may vary slightly from year to year, depending on the JEE Main examination pattern and trends. | {
"url": "https://www.vedantu.com/jee-main/maths",
"source_domain": "www.vedantu.com",
"snapshot_id": "CC-MAIN-2023-50",
"warc_metadata": {
"Content-Length": "280466",
"Content-Type": "application/http; msgtype=response",
"WARC-Block-Digest": "sha1:D7W4PDJP53UGGDACRDMXSSF3IHYCUT5C",
"WARC-Concurrent-To": "<urn:uuid:8d46a752-53e4-4a2c-b906-d681b35291ad>",
"WARC-Date": "2023-12-10T20:18:18Z",
"WARC-IP-Address": "108.138.64.66",
"WARC-Identified-Payload-Type": "text/html",
"WARC-Payload-Digest": "sha1:IPSGIIZI66SFMBMRMMK2WHRAU6WGGK33",
"WARC-Record-ID": "<urn:uuid:fb5d2862-998e-4fb2-a991-ae9b50f2d40e>",
"WARC-Target-URI": "https://www.vedantu.com/jee-main/maths",
"WARC-Truncated": null,
"WARC-Type": "response",
"WARC-Warcinfo-ID": "<urn:uuid:f5e1ae4e-6093-4db0-b1ce-8ce0d2bc7e93>"
},
"warc_info": "isPartOf: CC-MAIN-2023-50\r\npublisher: Common Crawl\r\ndescription: Wide crawl of the web for November/December 2023\r\noperator: Common Crawl Admin ([email protected])\r\nhostname: ip-10-67-67-169\r\nsoftware: Apache Nutch 1.19 (modified, https://github.com/commoncrawl/nutch/)\r\nrobots: checked via crawler-commons 1.5-SNAPSHOT (https://github.com/crawler-commons/crawler-commons)\r\nformat: WARC File Format 1.1\r\nconformsTo: https://iipc.github.io/warc-specifications/specifications/warc-format/warc-1.1/"
} | {
"line_start_idx": [
0,
8,
25,
45,
61,
66,
67,
107,
108,
116,
149,
168,
187,
188,
252,
253,
911,
912,
955,
956,
1163,
1164,
1165,
1209,
1210,
1237,
1238,
1260,
1261,
1292,
1293,
1312,
1313,
1329,
1330,
1347,
1348,
1382,
1383,
1407,
1408,
1409,
1461,
1462,
1645,
1646,
1647,
1694,
1695,
1735,
1736,
2211,
2212,
2235,
2236,
2735,
2736,
2754,
2755,
2994,
2995,
3038,
3039,
3360,
3361,
3570,
3571,
3598,
3599,
3940,
3941,
3956,
3957,
4135,
4136,
4148,
4149,
4334,
4335,
4348,
4349,
4498,
4499,
4529,
4530,
4680,
4681,
4701,
4702,
4924,
4925,
4926,
4999,
5000,
5339,
5340,
5341,
5351,
5352,
5370,
5371,
5385,
5386,
5427,
5428,
5430,
5431,
5434,
5435,
5453,
5454,
5456,
5457,
5460,
5461,
5481,
5482,
5484,
5485,
5488,
5489,
5516,
5517,
5519,
5520,
5522,
5523,
5549,
5550,
5552,
5553,
5555,
5556,
5571,
5572,
5574,
5575,
5577,
5578,
5605,
5606,
5608,
5609,
5611,
5612,
5651,
5652,
5654,
5655,
5657,
5658,
5686,
5687,
5689,
5690,
5692,
5693,
5713,
5714,
5716,
5717,
5719,
5720,
5757,
5758,
5760,
5761,
5763,
5764,
5786,
5787,
5789,
5790,
5792,
5793,
5815,
5816,
5818,
5819,
5821,
5822,
5851,
5852,
5854,
5855,
5857,
5858,
5871,
5872,
5874,
5875,
5877,
5878,
5901,
5902,
5904,
5905,
5907,
5908,
5929,
5930,
5932,
5933,
5935,
5936,
5937,
6019,
6020,
6328,
6329,
6330,
6415,
6416,
6553,
6554,
6555,
6600,
6601,
7103,
7104,
7105,
7138,
7139,
7469,
7470,
7471,
7704,
7705,
7706,
7736,
7737,
8069,
8070,
8071,
8101,
8102,
8597,
8598,
8599,
8633,
8634,
8916,
8917,
8918,
9310,
9311,
9312,
9324,
9325,
10078,
10079,
10127,
10128,
10186,
10187,
10459,
10460,
10526,
10527,
10667,
10668,
10767,
10768,
10996,
10997,
11073,
11074,
11242,
11243,
11343,
11344,
11555,
11556,
11625,
11626
],
"line_end_idx": [
8,
25,
45,
61,
66,
67,
107,
108,
116,
149,
168,
187,
188,
252,
253,
911,
912,
955,
956,
1163,
1164,
1165,
1209,
1210,
1237,
1238,
1260,
1261,
1292,
1293,
1312,
1313,
1329,
1330,
1347,
1348,
1382,
1383,
1407,
1408,
1409,
1461,
1462,
1645,
1646,
1647,
1694,
1695,
1735,
1736,
2211,
2212,
2235,
2236,
2735,
2736,
2754,
2755,
2994,
2995,
3038,
3039,
3360,
3361,
3570,
3571,
3598,
3599,
3940,
3941,
3956,
3957,
4135,
4136,
4148,
4149,
4334,
4335,
4348,
4349,
4498,
4499,
4529,
4530,
4680,
4681,
4701,
4702,
4924,
4925,
4926,
4999,
5000,
5339,
5340,
5341,
5351,
5352,
5370,
5371,
5385,
5386,
5427,
5428,
5430,
5431,
5434,
5435,
5453,
5454,
5456,
5457,
5460,
5461,
5481,
5482,
5484,
5485,
5488,
5489,
5516,
5517,
5519,
5520,
5522,
5523,
5549,
5550,
5552,
5553,
5555,
5556,
5571,
5572,
5574,
5575,
5577,
5578,
5605,
5606,
5608,
5609,
5611,
5612,
5651,
5652,
5654,
5655,
5657,
5658,
5686,
5687,
5689,
5690,
5692,
5693,
5713,
5714,
5716,
5717,
5719,
5720,
5757,
5758,
5760,
5761,
5763,
5764,
5786,
5787,
5789,
5790,
5792,
5793,
5815,
5816,
5818,
5819,
5821,
5822,
5851,
5852,
5854,
5855,
5857,
5858,
5871,
5872,
5874,
5875,
5877,
5878,
5901,
5902,
5904,
5905,
5907,
5908,
5929,
5930,
5932,
5933,
5935,
5936,
5937,
6019,
6020,
6328,
6329,
6330,
6415,
6416,
6553,
6554,
6555,
6600,
6601,
7103,
7104,
7105,
7138,
7139,
7469,
7470,
7471,
7704,
7705,
7706,
7736,
7737,
8069,
8070,
8071,
8101,
8102,
8597,
8598,
8599,
8633,
8634,
8916,
8917,
8918,
9310,
9311,
9312,
9324,
9325,
10078,
10079,
10127,
10128,
10186,
10187,
10459,
10460,
10526,
10527,
10667,
10668,
10767,
10768,
10996,
10997,
11073,
11074,
11242,
11243,
11343,
11344,
11555,
11556,
11625,
11626,
11743
]
} | {
"red_pajama_v2": {
"ccnet_original_length": 11743,
"ccnet_original_nlines": 274,
"rps_doc_curly_bracket": 0.005450060125440359,
"rps_doc_ldnoobw_words": 0,
"rps_doc_lorem_ipsum": 0,
"rps_doc_stop_word_fraction": 0.29496070742607117,
"rps_doc_ut1_blacklist": 0,
"rps_doc_frac_all_caps_words": 0.024965329095721245,
"rps_doc_frac_lines_end_with_ellipsis": 0,
"rps_doc_frac_no_alph_words": 0.19602404534816742,
"rps_doc_frac_unique_words": 0.3337162733078003,
"rps_doc_mean_word_length": 5.430212497711182,
"rps_doc_num_sentences": 91,
"rps_doc_symbol_to_word_ratio": 0,
"rps_doc_unigram_entropy": 5.543280124664307,
"rps_doc_word_count": 1741,
"rps_doc_frac_chars_dupe_10grams": 0.023482119664549828,
"rps_doc_frac_chars_dupe_5grams": 0.12671884894371033,
"rps_doc_frac_chars_dupe_6grams": 0.06166702136397362,
"rps_doc_frac_chars_dupe_7grams": 0.029405539855360985,
"rps_doc_frac_chars_dupe_8grams": 0.023482119664549828,
"rps_doc_frac_chars_dupe_9grams": 0.023482119664549828,
"rps_doc_frac_chars_top_2gram": 0.028876669704914093,
"rps_doc_frac_chars_top_3gram": 0.03427121043205261,
"rps_doc_frac_chars_top_4gram": 0.02284746989607811,
"rps_doc_books_importance": -1093.4998779296875,
"rps_doc_books_importance_length_correction": -1093.4998779296875,
"rps_doc_openwebtext_importance": -608.937744140625,
"rps_doc_openwebtext_importance_length_correction": -608.937744140625,
"rps_doc_wikipedia_importance": -377.20343017578125,
"rps_doc_wikipedia_importance_length_correction": -377.20343017578125
},
"fasttext": {
"dclm": 0.03445607051253319,
"english": 0.9000709652900696,
"fineweb_edu_approx": 2.698336362838745,
"eai_general_math": 0.9950922727584839,
"eai_open_web_math": 0.5120313167572021,
"eai_web_code": 0.06954401731491089
}
} | {
"free_decimal_correspondence": {
"primary": {
"code": "510",
"labels": {
"level_1": "Science and Natural history",
"level_2": "Mathematics",
"level_3": ""
}
},
"secondary": {
"code": "378.1662",
"labels": {
"level_1": "Social sciences",
"level_2": "Education",
"level_3": "Education, Higher and Universities and colleges"
}
}
},
"bloom_cognitive_process": {
"primary": {
"code": "2",
"label": "Understand"
},
"secondary": {
"code": "3",
"label": "Apply"
}
},
"bloom_knowledge_domain": {
"primary": {
"code": "2",
"label": "Conceptual"
},
"secondary": {
"code": "3",
"label": "Procedural"
}
},
"document_type_v1": {
"primary": {
"code": "3",
"label": "Reference/Encyclopedic/Educational"
},
"secondary": {
"code": "-1",
"label": "Abstain"
}
},
"extraction_artifacts": {
"primary": {
"code": "3",
"label": "Irrelevant Content"
},
"secondary": {
"code": "0",
"label": "No Artifacts"
}
},
"missing_content": {
"primary": {
"code": "0",
"label": "No missing content"
},
"secondary": {
"code": "-1",
"label": "Abstain"
}
},
"document_type_v2": {
"primary": {
"code": "10",
"label": "Knowledge Article"
},
"secondary": {
"code": "6",
"label": "Content Listing"
}
},
"reasoning_depth": {
"primary": {
"code": "2",
"label": "Basic Reasoning"
},
"secondary": {
"code": "3",
"label": "Intermediate Reasoning"
}
},
"technical_correctness": {
"primary": {
"code": "4",
"label": "Highly Correct"
},
"secondary": {
"code": "3",
"label": "Mostly Correct"
}
},
"education_level": {
"primary": {
"code": "3",
"label": "Undergraduate Level"
},
"secondary": {
"code": "2",
"label": "High School Level"
}
}
} | a246fc342e934853762e5c7f05dc3a09 |
-4,149,961,035,303,303,000 | Functions ordered pairs
Upcoming SlideShare
Loading in...5
×
Like this? Share it with your network
Share
Functions ordered pairs
on
• 685 views
Functions Introduction
Functions Introduction
Statistics
Views
Total Views
685
Views on SlideShare
678
Embed Views
7
Actions
Likes
1
Downloads
14
Comments
0
1 Embed 7
http://a2tsingh.blogspot.com 7
Accessibility
Categories
Upload Details
Uploaded via as Microsoft PowerPoint
Usage Rights
© All Rights Reserved
Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate
Select your reason for flagging this presentation as inappropriate.
Cancel
• Full Name Full Name Comment goes here.
Are you sure you want to
Your message goes here
Processing…
Post Comment
Edit your comment
• 5 mins
• 3 mins
• 3 mins
• 3mins
• 2 mins
• 2mins
• 1 min
Functions ordered pairs Presentation Transcript
• 1. Aim: What is a function?Do Now: Place your contracts in the basket. Takeout a pen or pencil and a sheet of paper.You have 50 minutes to complete the diagnostic.This counts for Quiz 1. You will not be graded on correctness.Your grade will depend on how many questions you answerand how much work you show.
• 2. Functions as a set of ordered pairs.Domain: The set of all inputs in a function, or the set of x values.Range: The set of all outputs of a function, or the set of y values.DEFINITIONS:
• 3. A function is a relation in which eachelement of the domain is paired withexactly one element in the range.Example: {(1, 1), (2, 4), (3, 9), (4, 16)}Domain RangeMapping Diagram
• 4. Ordered pairs on the grid....Write the ordered pairs for the relationshown in the graph.What is the Domain? (x values)What is the Range? (y values)Is this relation a function?Domain Range
• 5. Is the relation {(1, 3), (4, 3), (-2, -4),(0, -5)}a function or not? Why or why not?Domain Range . .. .
• 6. Function or not a function?{(0, 1), (2, 2), (0, 3), (4, 5)}Domain RangeNot a function because the same value in the domain ispaired with two different values in the range.
• 7. Visually, a relation is a function if it passesthe vertical line test.When a vertical line is drawn if it only hits the graph ofa relation once, then the relation is a function.✔ ✖
• 8. Are these graphs of functions? | {
"url": "http://www.slideshare.net/MegSingh/functions-ordered-pairs",
"source_domain": "www.slideshare.net",
"snapshot_id": "crawl=CC-MAIN-2014-42",
"warc_metadata": {
"Content-Length": "125294",
"Content-Type": "application/http; msgtype=response",
"WARC-Block-Digest": "sha1:TKP7AQDX4L3F5E4CEORWBCGSCEWDORSX",
"WARC-Concurrent-To": "<urn:uuid:d6bb62c1-ebbe-43d9-9ac1-5ea67857dbde>",
"WARC-Date": "2014-10-23T06:56:54Z",
"WARC-IP-Address": "108.174.2.100",
"WARC-Identified-Payload-Type": null,
"WARC-Payload-Digest": "sha1:JI25DGPL7OLOMNPUFWJNJHS4KHXNL5QH",
"WARC-Record-ID": "<urn:uuid:51ddd32c-77b8-44a6-9df3-ac1064f10ac9>",
"WARC-Target-URI": "http://www.slideshare.net/MegSingh/functions-ordered-pairs",
"WARC-Truncated": "length",
"WARC-Type": "response",
"WARC-Warcinfo-ID": "<urn:uuid:6da56227-4ed1-4b10-b7cf-6485defcd9e4>"
},
"warc_info": "robots: classic\r\nhostname: ip-10-16-133-185.ec2.internal\r\nsoftware: Nutch 1.6 (CC)/CC WarcExport 1.0\r\nisPartOf: CC-MAIN-2014-42\r\noperator: CommonCrawl Admin\r\ndescription: Wide crawl of the web with URLs provided by Blekko for October 2014\r\npublisher: CommonCrawl\r\nformat: WARC File Format 1.0\r\nconformsTo: http://bibnum.bnf.fr/WARC/WARC_ISO_28500_version1_latestdraft.pdf"
} | {
"line_start_idx": [
0,
24,
44,
59,
61,
63,
64,
102,
103,
109,
110,
134,
135,
138,
139,
153,
154,
177,
178,
201,
202,
213,
214,
220,
221,
233,
237,
257,
261,
273,
275,
276,
284,
285,
291,
293,
303,
306,
315,
317,
318,
328,
329,
360,
361,
375,
376,
387,
388,
403,
404,
441,
442,
455,
456,
478,
479,
494,
495,
542,
564,
565,
633,
634,
641,
684,
713,
740,
756,
769,
787,
798,
809,
820,
830,
841,
851,
861,
862,
910,
911,
1223,
1415,
1599,
1794,
1905,
2084,
2272
],
"line_end_idx": [
24,
44,
59,
61,
63,
64,
102,
103,
109,
110,
134,
135,
138,
139,
153,
154,
177,
178,
201,
202,
213,
214,
220,
221,
233,
237,
257,
261,
273,
275,
276,
284,
285,
291,
293,
303,
306,
315,
317,
318,
328,
329,
360,
361,
375,
376,
387,
388,
403,
404,
441,
442,
455,
456,
478,
479,
494,
495,
542,
564,
565,
633,
634,
641,
684,
713,
740,
756,
769,
787,
798,
809,
820,
830,
841,
851,
861,
862,
910,
911,
1223,
1415,
1599,
1794,
1905,
2084,
2272,
2309
]
} | {
"red_pajama_v2": {
"ccnet_original_length": 2309,
"ccnet_original_nlines": 87,
"rps_doc_curly_bracket": 0.002598529914394021,
"rps_doc_ldnoobw_words": 0,
"rps_doc_lorem_ipsum": 0,
"rps_doc_stop_word_fraction": 0.27399998903274536,
"rps_doc_ut1_blacklist": 0,
"rps_doc_frac_all_caps_words": 0.004000000189989805,
"rps_doc_frac_lines_end_with_ellipsis": 0.011363640427589417,
"rps_doc_frac_no_alph_words": 0.3240000009536743,
"rps_doc_frac_unique_words": 0.4765625,
"rps_doc_mean_word_length": 4.510416507720947,
"rps_doc_num_sentences": 38,
"rps_doc_symbol_to_word_ratio": 0.006000000052154064,
"rps_doc_unigram_entropy": 4.772250175476074,
"rps_doc_word_count": 384,
"rps_doc_frac_chars_dupe_10grams": 0,
"rps_doc_frac_chars_dupe_5grams": 0.062355659902095795,
"rps_doc_frac_chars_dupe_6grams": 0.021939950063824654,
"rps_doc_frac_chars_dupe_7grams": 0,
"rps_doc_frac_chars_dupe_8grams": 0,
"rps_doc_frac_chars_dupe_9grams": 0,
"rps_doc_frac_chars_top_2gram": 0.03464202955365181,
"rps_doc_frac_chars_top_3gram": 0.01847575046122074,
"rps_doc_frac_chars_top_4gram": 0.024249419569969177,
"rps_doc_books_importance": -188.98806762695312,
"rps_doc_books_importance_length_correction": -188.98806762695312,
"rps_doc_openwebtext_importance": -132.03738403320312,
"rps_doc_openwebtext_importance_length_correction": -132.03738403320312,
"rps_doc_wikipedia_importance": -74.56951141357422,
"rps_doc_wikipedia_importance_length_correction": -74.56951141357422
},
"fasttext": {
"dclm": 0.010719659738242626,
"english": 0.7586799263954163,
"fineweb_edu_approx": 1.7852693796157837,
"eai_general_math": 0.11322271823883057,
"eai_open_web_math": 0.541409432888031,
"eai_web_code": 0.0003784300060942769
}
} | {
"free_decimal_correspondence": {
"primary": {
"code": "511.3",
"labels": {
"level_1": "Science and Natural history",
"level_2": "Mathematics",
"level_3": "Arithmetic"
}
},
"secondary": {
"code": "512",
"labels": {
"level_1": "Science and Natural history",
"level_2": "Mathematics",
"level_3": "Algebra"
}
}
},
"bloom_cognitive_process": {
"primary": {
"code": "2",
"label": "Understand"
},
"secondary": {
"code": "3",
"label": "Apply"
}
},
"bloom_knowledge_domain": {
"primary": {
"code": "2",
"label": "Conceptual"
},
"secondary": {
"code": "3",
"label": "Procedural"
}
},
"document_type_v1": {
"primary": {
"code": "3",
"label": "Reference/Encyclopedic/Educational"
},
"secondary": {
"code": "-1",
"label": "Abstain"
}
},
"extraction_artifacts": {
"primary": {
"code": "3",
"label": "Irrelevant Content"
},
"secondary": {
"code": "0",
"label": "No Artifacts"
}
},
"missing_content": {
"primary": {
"code": "4",
"label": "Missing Images or Figures"
},
"secondary": {
"code": "0",
"label": "No missing content"
}
},
"document_type_v2": {
"primary": {
"code": "23",
"label": "Tutorial"
},
"secondary": {
"code": "10",
"label": "Knowledge Article"
}
},
"reasoning_depth": {
"primary": {
"code": "2",
"label": "Basic Reasoning"
},
"secondary": {
"code": "3",
"label": "Intermediate Reasoning"
}
},
"technical_correctness": {
"primary": {
"code": "4",
"label": "Highly Correct"
},
"secondary": {
"code": "3",
"label": "Mostly Correct"
}
},
"education_level": {
"primary": {
"code": "2",
"label": "High School Level"
},
"secondary": {
"code": "1",
"label": "General Audience"
}
}
} | a246fc342e934853762e5c7f05dc3a09 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.