MMK12 / README.md
FanqingM's picture
Add task category (#2)
f0cceba verified
metadata
dataset_info:
  features:
    - name: id
      dtype: string
    - name: question
      dtype: string
    - name: answer
      dtype: string
    - name: subject
      dtype: string
    - name: image
      dtype: image
  splits:
    - name: train
      num_bytes: 1406274309.2
      num_examples: 15616
    - name: test
      num_bytes: 89741703
      num_examples: 2000
  download_size: 1474587660
  dataset_size: 1496016012.2
configs:
  - config_name: default
    data_files:
      - split: train
        path: data/train-*
      - split: test
        path: data/test-*
task_categories:
  - table-question-answering

MMK12

[πŸ“‚ GitHub] [πŸ“œ Paper]

2025/04/16: MMK12 is a completely manually collected multimodal mathematical reasoning dataset. Compared to other current datasets, it can fully ensure the authenticity of answers, and all questions come from the real world, making it more diverse.. 2025/04/16: We release a new version of MMK12, which can greatly enhance the multimodal reasoning of Qwen-2.5-VL.

Scope Type Img. Source QA Source CoT Answer Source
MAVIS Geo & Func MCQ & FB Synthetic Synthetic Engine GPT-4o
Geo3k Geo FB Real world Real world None
RCOT Geo MCQ & FB Synthetic Synthetic Engine GPT-4o
MultiMath Diverse MCQ & FB Real World GPT-4o GPT-4o
MMK12 Diverse FB Real World Real World Real World

We use MMK12 for RL training to develop MM-EUREKA-7B and MM-EUREKA-32B, with specific training details available in paper.

Both models demonstrate excellent performance on the MMK12 evaluation set (a multidisciplinary multimodal reasoning benchmark), with MM-EUREKA-32B ranking second only to o1.

Model Mathematics Physics Chemistry Biology Avg.
Closed-Source Models
Claude3.7-Sonnet 57.4 53.4 55.4 55.0 55.3
GPT-4o 55.8 41.2 47.0 55.4 49.9
o1 81.6 68.8 71.4 74.0 73.9
Gemini2-flash 76.8 53.6 64.6 66.0 65.2
Open-Source General Models
InternVL2.5-VL-8B 46.8 35.0 50.0 50.8 45.6
Qwen-2.5-VL-7B 58.4 45.4 56.4 54.0 53.6
InternVL2.5-VL-38B 61.6 49.8 60.4 60.0 58.0
Qwen-2.5-VL-32B 71.6 59.4 69.6 66.6 66.8
InternVL2.5-VL-78B 59.8 53.2 68.0 65.2 61.6
Qwen-2.5-VL-72B 75.6 64.8 69.6 72.0 70.5
Open-Source Reasoning Models
InternVL2.5-8B-MPO 26.6 25.0 42.4 44.0 34.5
InternVL2.5-38B-MPO 41.4 42.8 55.8 53.2 48.3
QVQ-72B-Preview 61.4 57.4 62.6 64.4 61.5
Adora 63.6 50.6 59.0 59.0 58.1
R1-Onevision 44.8 33.8 39.8 40.8 39.8
OpenVLThinker-7 63.0 53.8 60.6 65.0 60.6
Ours
MM-Eureka-7B 71.2 56.2 65.2 65.2 64.5
MM-Eureka-32B 74.6 62.0 75.4 76.8 72.2

Data fields

Key Description
id ID.
subject subject: math, physics, chemistry, and biology
image Image path.
question Input query.
answer Verified Answer.

Citation

If you find this project useful in your research, please consider citing:

@article{meng2025mm,
  title={MM-Eureka: Exploring Visual Aha Moment with Rule-based Large-scale Reinforcement Learning},
  author={Meng, Fanqing and Du, Lingxiao and Liu, Zongkai and Zhou, Zhixiang and Lu, Quanfeng and Fu, Daocheng and Shi, Botian and Wang, Wenhai and He, Junjun and Zhang, Kaipeng and others},
  journal={arXiv preprint arXiv:2503.07365},
  year={2025}
}