File size: 11,763 Bytes
9ae7bab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b93e09d
 
9ae7bab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b93e09d
9ae7bab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22ceec0
8ddba83
859d5b3
 
9ae7bab
ba9ab24
 
 
9ae7bab
 
 
 
 
 
 
 
 
ba9ab24
 
9ae7bab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bc0420
 
ba9ab24
0bc0420
 
8bbdd2c
859d5b3
 
 
 
 
 
 
 
 
 
 
 
 
9ae7bab
 
 
 
 
 
 
0bc0420
9ae7bab
0bc0420
ba9ab24
 
9ae7bab
 
 
 
 
 
 
 
 
 
 
ba9ab24
9ae7bab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bc0420
 
9ae7bab
ba9ab24
9ae7bab
 
 
 
b93e09d
9ae7bab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import csv
import json
import os

import datasets
from nlp import DatasetInfo, BuilderConfig, SplitGenerator, Split, utils

import xml.etree.ElementTree as ET
import re

_CITATION = """\
@inproceedings{muzny2017two,
  title={A two-stage sieve approach for quote attribution},
  author={Muzny, Grace and Fang, Michael and Chang, Angel and Jurafsky, Dan},
  booktitle={Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers},
  pages={460--470},
  year={2017}
}
"""

_DESCRIPTION = """\
This dataset is a representation of Muzny et al.'s QuoteLi3 dataset as a Huggingface dataset. It can be best used for 
quote attribution.
"""

_HOMEPAGE = "https://nlp.stanford.edu/~muzny/quoteli.html"

_LICENSE = ""

_URL = 'http://downloads.cs.stanford.edu/nlp/data/quoteattribution/'
_URLs = {
    'train': {'pp': _URL + 'pp_full.xml'},
    'test': {'pp': 'https://nlp.stanford.edu/~muzny/data/pp_test.xml',
            'emma': _URL + 'austen_emma_full.xml',
            'steppe': _URL + 'chekhov_steppe_full.xml'}
}

class QuoteLi3(datasets.GeneratorBasedBuilder):

    VERSION = datasets.Version("1.0.0")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="quotes", version=VERSION, description="Returns Quotes"),
        datasets.BuilderConfig(name="characters", version=VERSION, description="Returns Characters")
    ]

    DEFAULT_CONFIG_NAME = "quotes"

    def _info(self):
        if self.config.name == "quotes":  #returns quotes
            features = datasets.Features(
                {
                    "mention": datasets.Value("string"),
                    "oid": datasets.Value("string"),
                    "speaker": datasets.Value("string"),
                    "connection": datasets.Value("string"),
                    "id": datasets.Value("string"),
                    "answer": datasets.Value("string"),
                    "answer_mention": {'answer': datasets.Value("string"),
                                       'answer_start': datasets.Value("int16"),
                                       'answer_end': datasets.Value("int16"),
                                       'answer_in_context': datasets.Value("bool")},
                    "question": datasets.Value("string"),
                    "context": datasets.Value("string"),
                    "large_context": datasets.Value("string"),
                    "book_title": datasets.Value("string")
                }
            )
        else: #returns characters
            features = datasets.Features(
                {
                    "aliases": datasets.Sequence(datasets.Value("string")),
                    "description": datasets.Value("string"),
                    "gender": datasets.Value("string"),
                    "id": datasets.Value("string"),
                    "name": datasets.Value("string"),
                    "book_title": datasets.Value("string")
                }
            )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        downloaded_files = dl_manager.download_and_extract(_URLs)
        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"],
                                                                           "split": "train"}),
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"],
                                                                           "split": "test"}),
        ]

    def _generate_examples(
        self, filepath, split
    ):
        """ Yields examples as (key, example) tuples. """
        for key in filepath:
            path = filepath[key]
            with open(path, encoding="utf-8") as f:
                quote_list = []
                file_tree = ET.parse(f)
                base_tree = file_tree.getroot()
                chapter_list = base_tree.find('text').findall('chapter')
                if len(chapter_list) != 0:
                    for chapter in chapter_list:
                        quotes = chapter.findall('quote')
                        for quote in quotes:
                            quote_list.append(quote)
                else:
                    quote_list = base_tree.find('text').findall('quote')

                if self.config.name == "quotes":
                    for quote in quote_list:
                        quote_key = key + '_' + quote.attrib['id']
                        mention, search_text = self.find_mention(quote, path)
                        context = self.get_context(quote, path)
                        large_context = self.get_context(quote, path, 4000)
                        answer_mention_start = context.find(search_text)
                        answer_mention_end = answer_mention_start + len(mention)
                        if mention != 'NO_MENTION' and answer_mention_start >= 0:
                            answer_mention = {
                                'answer': mention,
                                'answer_start': answer_mention_start,
                                'answer_end': answer_mention_end,
                                'answer_in_context': True
                            }
                        else:
                            answer_mention = {
                                'answer': mention,
                                'answer_start': 0,
                                'answer_end': 0,
                                'answer_in_context': False
                            }
                        yield quote_key, {
                            "mention": quote.attrib["mention"] if 'mention' in quote.attrib else 'no_mention',
                            "oid": quote.attrib["oid"] if 'oid' in quote.attrib else 'no_oid',
                            "speaker": quote.attrib["speaker"] if 'speaker' in quote.attrib else 'no_speaker',
                            "connection": quote.attrib["connection"] if 'connection' in quote.attrib else 'no_connection',
                            "id": quote.attrib["id"] if 'id' in quote.attrib else 'no_id',
                            "answer": "" if split == "test" else quote.attrib["speaker"],
                            "answer_mention": answer_mention,
                            "question": "Who says 'QUOTE'",
                            "context": context,
                            "large_context": large_context,
                            "book_title": key,
                        }
                else:
                    character_list = base_tree.find('characters').findall('character')
                    for character in character_list:
                        character_key = key + '_' + character.attrib['id']
                        yield character_key, {
                            "aliases": character.attrib["aliases"].split() if 'aliases' in character.attrib else 'no_aliases',
                            "description": character.attrib["description"] if 'description' in character.attrib else 'no_description',
                            "gender": character.attrib["gender"] if 'gender' in character.attrib else 'no_gender',
                            "name": character.attrib["name"] if 'name' in character.attrib else 'no_name',
                            "id": character.attrib["id"] if 'id' in character.attrib else 'no_id',
                            "book_title": key,
                        }


    def find_mention(self, quote_element, filename):
        connection = quote_element.attrib['connection']
        file_tree = ET.parse(filename)
        base_tree = file_tree.getroot()
        mentions_list = []
        text = base_tree.find('text')
        chapters = text.findall('chapter')
        if len(chapters) > 0:
            for chapter in chapters:
                mentions = chapter.findall('mention')
                for mention in mentions:
                    mentions_list.append(mention)

                # if the mention is inside a quote
                quotes = chapter.findall('quote')
                for quote in quotes:
                    mentions_in_quotes = quote.findall('mention')
                    for mention in mentions_in_quotes:
                        mentions_list.append(mention)
        else:
            mentions_list = base_tree.find('text').findall('mention')
            #if the mention is inside a quote
            quotes = text.findall('quote')
            for quote in quotes:
                mentions_in_quotes = quote.findall('mention')
                for mention in mentions_in_quotes:
                    mentions_list.append(mention)
        mention_tail = ''
        mention_text = ''
        for mention in mentions_list:
            current_id = mention.attrib['id']
            if type(current_id) == str:
                if mention.attrib['id'] in connection:
                    mention_text = mention.text
                    mention_tail = mention.tail
                    break
            else:
                for single_id in current_id:
                    if single_id in connection:
                        mention_text = mention.text
                        mention_tail = mention.tail
                        break
        if len(mention_tail) > 25:
            mention_tail = mention_tail[:25]
        search_text = mention_text + mention_tail
        if mention_tail == '':
            return 'NO_MENTION', 'NO_MENTION'
        return mention_text, search_text

    def get_context(self, quote_element, filename, max_range=1000):
        chapter_text = self.get_texts_by_file(filename)
        quote = self.get_quote_content(quote_element)
        start_index = chapter_text.find(quote)

        pre = int(max_range/2)
        post = max_range - pre
        if start_index < pre:
            start = 0
            end = max_range
        else:
            start = int(start_index - pre)
            end = int(start_index + post)

        chapter_text = chapter_text.replace(quote, '"QUOTE"').replace('\n', ' ')
        context = chapter_text[start:end]
        return context


    def get_texts_by_file(self, filename):
        file_tree = ET.parse(filename)
        base_tree = file_tree.getroot()
        text_with_tags = ET.tostring(base_tree, encoding='unicode', method='xml')  # unicode -> utf8
        text_without_tags = re.sub('<.*?>', '', text_with_tags)  # delete all tags
        return text_without_tags

    def get_quote_content(self, quote):
        quote_text_tags = ET.tostring(quote, encoding='unicode', method='xml')
        quote_text = re.sub('<quote.*?>', '', quote_text_tags)
        end_of_quote = quote_text.find('</quote>')
        quote_text = quote_text[:end_of_quote]
        quote_text = re.sub('<.*?>', '', quote_text)
        return quote_text