quoteli3 / quoteli3.py
Felix-ML's picture
Restructuring
b93e09d
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import csv
import json
import os
import datasets
from nlp import DatasetInfo, BuilderConfig, SplitGenerator, Split, utils
import xml.etree.ElementTree as ET
import re
_CITATION = """\
@inproceedings{muzny2017two,
title={A two-stage sieve approach for quote attribution},
author={Muzny, Grace and Fang, Michael and Chang, Angel and Jurafsky, Dan},
booktitle={Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers},
pages={460--470},
year={2017}
}
"""
_DESCRIPTION = """\
This dataset is a representation of Muzny et al.'s QuoteLi3 dataset as a Huggingface dataset. It can be best used for
quote attribution.
"""
_HOMEPAGE = "https://nlp.stanford.edu/~muzny/quoteli.html"
_LICENSE = ""
_URL = 'http://downloads.cs.stanford.edu/nlp/data/quoteattribution/'
_URLs = {
'train': {'pp': _URL + 'pp_full.xml'},
'test': {'pp': 'https://nlp.stanford.edu/~muzny/data/pp_test.xml',
'emma': _URL + 'austen_emma_full.xml',
'steppe': _URL + 'chekhov_steppe_full.xml'}
}
class QuoteLi3(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="quotes", version=VERSION, description="Returns Quotes"),
datasets.BuilderConfig(name="characters", version=VERSION, description="Returns Characters")
]
DEFAULT_CONFIG_NAME = "quotes"
def _info(self):
if self.config.name == "quotes": #returns quotes
features = datasets.Features(
{
"mention": datasets.Value("string"),
"oid": datasets.Value("string"),
"speaker": datasets.Value("string"),
"connection": datasets.Value("string"),
"id": datasets.Value("string"),
"answer": datasets.Value("string"),
"answer_mention": {'answer': datasets.Value("string"),
'answer_start': datasets.Value("int16"),
'answer_end': datasets.Value("int16"),
'answer_in_context': datasets.Value("bool")},
"question": datasets.Value("string"),
"context": datasets.Value("string"),
"large_context": datasets.Value("string"),
"book_title": datasets.Value("string")
}
)
else: #returns characters
features = datasets.Features(
{
"aliases": datasets.Sequence(datasets.Value("string")),
"description": datasets.Value("string"),
"gender": datasets.Value("string"),
"id": datasets.Value("string"),
"name": datasets.Value("string"),
"book_title": datasets.Value("string")
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
downloaded_files = dl_manager.download_and_extract(_URLs)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"],
"split": "train"}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"],
"split": "test"}),
]
def _generate_examples(
self, filepath, split
):
""" Yields examples as (key, example) tuples. """
for key in filepath:
path = filepath[key]
with open(path, encoding="utf-8") as f:
quote_list = []
file_tree = ET.parse(f)
base_tree = file_tree.getroot()
chapter_list = base_tree.find('text').findall('chapter')
if len(chapter_list) != 0:
for chapter in chapter_list:
quotes = chapter.findall('quote')
for quote in quotes:
quote_list.append(quote)
else:
quote_list = base_tree.find('text').findall('quote')
if self.config.name == "quotes":
for quote in quote_list:
quote_key = key + '_' + quote.attrib['id']
mention, search_text = self.find_mention(quote, path)
context = self.get_context(quote, path)
large_context = self.get_context(quote, path, 4000)
answer_mention_start = context.find(search_text)
answer_mention_end = answer_mention_start + len(mention)
if mention != 'NO_MENTION' and answer_mention_start >= 0:
answer_mention = {
'answer': mention,
'answer_start': answer_mention_start,
'answer_end': answer_mention_end,
'answer_in_context': True
}
else:
answer_mention = {
'answer': mention,
'answer_start': 0,
'answer_end': 0,
'answer_in_context': False
}
yield quote_key, {
"mention": quote.attrib["mention"] if 'mention' in quote.attrib else 'no_mention',
"oid": quote.attrib["oid"] if 'oid' in quote.attrib else 'no_oid',
"speaker": quote.attrib["speaker"] if 'speaker' in quote.attrib else 'no_speaker',
"connection": quote.attrib["connection"] if 'connection' in quote.attrib else 'no_connection',
"id": quote.attrib["id"] if 'id' in quote.attrib else 'no_id',
"answer": "" if split == "test" else quote.attrib["speaker"],
"answer_mention": answer_mention,
"question": "Who says 'QUOTE'",
"context": context,
"large_context": large_context,
"book_title": key,
}
else:
character_list = base_tree.find('characters').findall('character')
for character in character_list:
character_key = key + '_' + character.attrib['id']
yield character_key, {
"aliases": character.attrib["aliases"].split() if 'aliases' in character.attrib else 'no_aliases',
"description": character.attrib["description"] if 'description' in character.attrib else 'no_description',
"gender": character.attrib["gender"] if 'gender' in character.attrib else 'no_gender',
"name": character.attrib["name"] if 'name' in character.attrib else 'no_name',
"id": character.attrib["id"] if 'id' in character.attrib else 'no_id',
"book_title": key,
}
def find_mention(self, quote_element, filename):
connection = quote_element.attrib['connection']
file_tree = ET.parse(filename)
base_tree = file_tree.getroot()
mentions_list = []
text = base_tree.find('text')
chapters = text.findall('chapter')
if len(chapters) > 0:
for chapter in chapters:
mentions = chapter.findall('mention')
for mention in mentions:
mentions_list.append(mention)
# if the mention is inside a quote
quotes = chapter.findall('quote')
for quote in quotes:
mentions_in_quotes = quote.findall('mention')
for mention in mentions_in_quotes:
mentions_list.append(mention)
else:
mentions_list = base_tree.find('text').findall('mention')
#if the mention is inside a quote
quotes = text.findall('quote')
for quote in quotes:
mentions_in_quotes = quote.findall('mention')
for mention in mentions_in_quotes:
mentions_list.append(mention)
mention_tail = ''
mention_text = ''
for mention in mentions_list:
current_id = mention.attrib['id']
if type(current_id) == str:
if mention.attrib['id'] in connection:
mention_text = mention.text
mention_tail = mention.tail
break
else:
for single_id in current_id:
if single_id in connection:
mention_text = mention.text
mention_tail = mention.tail
break
if len(mention_tail) > 25:
mention_tail = mention_tail[:25]
search_text = mention_text + mention_tail
if mention_tail == '':
return 'NO_MENTION', 'NO_MENTION'
return mention_text, search_text
def get_context(self, quote_element, filename, max_range=1000):
chapter_text = self.get_texts_by_file(filename)
quote = self.get_quote_content(quote_element)
start_index = chapter_text.find(quote)
pre = int(max_range/2)
post = max_range - pre
if start_index < pre:
start = 0
end = max_range
else:
start = int(start_index - pre)
end = int(start_index + post)
chapter_text = chapter_text.replace(quote, '"QUOTE"').replace('\n', ' ')
context = chapter_text[start:end]
return context
def get_texts_by_file(self, filename):
file_tree = ET.parse(filename)
base_tree = file_tree.getroot()
text_with_tags = ET.tostring(base_tree, encoding='unicode', method='xml') # unicode -> utf8
text_without_tags = re.sub('<.*?>', '', text_with_tags) # delete all tags
return text_without_tags
def get_quote_content(self, quote):
quote_text_tags = ET.tostring(quote, encoding='unicode', method='xml')
quote_text = re.sub('<quote.*?>', '', quote_text_tags)
end_of_quote = quote_text.find('</quote>')
quote_text = quote_text[:end_of_quote]
quote_text = re.sub('<.*?>', '', quote_text)
return quote_text