id
int64 0
190k
| prompt
stringlengths 21
13.4M
| docstring
stringlengths 1
12k
⌀ |
---|---|---|
300 | from bisect import bisect_left, bisect_right
import itertools
import logging
from typing import Any, Callable, Dict, Iterable, Mapping, Sequence, Tuple, Union
import warnings
import numpy as np
import pandas as pd
from merlion.utils.misc import ValIterOrderedDict
from merlion.utils.resample import (
AggregationPolicy,
AlignPolicy,
MissingValuePolicy,
get_date_offset,
infer_granularity,
reindex_df,
to_pd_datetime,
to_timestamp,
to_offset,
)
class UnivariateTimeSeries(pd.Series):
"""
Please read the `tutorial <tutorials/TimeSeries>` before reading this API doc.
This class is a time-indexed ``pd.Series`` which represents a univariate
time series. For the most part, it supports all the same features as
``pd.Series``, with the following key differences to iteration and indexing:
1. Iterating over a `UnivariateTimeSeries` is implemented as
.. code-block:: python
for timestamp, value in univariate:
# do stuff...
where ``timestamp`` is a Unix timestamp, and ``value`` is the
corresponding time series value.
2. Integer index: ``u[i]`` yields the tuple ``(u.time_stamps[i], u.values[i])``
3. Slice index: ``u[i:j:k]`` yields a new
``UnivariateTimeSeries(u.time_stamps[i:j:k], u.values[i:j:k])``
The class also supports the following additional features:
1. ``univariate.time_stamps`` returns the list of Unix timestamps, and
``univariate.values`` returns the list of the time series values. You
may access the ``pd.DatetimeIndex`` directly with ``univariate.index``
(or its ``np.ndarray`` representation with ``univariate.np_time_stamps``),
and the ``np.ndarray`` of values with ``univariate.np_values``.
2. ``univariate.concat(other)`` will concatenate the UnivariateTimeSeries
``other`` to the right end of ``univariate``.
3. ``left, right = univariate.bisect(t)`` will split the univariate at the
given timestamp ``t``.
4. ``window = univariate.window(t0, tf)`` will return the subset of the time
series occurring between timestamps ``t0`` (inclusive) and ``tf``
(non-inclusive)
5. ``series = univariate.to_pd()`` will convert the `UnivariateTimeSeries`
into a regular ``pd.Series`` (for compatibility).
6. ``univariate = UnivariateTimeSeries.from_pd(series)`` uses a time-indexed
``pd.Series`` to create a `UnivariateTimeSeries` object directly.
.. document special functions
.. automethod:: __getitem__
.. automethod:: __iter__
"""
def __init__(
self,
time_stamps: Union[None, Sequence[Union[int, float]]],
values: Sequence[float],
name: str = None,
freq="1h",
):
"""
:param time_stamps: a sequence of Unix timestamps. You may specify
``None`` if you only have ``values`` with no specific time stamps.
:param values: a sequence of univariate values, where ``values[i]``
occurs at time ``time_stamps[i]``
:param name: the name of the univariate time series
:param freq: if ``time_stamps`` is not provided, the univariate is
assumed to be sampled at frequency ``freq``. ``freq`` may be a
string (e.g. ``"1h"``), timedelta, or ``int``/``float`` (in units
of seconds).
"""
is_pd = isinstance(values, pd.Series)
if name is None and is_pd:
name = values.name
if is_pd and isinstance(values.index, pd.DatetimeIndex):
super().__init__(values, name=name)
elif is_pd and values.index.dtype == "O":
super().__init__(values.values, name=name, index=pd.to_datetime(values.index))
else:
if time_stamps is None:
freq = to_offset(freq)
if is_pd and values.index.dtype in ("int64", "float64"):
index = pd.to_datetime(0) + freq * values.index
else:
index = pd.date_range(start=0, periods=len(values), freq=freq)
else:
index = to_pd_datetime(time_stamps)
super().__init__(np.asarray(values), index=index, name=name, dtype=float)
if len(self) >= 3 and self.index.freq is None:
self.index.freq = pd.infer_freq(self.index)
self.index.name = _time_col_name
def np_time_stamps(self):
"""
:rtype: np.ndarray
:return: the ``numpy`` representation of this time series's Unix timestamps
"""
return to_timestamp(self.index.values)
def np_values(self):
"""
:rtype: np.ndarray
:return: the ``numpy`` representation of this time series's values
"""
return super().values
def time_stamps(self):
"""
:rtype: List[float]
:return: the list of Unix timestamps for the time series
"""
return self.np_time_stamps.tolist()
def values(self):
"""
:rtype: List[float]
:return: the list of values for the time series.
"""
return self.np_values.tolist()
def t0(self):
"""
:rtype: float
:return: the first timestamp in the univariate time series.
"""
return self.np_time_stamps[0]
def tf(self):
"""
:rtype: float
:return: the final timestamp in the univariate time series.
"""
return self.np_time_stamps[-1]
def is_empty(self):
"""
:rtype: bool
:return: True if the univariate is empty, False if not.
"""
return len(self) == 0
def __iter__(self):
"""
The i'th item in the iterator is the tuple ``(self.time_stamps[i], self.values[i])``.
"""
return itertools.starmap(lambda t, x: (t.item(), x.item()), zip(self.np_time_stamps, self.np_values))
def __getitem__(self, i: Union[int, slice]):
"""
:param i: integer index or slice
:rtype: Union[Tuple[float, float], UnivariateTimeSeries]
:return: ``(self.time_stamps[i], self.values[i])`` if ``i`` is
an integer. ``UnivariateTimeSeries(self.time_series[i], self.values[i])``
if ``i`` is a slice.
"""
if isinstance(i, int):
return self.np_time_stamps[i].item(), self.np_values[i].item()
elif isinstance(i, slice):
return UnivariateTimeSeries.from_pd(self.iloc[i])
else:
raise KeyError(
f"Indexing a `UnivariateTimeSeries` with key {i} of "
f"type {type(i).__name__} is not supported. Try "
f"using loc[] or iloc[] for more complicated "
f"indexing."
)
def __eq__(self, other):
return self.time_stamps == other.time_stamps and (self.np_values == other.np_values).all()
def copy(self, deep=True):
"""
Copies the `UnivariateTimeSeries`. Simply a wrapper around the
``pd.Series.copy()`` method.
"""
return UnivariateTimeSeries.from_pd(super().copy(deep=deep))
def concat(self, other):
"""
Concatenates the `UnivariateTimeSeries` ``other`` to the right of this one.
:param UnivariateTimeSeries other: another `UnivariateTimeSeries`
:rtype: UnivariateTimeSeries
:return: concatenated univariate time series
"""
return UnivariateTimeSeries.from_pd(pd.concat((self, other)), name=self.name)
def bisect(self, t: float, t_in_left: bool = False):
"""
Splits the time series at the point where the given timestamp occurs.
:param t: a Unix timestamp or datetime object. Everything before time
``t`` is in the left split, and everything after time ``t`` is in
the right split.
:param t_in_left: if ``True``, ``t`` is in the left split. Otherwise,
``t`` is in the right split.
:rtype: Tuple[UnivariateTimeSeries, UnivariateTimeSeries]
:return: the left and right splits of the time series.
"""
t = to_pd_datetime(t)
if t_in_left:
i = bisect_right(self.index, t)
else:
i = bisect_left(self.index, t)
return self[:i], self[i:]
def window(self, t0: float, tf: float, include_tf: bool = False):
"""
:param t0: The timestamp/datetime at the start of the window (inclusive)
:param tf: The timestamp/datetime at the end of the window (inclusive
if ``include_tf`` is ``True``, non-inclusive otherwise)
:param include_tf: Whether to include ``tf`` in the window.
:rtype: UnivariateTimeSeries
:return: The subset of the time series occurring between timestamps
``t0`` (inclusive) and ``tf`` (included if ``include_tf`` is
``True``, excluded otherwise).
"""
times = self.index
t0, tf = to_pd_datetime(t0), to_pd_datetime(tf)
i_0 = bisect_left(times, t0)
i_f = bisect_right(times, tf) if include_tf else bisect_left(times, tf)
return self[i_0:i_f]
def to_dict(self) -> Dict[float, float]:
"""
:return: A dictionary representing the data points in the time series.
"""
return dict(zip(self.time_stamps, self.values))
def from_dict(cls, obj: Dict[float, float], name=None):
"""
:param obj: A dictionary of timestamp - value pairs
:param name: the name to assign the output
:rtype: UnivariateTimeSeries
:return: the `UnivariateTimeSeries` represented by series.
"""
time_stamps, values = [], []
for point in sorted(obj.items(), key=lambda p: p[0]):
time_stamps.append(point[0])
values.append(point[1])
return cls(time_stamps, values, name)
def to_pd(self) -> pd.Series:
"""
:return: A pandas Series representing the time series, indexed by time.
"""
return pd.Series(self.np_values, index=self.index, name=self.name)
def from_pd(cls, series: Union[pd.Series, pd.DataFrame], name=None, freq="1h"):
"""
:param series: a ``pd.Series``. If it has a``pd.DatetimeIndex``, we will use that index for the timestamps.
Otherwise, we will create one at the specified frequency.
:param name: the name to assign the output
:param freq: if ``series`` is not indexed by time, this is the frequency at which we will assume it is sampled.
:rtype: UnivariateTimeSeries
:return: the `UnivariateTimeSeries` represented by series.
"""
if series is None:
return None
if isinstance(series, TimeSeries) and series.dim == 1:
series = list(series.univariates)[0]
if isinstance(series, UnivariateTimeSeries):
if name is not None:
series.name = name
return series
if isinstance(series, pd.DataFrame) and series.shape[1] == 1:
series = series.iloc[:, 0]
return cls(time_stamps=None, values=series.astype(float), name=name, freq=freq)
def to_ts(self, name=None):
"""
:name: a name to assign the univariate when converting it to a time series. Can override the existing name.
:rtype: TimeSeries
:return: A `TimeSeries` representing this univariate time series.
"""
if self.name is None and name is None:
return TimeSeries([self])
else:
name = name if self.name is None else self.name
return TimeSeries({name: self})
def empty(cls, name=None):
"""
:rtype: `UnivariateTimeSeries`
:return: A Merlion `UnivariateTimeSeries` that has empty timestamps and values.
"""
return cls([], [], name)
The provided code snippet includes necessary dependencies for implementing the `assert_equal_timedeltas` function. Write a Python function `def assert_equal_timedeltas(time_series: UnivariateTimeSeries, granularity, offset=None)` to solve the following problem:
Checks that all time deltas in the time series are equal, either to each other, or a pre-specified timedelta (in seconds).
Here is the function:
def assert_equal_timedeltas(time_series: UnivariateTimeSeries, granularity, offset=None):
"""
Checks that all time deltas in the time series are equal, either to each
other, or a pre-specified timedelta (in seconds).
"""
if len(time_series) <= 2:
return
index = time_series.index
offset = pd.to_timedelta(0) if offset is None else offset
expected = pd.date_range(start=index[0], end=index[-1], freq=granularity) + offset
deviation = expected - time_series.index[-len(expected) :]
max_deviation = np.abs(deviation.total_seconds().values).max()
assert max_deviation < 2e-3, f"Data must have the same time difference between each element of the time series" | Checks that all time deltas in the time series are equal, either to each other, or a pre-specified timedelta (in seconds). |
301 | from abc import ABC, abstractmethod
import copy
import logging
from typing import Tuple
import numpy as np
import pandas as pd
from scipy.special import gammaln, multigammaln
from scipy.linalg import pinv, pinvh
from scipy.stats import (
bernoulli,
beta,
norm,
t as student_t,
invgamma,
multivariate_normal as mvnorm,
invwishart,
multivariate_t as mvt,
)
from merlion.utils import TimeSeries, UnivariateTimeSeries, to_timestamp, to_pd_datetime
The provided code snippet includes necessary dependencies for implementing the `_log_pdet` function. Write a Python function `def _log_pdet(a)` to solve the following problem:
Log pseudo-determinant of a (possibly singular) matrix A.
Here is the function:
def _log_pdet(a):
"""
Log pseudo-determinant of a (possibly singular) matrix A.
"""
eigval, eigvec = np.linalg.eigh(a)
return np.sum(np.log(eigval[eigval > 0])) | Log pseudo-determinant of a (possibly singular) matrix A. |
302 | from collections import OrderedDict
import inspect
from typing import List, Union
import pandas as pd
from merlion.utils.misc import combine_signatures, parse_basic_docstring
from merlion.utils.time_series import TimeSeries
def df_to_time_series(
df: pd.DataFrame, time_col: str = None, timestamp_unit="s", data_cols: Union[str, List[str]] = None
) -> TimeSeries:
"""
Converts a general ``pandas.DataFrame`` to a `TimeSeries` object.
:param df: the dataframe to process
:param time_col: the name of the column specifying time. If ``None`` is specified, the existing index
is used if it is a ``DatetimeIndex``. Otherwise, the first column is used.
:param timestamp_unit: if the time column is in Unix timestamps, this is the unit of the timestamp.
:param data_cols: the columns representing the actual data values of interest.
"""
# Set up the time index
if not isinstance(df.index, pd.DatetimeIndex):
if time_col is None:
time_col = df.columns[0]
elif time_col not in df.columns:
raise KeyError(f"Expected `time_col` to be in {df.columns}. Got {time_col}.")
df[time_col] = pd.to_datetime(df[time_col], unit=None if df[time_col].dtype == "O" else timestamp_unit)
df = df.set_index(time_col)
df = df.sort_index()
# Get only the desired columns from the dataframe
if data_cols is not None:
data_cols = [data_cols] if not isinstance(data_cols, (list, tuple)) else data_cols
if not all(c in df.columns for c in data_cols):
raise KeyError(f"Expected each of `data_cols` to be in {df.colums}. Got {data_cols}.")
df = df[data_cols]
# Convert the dataframe to a time series & return it
return TimeSeries.from_pd(df)
def combine_signatures(sig1: Union[inspect.Signature, None], sig2: Union[inspect.Signature, None]):
"""
Utility function which combines the signatures of two functions.
"""
if sig1 is None:
return sig2
if sig2 is None:
return sig1
# Get all params from sig1
sig1 = deepcopy(sig1)
params = list(sig1.parameters.values())
for n, param in enumerate(params):
if param.kind in {inspect.Parameter.VAR_POSITIONAL, inspect.Parameter.VAR_KEYWORD}:
break
else:
n = len(params)
# Add non-overlapping params from sig2
for param in sig2.parameters.values():
if param.kind in {inspect.Parameter.VAR_POSITIONAL, inspect.Parameter.VAR_KEYWORD}:
break
if param.name not in sig1.parameters:
params.insert(n, param)
n += 1
return sig1.replace(parameters=params)
def parse_basic_docstring(docstring):
"""
Parse the docstring of a model config's ``__init__``, or other basic docstring.
"""
docstring_lines = [""] if docstring is None else docstring.split("\n")
prefix, suffix, param_dict = [], [], OrderedDict()
non_empty_lines = [line for line in docstring_lines if len(line) > 0]
indent = 0 if len(non_empty_lines) == 0 else len(re.search(r"^\s*", non_empty_lines[0]).group(0))
for line in docstring_lines:
line = line[indent:]
match = re.search(r":param\s*(\w+):", line)
if match is not None:
param = match.group(1)
param_dict[param] = [line]
elif len(param_dict) == 0:
prefix.append(line)
elif len(suffix) > 0 or re.match(r"^[^\s]", line): # not starting a param doc, but un-indented --> suffix
suffix.append(line)
else:
param_dict[list(param_dict.keys())[-1]].append(line)
return prefix, suffix, param_dict
The provided code snippet includes necessary dependencies for implementing the `data_io_decorator` function. Write a Python function `def data_io_decorator(func)` to solve the following problem:
Decorator to standardize docstrings for data I/O functions.
Here is the function:
def data_io_decorator(func):
"""
Decorator to standardize docstrings for data I/O functions.
"""
def wrapper(*args, **kwargs):
return func(*args, **kwargs)
# Parse the docstrings of the base df_to_time_series function & decorated function.
prefix, suffix, params = parse_basic_docstring(func.__doc__)
base_prefix, base_suffix, base_params = parse_basic_docstring(df_to_time_series.__doc__)
# Combine the prefixes. Base prefix starts after the first line break.
i_lb = [i for i, line in enumerate(base_prefix) if line == ""][1]
prefix = ("\n".join(prefix) if any([line != "" for line in prefix]) else "") + "\n".join(base_prefix[i_lb:])
# The base docstring has no suffix, so just use the function's
suffix = "\n".join(suffix) if any([line != "" for line in suffix]) else ""
# Combine the parameter lists
for param, docstring_lines in base_params.items():
if param not in params:
params[param] = "\n".join(docstring_lines).rstrip("\n")
# Combine the signatures, but remove some parameters that are specific to the original (as well as kwargs).
new_sig_params = []
sig = combine_signatures(inspect.signature(func), inspect.signature(df_to_time_series))
for param in sig.parameters.values():
if param.kind in {inspect.Parameter.VAR_POSITIONAL, inspect.Parameter.VAR_KEYWORD}:
break
if param.name not in ["df"]:
new_sig_params.append(param)
sig = sig.replace(parameters=new_sig_params)
# Update the signature and docstring of the wrapper we are returning. Use only the params in the new signature.
wrapper.__signature__ = sig
params = OrderedDict((p, params[p]) for p in sig.parameters if p in params)
wrapper.__doc__ = (prefix or "") + "\n" + "\n".join(params.values()) + "\n\n" + (suffix or "")
return wrapper | Decorator to standardize docstrings for data I/O functions. |
303 | from collections import OrderedDict
import inspect
from typing import List, Union
import pandas as pd
from merlion.utils.misc import combine_signatures, parse_basic_docstring
from merlion.utils.time_series import TimeSeries
def df_to_time_series(
df: pd.DataFrame, time_col: str = None, timestamp_unit="s", data_cols: Union[str, List[str]] = None
) -> TimeSeries:
"""
Converts a general ``pandas.DataFrame`` to a `TimeSeries` object.
:param df: the dataframe to process
:param time_col: the name of the column specifying time. If ``None`` is specified, the existing index
is used if it is a ``DatetimeIndex``. Otherwise, the first column is used.
:param timestamp_unit: if the time column is in Unix timestamps, this is the unit of the timestamp.
:param data_cols: the columns representing the actual data values of interest.
"""
# Set up the time index
if not isinstance(df.index, pd.DatetimeIndex):
if time_col is None:
time_col = df.columns[0]
elif time_col not in df.columns:
raise KeyError(f"Expected `time_col` to be in {df.columns}. Got {time_col}.")
df[time_col] = pd.to_datetime(df[time_col], unit=None if df[time_col].dtype == "O" else timestamp_unit)
df = df.set_index(time_col)
df = df.sort_index()
# Get only the desired columns from the dataframe
if data_cols is not None:
data_cols = [data_cols] if not isinstance(data_cols, (list, tuple)) else data_cols
if not all(c in df.columns for c in data_cols):
raise KeyError(f"Expected each of `data_cols` to be in {df.colums}. Got {data_cols}.")
df = df[data_cols]
# Convert the dataframe to a time series & return it
return TimeSeries.from_pd(df)
class TimeSeries:
"""
Please read the `tutorial <tutorials/TimeSeries>` before reading this API doc.
This class represents a general multivariate time series as a wrapper around
a number of (optionally named) `UnivariateTimeSeries`. A `TimeSeries` object
is initialized as ``time_series = TimeSeries(univariates)``, where
``univariates`` is either a list of `UnivariateTimeSeries`, or a dictionary
mapping string names to their corresponding `UnivariateTimeSeries` objects.
Because the individual ``univariates`` need not be sampled at the same times, an
important concept for `TimeSeries` is *alignment*. We say that a `TimeSeries`
is *aligned* if all of its univariates have observations sampled at the exact
set set of times.
One may access the `UnivariateTimeSeries` comprising this `TimeSeries` in four ways:
1. Iterate over the individual univariates using
.. code-block:: python
for var in time_series.univariates:
# do stuff with each UnivariateTimeSeries var
2. Access an individual `UnivariateTimeSeries` by name as
``time_series.univariates[name]``. If you supplied unnamed univariates to
the constructor (i.e. using a list), the name of a univariate will just
be its index in that list.
3. Get the list of each univariate's name with ``time_series.names``.
4. Iterate over named univariates as
.. code-block:: python
for name, var in time_series.items():
# do stuff
Note that this is equivalent to iterating over
``zip(time_series.names, time_series.univariates)``.
This class supports the following additional features as well:
1. Interoperability with ``pandas``
- ``df = time_series.to_pd()`` yields a time-indexed ``pd.DataFrame``,
where each column (with the appropriate name) corresponds to a
variable. Missing values are ``NaN``.
- ``time_series = TimeSeries.from_pd(df)`` takes a time-indexed
``pd.DataFrame`` and returns a corresponding `TimeSeries` object
(missing values are handled appropriately). The order of
``time_series.univariates`` is the order of ``df.keys()``.
2. Automated alignment: ``aligned = time_series.align()`` resamples each of
``time_series.univariates`` so that they all have the same timestamps.
By default, this is done by taking the union of all timestamps present
in any individual univariate time series, and imputing missing values
via interpolation. See the method documentation for details on how you
may configure the alignment policy.
3. Transparent indexing and iteration for `TimeSeries` which have all
univariates aligned (i.e. they all have the same timestamps)
- Get the length and shape of the time series (equal to the number of
observations in each individual univariate). Note that if the time
series is not aligned, we will return the length/shape of an equivalent
``pandas`` dataframe and emit a warning.
- Index ``time_series[i] = (times[i], (x1[i], ..., xn[i]))``
(assuming ``time_series`` has ``n`` aligned univariates with timestamps
``times``, and ``xk = time_series.univariates[k-1].values``). Slice
returns a `TimeSeries` object and works as one would expect.
- Assuming ``time_series`` has ``n`` variables, you may iterate with
.. code-block:: python
for t_i, (x1_i, ..., xn_i) in time_series:
# do stuff
Notably, this lets you call ``times, val_vectors = zip(*time_series)``
4. Time-based queries for any time series
- Get the two sub `TimeSeries` before and after a timestamp ``t`` via
``left, right = time_series.bisect(t)``
- Get the sub `TimeSeries` between timestamps ``t0`` (inclusive) and
``tf`` (non-inclusive) via ``window = time_series.window(t0, tf)``
5. Concatenation: two `TimeSeries` may be concatenated (in time) as
``time_series = time_series_1 + time_series_2``.
.. document special functions
.. automethod:: __getitem__
.. automethod:: __iter__
"""
def __init__(
self,
univariates: Union[Mapping[Any, UnivariateTimeSeries], Iterable[UnivariateTimeSeries]],
*,
freq: str = "1h",
check_aligned=True,
):
# Type/length checking of univariates
if isinstance(univariates, Mapping):
univariates = ValIterOrderedDict((str(k), v) for k, v in univariates.items())
assert all(isinstance(var, UnivariateTimeSeries) for var in univariates.values())
elif isinstance(univariates, Iterable):
univariates = list(univariates)
assert all(isinstance(var, UnivariateTimeSeries) for var in univariates)
names = [str(var.name) for var in univariates]
if len(set(names)) == len(names):
names = [str(i) if name is None else name for i, name in enumerate(names)]
univariates = ValIterOrderedDict(zip(names, univariates))
else:
univariates = ValIterOrderedDict((str(i), v) for i, v in enumerate(univariates))
else:
raise TypeError(
"Expected univariates to be either a `Sequence[UnivariateTimeSeries]` or a "
"`Mapping[Hashable, UnivariateTimeSeries]`."
)
assert len(univariates) > 0
# Assign all the individual univariate series the appropriate names
for name, var in univariates.items():
var.name = name
# Set self.univariates and check if they are perfectly aligned
self.univariates = univariates
if check_aligned and self.dim > 1:
t = self.univariates[self.names[0]].time_stamps
self._is_aligned = all(self.univariates[name].time_stamps == t for name in self.names[1:])
else:
self._is_aligned = len(univariates) <= 1
# Raise a warning if the univariates are too mis-aligned
if check_aligned and not self.is_aligned:
all_t0 = [var.index[0] for var in univariates if len(var) > 0]
all_tf = [var.index[-1] for var in univariates if len(var) > 0]
min_elapsed = min(tf - t0 for t0, tf in zip(all_t0, all_tf))
min_t0, max_t0 = min(all_t0), max(all_t0)
min_tf, max_tf = min(all_tf), max(all_tf)
if max_t0 - min_t0 > 0.1 * min_elapsed:
logger.warning(
f"The earliest univariate starts at {min_t0}, but the "
f"latest univariate starts at {max_t0}, a difference of "
f"{max_t0 - min_t0}. This is more than 10% of the length "
f"of the shortest univariate ({min_elapsed}). You may "
f"want to check that the univariates cover the same "
f"window of time.",
stack_info=True,
)
if max_tf - min_tf > 0.1 * min_elapsed:
logger.warning(
f"The earliest univariate ends at {min_tf}, but the "
f"latest univariate ends at {max_tf}, a difference of "
f"{max_tf - min_tf}. This is more than 10% of the length "
f"of the shortest univariate ({min_elapsed}). You may "
f"want to check that the univariates cover the same "
f"window of time.",
stack_info=True,
)
def names(self):
""":return: The list of the names of the univariates."""
return list(self.univariates.keys())
def items(self):
""":return: Iterator over ``(name, univariate)`` tuples."""
return self.univariates.items()
def dim(self) -> int:
"""
:return: The dimension of the time series (the number of variables).
"""
return len(self.univariates)
def rename(self, mapper: Union[Iterable[str], Mapping[str, str], Callable[[str], str]]):
"""
:param mapper: Dict-like or function transformations to apply to the univariate names. Can also be an iterable
of new univariate names.
:return: the time series with renamed univariates.
"""
if isinstance(mapper, Callable):
mapper = [mapper(old) for old in self.names]
elif isinstance(mapper, Mapping):
mapper = [mapper.get(old, old) for old in self.names]
univariates = ValIterOrderedDict((new_name, var) for new_name, var in zip(mapper, self.univariates))
return self.__class__(univariates)
def is_aligned(self) -> bool:
"""
:return: Whether all individual variable time series are sampled at the same time stamps, i.e. they are aligned.
"""
return self._is_aligned
def index(self):
return to_pd_datetime(self.np_time_stamps)
def np_time_stamps(self):
"""
:rtype: np.ndarray
:return: the ``numpy`` representation of this time series's Unix timestamps
"""
return np.unique(np.concatenate([var.np_time_stamps for var in self.univariates]))
def time_stamps(self):
"""
:rtype: List[float]
:return: the list of Unix timestamps for the time series
"""
return self.np_time_stamps.tolist()
def t0(self) -> float:
"""
:rtype: float
:return: the first timestamp in the time series.
"""
return min(var.t0 for var in self.univariates)
def tf(self) -> float:
"""
:rtype: float
:return: the final timestamp in the time series.
"""
return max(var.tf for var in self.univariates)
def _txs_to_vec(txs):
"""
Helper function that converts [(t_1[i], x_1[i]), ..., (t_k[i], x_k[i])],
i.e. [var[i] for var in self.univariates], into the desired output form
(t_1[i], (x_1[i], ..., x_k[i])).
"""
return txs[0][0], tuple(tx[1] for tx in txs)
def __iter__(self):
"""
Only supported if all individual variable time series are sampled at the
same time stamps. The i'th item of the iterator is the tuple
``(time_stamps[i], tuple(var.values[i] for var in self.univariates))``.
"""
if not self.is_aligned:
raise RuntimeError(
"The univariates comprising this time series are not aligned "
"(they have different time stamps), but alignment is required "
"to iterate over the time series."
)
return map(self._txs_to_vec, zip(*self.univariates))
def __getitem__(self, i: Union[int, slice]):
"""
Only supported if all individual variable time series are sampled at the
same time stamps.
:param i: integer index or slice.
:rtype: Union[Tuple[float, Tuple[float]], TimeSeries]
:return: If ``i`` is an integer, returns the tuple
``(time_stamps[i], tuple(var.values[i] for var in self.univariates))``.
If ``i`` is a slice, returns the time series
``TimeSeries([var[i] for var in self.univariates])``
"""
if not self.is_aligned:
raise RuntimeError(
"The univariates comprising this time series are not aligned "
"(they have different time stamps), but alignment is required "
"to index into the time series."
)
if isinstance(i, int):
return self._txs_to_vec([var[i] for var in self.univariates])
elif isinstance(i, slice):
# ret must be aligned, so bypass the (potentially) expensive check
univariates = ValIterOrderedDict([(k, v[i]) for k, v in self.items()])
ret = TimeSeries(univariates, check_aligned=False)
ret._is_aligned = True
return ret
else:
raise KeyError(
f"Indexing a `TimeSeries` with key {i} of type "
f"{type(i).__name__} not supported. Perhaps you "
f"meant to index into `time_series.univariates`, "
f"rather than `time_series`?"
)
def is_empty(self) -> bool:
"""
:return: whether the time series is empty
"""
return all(len(var) == 0 for var in self.univariates)
def squeeze(self) -> UnivariateTimeSeries:
"""
:return: `UnivariateTimeSeries` if the time series is univariate; otherwise returns itself, a `TimeSeries`
"""
if self.dim == 1:
return self.univariates[self.names[0]]
return self
def __len__(self):
"""
:return: the number of observations in the time series
"""
if not self.is_aligned:
warning = (
"The univariates comprising this time series are not aligned "
"(they have different time stamps). The length returned is "
"equal to the length of the _union_ of all time stamps present "
"in any of the univariates."
)
warnings.warn(warning)
logger.warning(warning)
return len(self.to_pd())
return len(self.univariates[self.names[0]])
def shape(self) -> Tuple[int, int]:
"""
:return: the shape of this time series, i.e. ``(self.dim, len(self))``
"""
return self.dim, len(self)
def __add__(self, other):
"""
Concatenates the `TimeSeries` ``other`` to the right of this one.
:param TimeSeries other:
:rtype: TimeSeries
:return: concatenated time series
"""
return self.concat(other, axis=0)
def concat(self, other, axis=0):
"""
Concatenates the `TimeSeries` ``other`` on the time axis if ``axis = 0`` or the variable axis if ``axis = 1``.
:rtype: TimeSeries
:return: concatenated time series
"""
assert axis in [0, 1]
if axis == 0:
assert self.dim == other.dim, (
f"Cannot concatenate a {self.dim}-dimensional time series with a {other.dim}-dimensional "
f"time series on the time axis."
)
assert self.names == other.names, (
f"Cannot concatenate time series on the time axis if they have two different sets of "
f"variable names, {self.names} and {other.names}."
)
univariates = ValIterOrderedDict(
[(name, ts0.concat(ts1)) for (name, ts0), ts1 in zip(self.items(), other.univariates)]
)
ret = TimeSeries(univariates, check_aligned=False)
ret._is_aligned = self.is_aligned and other.is_aligned
return ret
else:
univariates = ValIterOrderedDict([(name, var.copy()) for name, var in [*self.items(), other.items()]])
ret = TimeSeries(univariates, check_aligned=False)
ret._is_aligned = self.is_aligned and other.is_aligned and self.time_stamps == other.time_stamps
return ret
def __eq__(self, other):
if self.dim != other.dim:
return False
return all(u == v for u, v in zip(self.univariates, other.univariates))
def __repr__(self):
return repr(self.to_pd())
def bisect(self, t: float, t_in_left: bool = False):
"""
Splits the time series at the point where the given timestamp ``t`` occurs.
:param t: a Unix timestamp or datetime object. Everything before time ``t`` is in the left split,
and everything after time ``t`` is in the right split.
:param t_in_left: if ``True``, ``t`` is in the left split. Otherwise, ``t`` is in the right split.
:rtype: Tuple[TimeSeries, TimeSeries]
:return: the left and right splits of the time series.
"""
left, right = ValIterOrderedDict(), ValIterOrderedDict()
for name, var in self.items():
left[name], right[name] = var.bisect(t, t_in_left)
if self.is_aligned:
left = TimeSeries(left, check_aligned=False)
right = TimeSeries(right, check_aligned=False)
left._is_aligned = True
right._is_aligned = True
return left, right
else:
return TimeSeries(left), TimeSeries(right)
def window(self, t0: float, tf: float, include_tf: bool = False):
"""
:param t0: The timestamp/datetime at the start of the window (inclusive)
:param tf: The timestamp/datetime at the end of the window (inclusive
if ``include_tf`` is ``True``, non-inclusive otherwise)
:param include_tf: Whether to include ``tf`` in the window.
:return: The subset of the time series occurring between timestamps ``t0`` (inclusive) and ``tf``
(included if ``include_tf`` is ``True``, excluded otherwise).
:rtype: `TimeSeries`
"""
return TimeSeries(ValIterOrderedDict([(k, var.window(t0, tf, include_tf)) for k, var in self.items()]))
def to_pd(self) -> pd.DataFrame:
"""
:return: A pandas DataFrame (indexed by time) which represents this time
series. Each variable corresponds to a column of the DataFrame.
Timestamps which are present for one variable but not another, are
represented with NaN.
"""
t = pd.DatetimeIndex([])
univariates = [(name, var.to_pd()[~var.index.duplicated()]) for name, var in self.items()]
for _, var in univariates:
t = t.union(var.index)
t = t.sort_values()
t.name = _time_col_name
if len(t) >= 3:
t.freq = pd.infer_freq(t)
df = pd.DataFrame(np.full((len(t), len(univariates)), np.nan), index=t, columns=self.names)
for name, var in univariates:
df.loc[var.index, name] = var[~var.index.duplicated()]
return df
def to_csv(self, file_name, **kwargs):
self.to_pd().to_csv(file_name, **kwargs)
def from_pd(cls, df: Union[pd.Series, pd.DataFrame, np.ndarray], check_times=True, drop_nan=True, freq="1h"):
"""
:param df: A ``pandas.DataFrame`` with a ``DatetimeIndex``. Each column corresponds to a different variable of
the time series, and the key of column (in sorted order) give the relative order of those variables in
``self.univariates``. Missing values should be represented with ``NaN``. May also be a ``pandas.Series``
for single-variable time series.
:param check_times: whether to check that all times in the index are unique (up to the millisecond) and sorted.
:param drop_nan: whether to drop all ``NaN`` entries before creating the time series. Specifying ``False`` is
useful if you wish to impute the values on your own.
:param freq: if ``df`` is not indexed by time, this is the frequency at which we will assume it is sampled.
:rtype: TimeSeries
:return: the `TimeSeries` object corresponding to ``df``.
"""
if df is None:
return None
elif isinstance(df, TimeSeries):
return df
elif isinstance(df, UnivariateTimeSeries):
return cls([df])
elif isinstance(df, pd.Series):
if drop_nan:
df = df[~df.isna()]
return cls({df.name: UnivariateTimeSeries.from_pd(df)})
elif isinstance(df, np.ndarray):
arr = df.reshape(len(df), -1).T
ret = cls([UnivariateTimeSeries(time_stamps=None, values=v, freq=freq) for v in arr], check_aligned=False)
ret._is_aligned = True
return ret
elif not isinstance(df, pd.DataFrame):
df = pd.DataFrame(df)
# Time series is not aligned iff there are missing values
aligned = df.shape[1] == 1 or not df.isna().any().any()
# Check for a string-type index
if df.index.dtype == "O":
df = df.copy()
df.index = pd.to_datetime(df.index)
# Make sure there are no time duplicates (by milliseconds) if desired
dt_index = isinstance(df.index, pd.DatetimeIndex)
if check_times:
if not df.index.is_unique:
df = df[~df.index.duplicated()]
if not df.index.is_monotonic_increasing:
df = df.sort_index()
if dt_index:
times = df.index.values.astype("datetime64[ms]").astype(np.int64)
df = df.reindex(pd.to_datetime(np.unique(times), unit="ms"), method="bfill")
elif not aligned and not dt_index and df.index.dtype not in ("int64", "float64"):
raise RuntimeError(
f"We only support instantiating time series from a "
f"``pd.DataFrame`` with missing values when the data frame is "
f"indexed by time, int, or float. This dataframe's index is of "
f"type {type(df.index).__name__}"
)
if drop_nan and not aligned:
ret = cls(
ValIterOrderedDict(
[(k, UnivariateTimeSeries.from_pd(ser[~ser.isna()], freq=freq)) for k, ser in df.items()]
),
check_aligned=False,
)
else:
ret = cls(
ValIterOrderedDict([(k, UnivariateTimeSeries.from_pd(ser, freq=freq)) for k, ser in df.items()]),
check_aligned=False,
)
ret._is_aligned = aligned
return ret
def from_ts_list(cls, ts_list, *, check_aligned=True):
"""
:param Iterable[TimeSeries] ts_list: iterable of time series we wish to form a multivariate time series with
:param bool check_aligned: whether to check if the output time series is aligned
:rtype: TimeSeries
:return: A multivariate `TimeSeries` created from all the time series in the inputs.
"""
ts_list = list(ts_list)
all_names = [set(ts.names) for ts in ts_list]
if all(
len(names_i.intersection(names_j)) == 0
for i, names_i in enumerate(all_names)
for names_j in all_names[i + 1 :]
):
univariates = ValIterOrderedDict(itertools.chain.from_iterable(ts.items() for ts in ts_list))
else:
univariates = list(itertools.chain.from_iterable(ts.univariates for ts in ts_list))
return cls(univariates, check_aligned=check_aligned)
def align(
self,
*,
reference: Sequence[Union[int, float]] = None,
granularity: Union[str, int, float] = None,
origin: int = None,
remove_non_overlapping=True,
alignment_policy: AlignPolicy = None,
aggregation_policy: AggregationPolicy = AggregationPolicy.Mean,
missing_value_policy: MissingValuePolicy = MissingValuePolicy.Interpolate,
):
"""
Aligns all the univariates comprising this multivariate time series so that they all have the same time stamps.
:param reference: A specific set of timestamps we want the resampled time series to contain. Required if
``alignment_policy`` is `AlignPolicy.FixedReference`. Overrides other alignment policies if specified.
:param granularity: The granularity (in seconds) of the resampled time time series. Defaults to the GCD time
difference between adjacent elements of ``time_series`` (otherwise). Ignored if ``reference`` is given or
``alignment_policy`` is `AlignPolicy.FixedReference`. Overrides other alignment policies if specified.
:param origin: The first timestamp of the resampled time series. Only used if the alignment policy is
`AlignPolicy.FixedGranularity`.
:param remove_non_overlapping: If ``True``, we will only keep the portions of the univariates that overlap with
each other. For example, if we have 3 univariates which span timestamps [0, 3600], [60, 3660], and
[30, 3540], we will only keep timestamps in the range [60, 3540]. If ``False``, we will keep all timestamps
produced by the resampling.
:param alignment_policy: The policy we want to use to align the time series.
- `AlignPolicy.FixedReference` aligns each single-variable time
series to ``reference``, a user-specified sequence of timestamps.
- `AlignPolicy.FixedGranularity` resamples each single-variable time
series at the same granularity, aggregating windows and imputing
missing values as desired.
- `AlignPolicy.OuterJoin` returns a time series with the union of
all timestamps present in any single-variable time series.
- `AlignPolicy.InnerJoin` returns a time series with the intersection
of all timestamps present in all single-variable time series.
:param aggregation_policy: The policy used to aggregate windows of adjacent observations when downsampling.
:param missing_value_policy: The policy used to impute missing values created when upsampling.
:rtype: TimeSeries
:return: The resampled multivariate time series.
"""
if self.is_empty():
if reference is not None or granularity is not None:
logger.warning(
"Attempting to align an empty time series to a set of reference time stamps or a "
"fixed granularity. Doing nothing."
)
return TimeSeries.from_pd(self.to_pd())
if reference is not None or alignment_policy is AlignPolicy.FixedReference:
if reference is None:
raise RuntimeError("`reference` is required when using `alignment_policy` FixedReference.")
if alignment_policy not in [None, AlignPolicy.FixedReference]:
logger.warning(
f"TimeSeries.align() received alignment policy "
f"{alignment_policy.name}, but a reference sequence of "
f"timestamps was also provided. `reference` is higher "
f"priority than `alignment_policy`, so we are using "
f"alignment policy FixedReference."
)
if granularity is not None:
logger.warning(
"TimeSeries.align() received a granularity at which to "
"resample the time series, but a reference sequence of "
"timestamps was also provided. `reference` is higher "
"priority than `granularity`, so we are using alignment "
"policy FixedReference, not FixedGranularity."
)
# Align each univariate time series to the reference timestamps
df = reindex_df(self.to_pd(), reference, missing_value_policy)
return TimeSeries.from_pd(df, check_times=False)
elif granularity is not None or alignment_policy is AlignPolicy.FixedGranularity:
if alignment_policy not in [None, AlignPolicy.FixedGranularity]:
logger.warning(
f"TimeSeries.align() received alignment policy "
f"{alignment_policy.name}, but a desired granularity at "
f"which to resample the time series was also received. "
f"`granularity` is higher priority than `alignment_policy`, "
f"so we are using alignment policy FixedGranularity."
)
# Get the granularity in seconds, if one is specified and the granularity is a fixed number of seconds.
# Otherwise, infer the granularity. If we have a non-fixed granularity, record that fact.
fixed_granularity = True
if granularity is None:
granularity = infer_granularity(self.time_stamps)
granularity = to_offset(granularity)
if isinstance(granularity, pd.DateOffset):
try:
granularity.nanos
except ValueError:
fixed_granularity = False
# Remove non-overlapping portions of univariates if desired
df = self.to_pd()
if remove_non_overlapping:
t0 = max(v.index[0] for v in self.univariates if len(v) > 0)
tf = min(v.index[-1] for v in self.univariates if len(v) > 0)
df = df[t0:tf]
# Resample at the desired granularity, setting the origin as needed
if origin is None and isinstance(granularity, pd.Timedelta):
elapsed = df.index[-1] - df.index[0]
origin = df.index[0] + elapsed % granularity
direction = None if not fixed_granularity else "right"
new_df = df.resample(granularity, origin=to_pd_datetime(origin), label=direction, closed=direction)
# Apply aggregation & missing value imputation policies
new_df = aggregation_policy.value(new_df)
if missing_value_policy is MissingValuePolicy.Interpolate and not fixed_granularity:
new_df = new_df.interpolate()
else:
new_df = missing_value_policy.value(new_df)
# Add the date offset only if we're resampling to a non-fixed granularity
if not fixed_granularity:
new_df.index += get_date_offset(time_stamps=new_df.index, reference=df.index)
# Do any forward-filling/back-filling to cover all the indices
return TimeSeries.from_pd(new_df[df.index[0] : df.index[-1]].ffill().bfill(), check_times=False)
elif alignment_policy in [None, AlignPolicy.OuterJoin]:
# Outer join is the union of all timestamps appearing in any of the
# univariate time series. We just need to apply the missing value
# policy to self.to_pd() (and bfill()/ffill() to take care of any
# additional missing values at the start/end), and then return
# from_pd().
df = missing_value_policy.value(self.to_pd())
if remove_non_overlapping:
t0 = max(v.index[0] for v in self.univariates if len(v) > 0)
tf = min(v.index[-1] for v in self.univariates if len(v) > 0)
df = df[t0:tf]
else:
df = df.ffill().bfill()
return TimeSeries.from_pd(df, check_times=False)
elif alignment_policy is AlignPolicy.InnerJoin:
# Inner join is the intersection of all the timestamps appearing in
# all of the univariate time series. Just get the indexes of the
# univariate sub time series where all variables are present.
# TODO: add a resampling step instead of just indexing?
ts = [set(var.np_time_stamps) for var in self.univariates]
t = ts[0]
for tprime in ts[1:]:
t = t.intersection(tprime)
if len(t) == 0:
raise RuntimeError(
"No time stamps are shared between all variables! Try again with a different alignment policy."
)
t = to_pd_datetime(sorted(t))
return TimeSeries.from_pd(self.to_pd().loc[t], check_times=False)
else:
raise RuntimeError(f"Alignment policy {alignment_policy.name} not supported")
The provided code snippet includes necessary dependencies for implementing the `csv_to_time_series` function. Write a Python function `def csv_to_time_series(file_name: str, **kwargs) -> TimeSeries` to solve the following problem:
Reads a CSV file and converts it to a `TimeSeries` object.
Here is the function:
def csv_to_time_series(file_name: str, **kwargs) -> TimeSeries:
"""
Reads a CSV file and converts it to a `TimeSeries` object.
"""
return df_to_time_series(pd.read_csv(file_name), **kwargs) | Reads a CSV file and converts it to a `TimeSeries` object. |
304 | from abc import ABCMeta
from collections import OrderedDict
from copy import deepcopy
from functools import wraps
import importlib
import inspect
import re
from typing import Callable, Union
The provided code snippet includes necessary dependencies for implementing the `dynamic_import` function. Write a Python function `def dynamic_import(import_path: str, alias: dict = None)` to solve the following problem:
Dynamically import a member from the specified module. :param import_path: syntax 'module_name:member_name', e.g. 'merlion.transform.normalize:BoxCoxTransform' :param alias: dict which maps shortcuts for the registered classes, to their full import paths. :return: imported class
Here is the function:
def dynamic_import(import_path: str, alias: dict = None):
"""
Dynamically import a member from the specified module.
:param import_path: syntax 'module_name:member_name', e.g. 'merlion.transform.normalize:BoxCoxTransform'
:param alias: dict which maps shortcuts for the registered classes, to their full import paths.
:return: imported class
"""
alias = dict() if alias is None else alias
if import_path not in alias and ":" not in import_path:
raise ValueError(
"import_path should be one of {} or "
'include ":", e.g. "merlion.transform.normalize:MeanVarNormalize" : '
"got {}".format(set(alias), import_path)
)
if ":" not in import_path:
import_path = alias[import_path]
module_name, objname = import_path.split(":")
m = importlib.import_module(module_name)
return getattr(m, objname) | Dynamically import a member from the specified module. :param import_path: syntax 'module_name:member_name', e.g. 'merlion.transform.normalize:BoxCoxTransform' :param alias: dict which maps shortcuts for the registered classes, to their full import paths. :return: imported class |
305 | from abc import ABCMeta
from collections import OrderedDict
from copy import deepcopy
from functools import wraps
import importlib
import inspect
import re
from typing import Callable, Union
The provided code snippet includes necessary dependencies for implementing the `call_with_accepted_kwargs` function. Write a Python function `def call_with_accepted_kwargs(fn: Callable, **kwargs)` to solve the following problem:
Given a function and a list of keyword arguments, call the function with only the keyword arguments that are accepted by the function.
Here is the function:
def call_with_accepted_kwargs(fn: Callable, **kwargs):
"""
Given a function and a list of keyword arguments, call the function with only the keyword arguments that are
accepted by the function.
"""
params = inspect.signature(fn).parameters
if not any(v.kind.name == "VAR_KEYWORD" for v in params.values()):
kwargs = {k: v for k, v in kwargs.items() if k in params}
return fn(**kwargs) | Given a function and a list of keyword arguments, call the function with only the keyword arguments that are accepted by the function. |
306 | from abc import ABCMeta
from collections import OrderedDict
from copy import deepcopy
from functools import wraps
import importlib
import inspect
import re
from typing import Callable, Union
The provided code snippet includes necessary dependencies for implementing the `initializer` function. Write a Python function `def initializer(func)` to solve the following problem:
Decorator for the __init__ method. Automatically assigns the parameters.
Here is the function:
def initializer(func):
"""
Decorator for the __init__ method.
Automatically assigns the parameters.
"""
argspec = inspect.getfullargspec(func)
@wraps(func)
def wrapper(self, *args, **kargs):
for name, arg in list(zip(argspec.args[1:], args)) + list(kargs.items()):
setattr(self, name, arg)
for name, default in zip(reversed(argspec.args), reversed(argspec.defaults)):
if not hasattr(self, name):
setattr(self, name, default)
func(self, *args, **kargs)
return wrapper | Decorator for the __init__ method. Automatically assigns the parameters. |
307 | from enum import Enum
from functools import partial
import logging
import math
import re
from typing import Iterable, Sequence, Union
import numpy as np
import pandas as pd
from pandas.tseries.frequencies import to_offset as pd_to_offset
import scipy.stats
The provided code snippet includes necessary dependencies for implementing the `to_offset` function. Write a Python function `def to_offset(dt)` to solve the following problem:
Converts a time gap to a ``pd.Timedelta`` if possible, otherwise a ``pd.DateOffset``.
Here is the function:
def to_offset(dt):
"""
Converts a time gap to a ``pd.Timedelta`` if possible, otherwise a ``pd.DateOffset``.
"""
if dt is None:
return None
if isinstance(dt, (int, float)):
dt = pd.to_timedelta(dt, unit="s")
elif isinstance(dt, str) and not any(re.match(r"\d+" + suf, dt) for suf in ("M", "m", "MS", "Q", "Y", "y")):
try:
dt = pd.to_timedelta(dt)
except ValueError:
pass
return dt if isinstance(dt, pd.Timedelta) else pd_to_offset(dt) | Converts a time gap to a ``pd.Timedelta`` if possible, otherwise a ``pd.DateOffset``. |
308 | from enum import Enum
from functools import partial
import logging
import math
import re
from typing import Iterable, Sequence, Union
import numpy as np
import pandas as pd
from pandas.tseries.frequencies import to_offset as pd_to_offset
import scipy.stats
The provided code snippet includes necessary dependencies for implementing the `to_timestamp` function. Write a Python function `def to_timestamp(t)` to solve the following problem:
Converts a datetime to a Unix timestamp.
Here is the function:
def to_timestamp(t):
"""
Converts a datetime to a Unix timestamp.
"""
if isinstance(t, (int, float)) or isinstance(t, Iterable) and all(isinstance(ti, (int, float)) for ti in t):
return np.asarray(t)
elif isinstance(t, np.ndarray) and t.dtype in [int, np.float32, np.float64]:
return t
return np.asarray(t).astype("datetime64[ms]").astype(float) / 1000 | Converts a datetime to a Unix timestamp. |
309 | from enum import Enum
from functools import partial
import logging
import math
import re
from typing import Iterable, Sequence, Union
import numpy as np
import pandas as pd
from pandas.tseries.frequencies import to_offset as pd_to_offset
import scipy.stats
class MissingValuePolicy(Enum):
"""
Missing value imputation policies. Values are partial functions for ``pd.Series`` methods.
"""
FFill = partial(lambda df, *args, **kwargs: getattr(df, "ffill")(*args, **kwargs))
"""Fill gap with the first value before the gap."""
BFill = partial(lambda df, *args, **kwargs: getattr(df, "bfill")(*args, **kwargs))
"""Fill gap with the first value after the gap."""
Nearest = partial(lambda df, *args, **kwargs: getattr(df, "interpolate")(*args, **kwargs), method="nearest")
"""Replace missing value with the value closest to it."""
Interpolate = partial(lambda df, *args, **kwargs: getattr(df, "interpolate")(*args, **kwargs), method="time")
"""Fill in missing values by linear interpolation."""
ZFill = partial(lambda df, *args, **kwargs: getattr(df, "replace")(*args, **kwargs), to_replace=np.nan, value=0)
"""Replace missing values with zeros."""
def to_pd_datetime(timestamp):
"""
Converts a timestamp (or list/iterable of timestamps) to pandas Datetime, truncated at the millisecond.
"""
if isinstance(timestamp, pd.DatetimeIndex):
return timestamp
elif isinstance(timestamp, (int, float)):
return pd.to_datetime(int(timestamp * 1000), unit="ms")
elif isinstance(timestamp, Iterable) and all(isinstance(t, (int, float)) for t in timestamp):
timestamp = pd.to_datetime(np.asarray(timestamp).astype(float) * 1000, unit="ms")
elif isinstance(timestamp, np.ndarray) and timestamp.dtype in [int, np.float32, np.float64]:
timestamp = pd.to_datetime(np.asarray(timestamp).astype(float) * 1000, unit="ms")
return pd.to_datetime(timestamp)
The provided code snippet includes necessary dependencies for implementing the `reindex_df` function. Write a Python function `def reindex_df( df: Union[pd.Series, pd.DataFrame], reference: Sequence[Union[int, float]], missing_value_policy: MissingValuePolicy )` to solve the following problem:
Reindexes a Datetime-indexed dataframe ``df`` to have the same time stamps as a reference sequence of timestamps. Imputes missing values with the given `MissingValuePolicy`.
Here is the function:
def reindex_df(
df: Union[pd.Series, pd.DataFrame], reference: Sequence[Union[int, float]], missing_value_policy: MissingValuePolicy
):
"""
Reindexes a Datetime-indexed dataframe ``df`` to have the same time stamps
as a reference sequence of timestamps. Imputes missing values with the given
`MissingValuePolicy`.
"""
reference = to_pd_datetime(reference)
all_times = np.unique(np.concatenate((reference.values, df.index.values)))
df = df.reindex(index=all_times)
df = missing_value_policy.value(df).ffill().bfill()
return df.loc[reference] | Reindexes a Datetime-indexed dataframe ``df`` to have the same time stamps as a reference sequence of timestamps. Imputes missing values with the given `MissingValuePolicy`. |
310 | from collections import OrderedDict
from typing import List
import numpy as np
import pandas as pd
from merlion.utils.time_series import TimeSeries, to_pd_datetime
class TimeSeries:
"""
Please read the `tutorial <tutorials/TimeSeries>` before reading this API doc.
This class represents a general multivariate time series as a wrapper around
a number of (optionally named) `UnivariateTimeSeries`. A `TimeSeries` object
is initialized as ``time_series = TimeSeries(univariates)``, where
``univariates`` is either a list of `UnivariateTimeSeries`, or a dictionary
mapping string names to their corresponding `UnivariateTimeSeries` objects.
Because the individual ``univariates`` need not be sampled at the same times, an
important concept for `TimeSeries` is *alignment*. We say that a `TimeSeries`
is *aligned* if all of its univariates have observations sampled at the exact
set set of times.
One may access the `UnivariateTimeSeries` comprising this `TimeSeries` in four ways:
1. Iterate over the individual univariates using
.. code-block:: python
for var in time_series.univariates:
# do stuff with each UnivariateTimeSeries var
2. Access an individual `UnivariateTimeSeries` by name as
``time_series.univariates[name]``. If you supplied unnamed univariates to
the constructor (i.e. using a list), the name of a univariate will just
be its index in that list.
3. Get the list of each univariate's name with ``time_series.names``.
4. Iterate over named univariates as
.. code-block:: python
for name, var in time_series.items():
# do stuff
Note that this is equivalent to iterating over
``zip(time_series.names, time_series.univariates)``.
This class supports the following additional features as well:
1. Interoperability with ``pandas``
- ``df = time_series.to_pd()`` yields a time-indexed ``pd.DataFrame``,
where each column (with the appropriate name) corresponds to a
variable. Missing values are ``NaN``.
- ``time_series = TimeSeries.from_pd(df)`` takes a time-indexed
``pd.DataFrame`` and returns a corresponding `TimeSeries` object
(missing values are handled appropriately). The order of
``time_series.univariates`` is the order of ``df.keys()``.
2. Automated alignment: ``aligned = time_series.align()`` resamples each of
``time_series.univariates`` so that they all have the same timestamps.
By default, this is done by taking the union of all timestamps present
in any individual univariate time series, and imputing missing values
via interpolation. See the method documentation for details on how you
may configure the alignment policy.
3. Transparent indexing and iteration for `TimeSeries` which have all
univariates aligned (i.e. they all have the same timestamps)
- Get the length and shape of the time series (equal to the number of
observations in each individual univariate). Note that if the time
series is not aligned, we will return the length/shape of an equivalent
``pandas`` dataframe and emit a warning.
- Index ``time_series[i] = (times[i], (x1[i], ..., xn[i]))``
(assuming ``time_series`` has ``n`` aligned univariates with timestamps
``times``, and ``xk = time_series.univariates[k-1].values``). Slice
returns a `TimeSeries` object and works as one would expect.
- Assuming ``time_series`` has ``n`` variables, you may iterate with
.. code-block:: python
for t_i, (x1_i, ..., xn_i) in time_series:
# do stuff
Notably, this lets you call ``times, val_vectors = zip(*time_series)``
4. Time-based queries for any time series
- Get the two sub `TimeSeries` before and after a timestamp ``t`` via
``left, right = time_series.bisect(t)``
- Get the sub `TimeSeries` between timestamps ``t0`` (inclusive) and
``tf`` (non-inclusive) via ``window = time_series.window(t0, tf)``
5. Concatenation: two `TimeSeries` may be concatenated (in time) as
``time_series = time_series_1 + time_series_2``.
.. document special functions
.. automethod:: __getitem__
.. automethod:: __iter__
"""
def __init__(
self,
univariates: Union[Mapping[Any, UnivariateTimeSeries], Iterable[UnivariateTimeSeries]],
*,
freq: str = "1h",
check_aligned=True,
):
# Type/length checking of univariates
if isinstance(univariates, Mapping):
univariates = ValIterOrderedDict((str(k), v) for k, v in univariates.items())
assert all(isinstance(var, UnivariateTimeSeries) for var in univariates.values())
elif isinstance(univariates, Iterable):
univariates = list(univariates)
assert all(isinstance(var, UnivariateTimeSeries) for var in univariates)
names = [str(var.name) for var in univariates]
if len(set(names)) == len(names):
names = [str(i) if name is None else name for i, name in enumerate(names)]
univariates = ValIterOrderedDict(zip(names, univariates))
else:
univariates = ValIterOrderedDict((str(i), v) for i, v in enumerate(univariates))
else:
raise TypeError(
"Expected univariates to be either a `Sequence[UnivariateTimeSeries]` or a "
"`Mapping[Hashable, UnivariateTimeSeries]`."
)
assert len(univariates) > 0
# Assign all the individual univariate series the appropriate names
for name, var in univariates.items():
var.name = name
# Set self.univariates and check if they are perfectly aligned
self.univariates = univariates
if check_aligned and self.dim > 1:
t = self.univariates[self.names[0]].time_stamps
self._is_aligned = all(self.univariates[name].time_stamps == t for name in self.names[1:])
else:
self._is_aligned = len(univariates) <= 1
# Raise a warning if the univariates are too mis-aligned
if check_aligned and not self.is_aligned:
all_t0 = [var.index[0] for var in univariates if len(var) > 0]
all_tf = [var.index[-1] for var in univariates if len(var) > 0]
min_elapsed = min(tf - t0 for t0, tf in zip(all_t0, all_tf))
min_t0, max_t0 = min(all_t0), max(all_t0)
min_tf, max_tf = min(all_tf), max(all_tf)
if max_t0 - min_t0 > 0.1 * min_elapsed:
logger.warning(
f"The earliest univariate starts at {min_t0}, but the "
f"latest univariate starts at {max_t0}, a difference of "
f"{max_t0 - min_t0}. This is more than 10% of the length "
f"of the shortest univariate ({min_elapsed}). You may "
f"want to check that the univariates cover the same "
f"window of time.",
stack_info=True,
)
if max_tf - min_tf > 0.1 * min_elapsed:
logger.warning(
f"The earliest univariate ends at {min_tf}, but the "
f"latest univariate ends at {max_tf}, a difference of "
f"{max_tf - min_tf}. This is more than 10% of the length "
f"of the shortest univariate ({min_elapsed}). You may "
f"want to check that the univariates cover the same "
f"window of time.",
stack_info=True,
)
def names(self):
""":return: The list of the names of the univariates."""
return list(self.univariates.keys())
def items(self):
""":return: Iterator over ``(name, univariate)`` tuples."""
return self.univariates.items()
def dim(self) -> int:
"""
:return: The dimension of the time series (the number of variables).
"""
return len(self.univariates)
def rename(self, mapper: Union[Iterable[str], Mapping[str, str], Callable[[str], str]]):
"""
:param mapper: Dict-like or function transformations to apply to the univariate names. Can also be an iterable
of new univariate names.
:return: the time series with renamed univariates.
"""
if isinstance(mapper, Callable):
mapper = [mapper(old) for old in self.names]
elif isinstance(mapper, Mapping):
mapper = [mapper.get(old, old) for old in self.names]
univariates = ValIterOrderedDict((new_name, var) for new_name, var in zip(mapper, self.univariates))
return self.__class__(univariates)
def is_aligned(self) -> bool:
"""
:return: Whether all individual variable time series are sampled at the same time stamps, i.e. they are aligned.
"""
return self._is_aligned
def index(self):
return to_pd_datetime(self.np_time_stamps)
def np_time_stamps(self):
"""
:rtype: np.ndarray
:return: the ``numpy`` representation of this time series's Unix timestamps
"""
return np.unique(np.concatenate([var.np_time_stamps for var in self.univariates]))
def time_stamps(self):
"""
:rtype: List[float]
:return: the list of Unix timestamps for the time series
"""
return self.np_time_stamps.tolist()
def t0(self) -> float:
"""
:rtype: float
:return: the first timestamp in the time series.
"""
return min(var.t0 for var in self.univariates)
def tf(self) -> float:
"""
:rtype: float
:return: the final timestamp in the time series.
"""
return max(var.tf for var in self.univariates)
def _txs_to_vec(txs):
"""
Helper function that converts [(t_1[i], x_1[i]), ..., (t_k[i], x_k[i])],
i.e. [var[i] for var in self.univariates], into the desired output form
(t_1[i], (x_1[i], ..., x_k[i])).
"""
return txs[0][0], tuple(tx[1] for tx in txs)
def __iter__(self):
"""
Only supported if all individual variable time series are sampled at the
same time stamps. The i'th item of the iterator is the tuple
``(time_stamps[i], tuple(var.values[i] for var in self.univariates))``.
"""
if not self.is_aligned:
raise RuntimeError(
"The univariates comprising this time series are not aligned "
"(they have different time stamps), but alignment is required "
"to iterate over the time series."
)
return map(self._txs_to_vec, zip(*self.univariates))
def __getitem__(self, i: Union[int, slice]):
"""
Only supported if all individual variable time series are sampled at the
same time stamps.
:param i: integer index or slice.
:rtype: Union[Tuple[float, Tuple[float]], TimeSeries]
:return: If ``i`` is an integer, returns the tuple
``(time_stamps[i], tuple(var.values[i] for var in self.univariates))``.
If ``i`` is a slice, returns the time series
``TimeSeries([var[i] for var in self.univariates])``
"""
if not self.is_aligned:
raise RuntimeError(
"The univariates comprising this time series are not aligned "
"(they have different time stamps), but alignment is required "
"to index into the time series."
)
if isinstance(i, int):
return self._txs_to_vec([var[i] for var in self.univariates])
elif isinstance(i, slice):
# ret must be aligned, so bypass the (potentially) expensive check
univariates = ValIterOrderedDict([(k, v[i]) for k, v in self.items()])
ret = TimeSeries(univariates, check_aligned=False)
ret._is_aligned = True
return ret
else:
raise KeyError(
f"Indexing a `TimeSeries` with key {i} of type "
f"{type(i).__name__} not supported. Perhaps you "
f"meant to index into `time_series.univariates`, "
f"rather than `time_series`?"
)
def is_empty(self) -> bool:
"""
:return: whether the time series is empty
"""
return all(len(var) == 0 for var in self.univariates)
def squeeze(self) -> UnivariateTimeSeries:
"""
:return: `UnivariateTimeSeries` if the time series is univariate; otherwise returns itself, a `TimeSeries`
"""
if self.dim == 1:
return self.univariates[self.names[0]]
return self
def __len__(self):
"""
:return: the number of observations in the time series
"""
if not self.is_aligned:
warning = (
"The univariates comprising this time series are not aligned "
"(they have different time stamps). The length returned is "
"equal to the length of the _union_ of all time stamps present "
"in any of the univariates."
)
warnings.warn(warning)
logger.warning(warning)
return len(self.to_pd())
return len(self.univariates[self.names[0]])
def shape(self) -> Tuple[int, int]:
"""
:return: the shape of this time series, i.e. ``(self.dim, len(self))``
"""
return self.dim, len(self)
def __add__(self, other):
"""
Concatenates the `TimeSeries` ``other`` to the right of this one.
:param TimeSeries other:
:rtype: TimeSeries
:return: concatenated time series
"""
return self.concat(other, axis=0)
def concat(self, other, axis=0):
"""
Concatenates the `TimeSeries` ``other`` on the time axis if ``axis = 0`` or the variable axis if ``axis = 1``.
:rtype: TimeSeries
:return: concatenated time series
"""
assert axis in [0, 1]
if axis == 0:
assert self.dim == other.dim, (
f"Cannot concatenate a {self.dim}-dimensional time series with a {other.dim}-dimensional "
f"time series on the time axis."
)
assert self.names == other.names, (
f"Cannot concatenate time series on the time axis if they have two different sets of "
f"variable names, {self.names} and {other.names}."
)
univariates = ValIterOrderedDict(
[(name, ts0.concat(ts1)) for (name, ts0), ts1 in zip(self.items(), other.univariates)]
)
ret = TimeSeries(univariates, check_aligned=False)
ret._is_aligned = self.is_aligned and other.is_aligned
return ret
else:
univariates = ValIterOrderedDict([(name, var.copy()) for name, var in [*self.items(), other.items()]])
ret = TimeSeries(univariates, check_aligned=False)
ret._is_aligned = self.is_aligned and other.is_aligned and self.time_stamps == other.time_stamps
return ret
def __eq__(self, other):
if self.dim != other.dim:
return False
return all(u == v for u, v in zip(self.univariates, other.univariates))
def __repr__(self):
return repr(self.to_pd())
def bisect(self, t: float, t_in_left: bool = False):
"""
Splits the time series at the point where the given timestamp ``t`` occurs.
:param t: a Unix timestamp or datetime object. Everything before time ``t`` is in the left split,
and everything after time ``t`` is in the right split.
:param t_in_left: if ``True``, ``t`` is in the left split. Otherwise, ``t`` is in the right split.
:rtype: Tuple[TimeSeries, TimeSeries]
:return: the left and right splits of the time series.
"""
left, right = ValIterOrderedDict(), ValIterOrderedDict()
for name, var in self.items():
left[name], right[name] = var.bisect(t, t_in_left)
if self.is_aligned:
left = TimeSeries(left, check_aligned=False)
right = TimeSeries(right, check_aligned=False)
left._is_aligned = True
right._is_aligned = True
return left, right
else:
return TimeSeries(left), TimeSeries(right)
def window(self, t0: float, tf: float, include_tf: bool = False):
"""
:param t0: The timestamp/datetime at the start of the window (inclusive)
:param tf: The timestamp/datetime at the end of the window (inclusive
if ``include_tf`` is ``True``, non-inclusive otherwise)
:param include_tf: Whether to include ``tf`` in the window.
:return: The subset of the time series occurring between timestamps ``t0`` (inclusive) and ``tf``
(included if ``include_tf`` is ``True``, excluded otherwise).
:rtype: `TimeSeries`
"""
return TimeSeries(ValIterOrderedDict([(k, var.window(t0, tf, include_tf)) for k, var in self.items()]))
def to_pd(self) -> pd.DataFrame:
"""
:return: A pandas DataFrame (indexed by time) which represents this time
series. Each variable corresponds to a column of the DataFrame.
Timestamps which are present for one variable but not another, are
represented with NaN.
"""
t = pd.DatetimeIndex([])
univariates = [(name, var.to_pd()[~var.index.duplicated()]) for name, var in self.items()]
for _, var in univariates:
t = t.union(var.index)
t = t.sort_values()
t.name = _time_col_name
if len(t) >= 3:
t.freq = pd.infer_freq(t)
df = pd.DataFrame(np.full((len(t), len(univariates)), np.nan), index=t, columns=self.names)
for name, var in univariates:
df.loc[var.index, name] = var[~var.index.duplicated()]
return df
def to_csv(self, file_name, **kwargs):
self.to_pd().to_csv(file_name, **kwargs)
def from_pd(cls, df: Union[pd.Series, pd.DataFrame, np.ndarray], check_times=True, drop_nan=True, freq="1h"):
"""
:param df: A ``pandas.DataFrame`` with a ``DatetimeIndex``. Each column corresponds to a different variable of
the time series, and the key of column (in sorted order) give the relative order of those variables in
``self.univariates``. Missing values should be represented with ``NaN``. May also be a ``pandas.Series``
for single-variable time series.
:param check_times: whether to check that all times in the index are unique (up to the millisecond) and sorted.
:param drop_nan: whether to drop all ``NaN`` entries before creating the time series. Specifying ``False`` is
useful if you wish to impute the values on your own.
:param freq: if ``df`` is not indexed by time, this is the frequency at which we will assume it is sampled.
:rtype: TimeSeries
:return: the `TimeSeries` object corresponding to ``df``.
"""
if df is None:
return None
elif isinstance(df, TimeSeries):
return df
elif isinstance(df, UnivariateTimeSeries):
return cls([df])
elif isinstance(df, pd.Series):
if drop_nan:
df = df[~df.isna()]
return cls({df.name: UnivariateTimeSeries.from_pd(df)})
elif isinstance(df, np.ndarray):
arr = df.reshape(len(df), -1).T
ret = cls([UnivariateTimeSeries(time_stamps=None, values=v, freq=freq) for v in arr], check_aligned=False)
ret._is_aligned = True
return ret
elif not isinstance(df, pd.DataFrame):
df = pd.DataFrame(df)
# Time series is not aligned iff there are missing values
aligned = df.shape[1] == 1 or not df.isna().any().any()
# Check for a string-type index
if df.index.dtype == "O":
df = df.copy()
df.index = pd.to_datetime(df.index)
# Make sure there are no time duplicates (by milliseconds) if desired
dt_index = isinstance(df.index, pd.DatetimeIndex)
if check_times:
if not df.index.is_unique:
df = df[~df.index.duplicated()]
if not df.index.is_monotonic_increasing:
df = df.sort_index()
if dt_index:
times = df.index.values.astype("datetime64[ms]").astype(np.int64)
df = df.reindex(pd.to_datetime(np.unique(times), unit="ms"), method="bfill")
elif not aligned and not dt_index and df.index.dtype not in ("int64", "float64"):
raise RuntimeError(
f"We only support instantiating time series from a "
f"``pd.DataFrame`` with missing values when the data frame is "
f"indexed by time, int, or float. This dataframe's index is of "
f"type {type(df.index).__name__}"
)
if drop_nan and not aligned:
ret = cls(
ValIterOrderedDict(
[(k, UnivariateTimeSeries.from_pd(ser[~ser.isna()], freq=freq)) for k, ser in df.items()]
),
check_aligned=False,
)
else:
ret = cls(
ValIterOrderedDict([(k, UnivariateTimeSeries.from_pd(ser, freq=freq)) for k, ser in df.items()]),
check_aligned=False,
)
ret._is_aligned = aligned
return ret
def from_ts_list(cls, ts_list, *, check_aligned=True):
"""
:param Iterable[TimeSeries] ts_list: iterable of time series we wish to form a multivariate time series with
:param bool check_aligned: whether to check if the output time series is aligned
:rtype: TimeSeries
:return: A multivariate `TimeSeries` created from all the time series in the inputs.
"""
ts_list = list(ts_list)
all_names = [set(ts.names) for ts in ts_list]
if all(
len(names_i.intersection(names_j)) == 0
for i, names_i in enumerate(all_names)
for names_j in all_names[i + 1 :]
):
univariates = ValIterOrderedDict(itertools.chain.from_iterable(ts.items() for ts in ts_list))
else:
univariates = list(itertools.chain.from_iterable(ts.univariates for ts in ts_list))
return cls(univariates, check_aligned=check_aligned)
def align(
self,
*,
reference: Sequence[Union[int, float]] = None,
granularity: Union[str, int, float] = None,
origin: int = None,
remove_non_overlapping=True,
alignment_policy: AlignPolicy = None,
aggregation_policy: AggregationPolicy = AggregationPolicy.Mean,
missing_value_policy: MissingValuePolicy = MissingValuePolicy.Interpolate,
):
"""
Aligns all the univariates comprising this multivariate time series so that they all have the same time stamps.
:param reference: A specific set of timestamps we want the resampled time series to contain. Required if
``alignment_policy`` is `AlignPolicy.FixedReference`. Overrides other alignment policies if specified.
:param granularity: The granularity (in seconds) of the resampled time time series. Defaults to the GCD time
difference between adjacent elements of ``time_series`` (otherwise). Ignored if ``reference`` is given or
``alignment_policy`` is `AlignPolicy.FixedReference`. Overrides other alignment policies if specified.
:param origin: The first timestamp of the resampled time series. Only used if the alignment policy is
`AlignPolicy.FixedGranularity`.
:param remove_non_overlapping: If ``True``, we will only keep the portions of the univariates that overlap with
each other. For example, if we have 3 univariates which span timestamps [0, 3600], [60, 3660], and
[30, 3540], we will only keep timestamps in the range [60, 3540]. If ``False``, we will keep all timestamps
produced by the resampling.
:param alignment_policy: The policy we want to use to align the time series.
- `AlignPolicy.FixedReference` aligns each single-variable time
series to ``reference``, a user-specified sequence of timestamps.
- `AlignPolicy.FixedGranularity` resamples each single-variable time
series at the same granularity, aggregating windows and imputing
missing values as desired.
- `AlignPolicy.OuterJoin` returns a time series with the union of
all timestamps present in any single-variable time series.
- `AlignPolicy.InnerJoin` returns a time series with the intersection
of all timestamps present in all single-variable time series.
:param aggregation_policy: The policy used to aggregate windows of adjacent observations when downsampling.
:param missing_value_policy: The policy used to impute missing values created when upsampling.
:rtype: TimeSeries
:return: The resampled multivariate time series.
"""
if self.is_empty():
if reference is not None or granularity is not None:
logger.warning(
"Attempting to align an empty time series to a set of reference time stamps or a "
"fixed granularity. Doing nothing."
)
return TimeSeries.from_pd(self.to_pd())
if reference is not None or alignment_policy is AlignPolicy.FixedReference:
if reference is None:
raise RuntimeError("`reference` is required when using `alignment_policy` FixedReference.")
if alignment_policy not in [None, AlignPolicy.FixedReference]:
logger.warning(
f"TimeSeries.align() received alignment policy "
f"{alignment_policy.name}, but a reference sequence of "
f"timestamps was also provided. `reference` is higher "
f"priority than `alignment_policy`, so we are using "
f"alignment policy FixedReference."
)
if granularity is not None:
logger.warning(
"TimeSeries.align() received a granularity at which to "
"resample the time series, but a reference sequence of "
"timestamps was also provided. `reference` is higher "
"priority than `granularity`, so we are using alignment "
"policy FixedReference, not FixedGranularity."
)
# Align each univariate time series to the reference timestamps
df = reindex_df(self.to_pd(), reference, missing_value_policy)
return TimeSeries.from_pd(df, check_times=False)
elif granularity is not None or alignment_policy is AlignPolicy.FixedGranularity:
if alignment_policy not in [None, AlignPolicy.FixedGranularity]:
logger.warning(
f"TimeSeries.align() received alignment policy "
f"{alignment_policy.name}, but a desired granularity at "
f"which to resample the time series was also received. "
f"`granularity` is higher priority than `alignment_policy`, "
f"so we are using alignment policy FixedGranularity."
)
# Get the granularity in seconds, if one is specified and the granularity is a fixed number of seconds.
# Otherwise, infer the granularity. If we have a non-fixed granularity, record that fact.
fixed_granularity = True
if granularity is None:
granularity = infer_granularity(self.time_stamps)
granularity = to_offset(granularity)
if isinstance(granularity, pd.DateOffset):
try:
granularity.nanos
except ValueError:
fixed_granularity = False
# Remove non-overlapping portions of univariates if desired
df = self.to_pd()
if remove_non_overlapping:
t0 = max(v.index[0] for v in self.univariates if len(v) > 0)
tf = min(v.index[-1] for v in self.univariates if len(v) > 0)
df = df[t0:tf]
# Resample at the desired granularity, setting the origin as needed
if origin is None and isinstance(granularity, pd.Timedelta):
elapsed = df.index[-1] - df.index[0]
origin = df.index[0] + elapsed % granularity
direction = None if not fixed_granularity else "right"
new_df = df.resample(granularity, origin=to_pd_datetime(origin), label=direction, closed=direction)
# Apply aggregation & missing value imputation policies
new_df = aggregation_policy.value(new_df)
if missing_value_policy is MissingValuePolicy.Interpolate and not fixed_granularity:
new_df = new_df.interpolate()
else:
new_df = missing_value_policy.value(new_df)
# Add the date offset only if we're resampling to a non-fixed granularity
if not fixed_granularity:
new_df.index += get_date_offset(time_stamps=new_df.index, reference=df.index)
# Do any forward-filling/back-filling to cover all the indices
return TimeSeries.from_pd(new_df[df.index[0] : df.index[-1]].ffill().bfill(), check_times=False)
elif alignment_policy in [None, AlignPolicy.OuterJoin]:
# Outer join is the union of all timestamps appearing in any of the
# univariate time series. We just need to apply the missing value
# policy to self.to_pd() (and bfill()/ffill() to take care of any
# additional missing values at the start/end), and then return
# from_pd().
df = missing_value_policy.value(self.to_pd())
if remove_non_overlapping:
t0 = max(v.index[0] for v in self.univariates if len(v) > 0)
tf = min(v.index[-1] for v in self.univariates if len(v) > 0)
df = df[t0:tf]
else:
df = df.ffill().bfill()
return TimeSeries.from_pd(df, check_times=False)
elif alignment_policy is AlignPolicy.InnerJoin:
# Inner join is the intersection of all the timestamps appearing in
# all of the univariate time series. Just get the indexes of the
# univariate sub time series where all variables are present.
# TODO: add a resampling step instead of just indexing?
ts = [set(var.np_time_stamps) for var in self.univariates]
t = ts[0]
for tprime in ts[1:]:
t = t.intersection(tprime)
if len(t) == 0:
raise RuntimeError(
"No time stamps are shared between all variables! Try again with a different alignment policy."
)
t = to_pd_datetime(sorted(t))
return TimeSeries.from_pd(self.to_pd().loc[t], check_times=False)
else:
raise RuntimeError(f"Alignment policy {alignment_policy.name} not supported")
The provided code snippet includes necessary dependencies for implementing the `minT_reconciliation` function. Write a Python function `def minT_reconciliation( forecasts: List[TimeSeries], errs: List[TimeSeries], sum_matrix: np.ndarray, n_leaves: int ) -> List[TimeSeries]` to solve the following problem:
Computes the minimum trace reconciliation for hierarchical time series, as described by `Wickramasuriya et al. 2018 <https://robjhyndman.com/papers/mint.pdf>`__. This algorithm assumes that we have a number of time series aggregated at various levels (the aggregation tree is described by ``sum_matrix``), and we obtain independent forecasts at each level of the hierarchy. Minimum trace reconciliation finds the optimal way to adjust (reconcile) the forecasts to reduce the variance of the estimation. :param forecasts: forecast for each aggregation level of the hierarchy :param errs: standard errors of forecasts for each level of the hierarchy. While not strictly necessary, reconciliation performs better if all forecasts are accompanied by uncertainty estimates. :param sum_matrix: matrix describing how the hierarchy is aggregated :param n_leaves: the number of leaf forecasts (i.e. the number of forecasts at the most dis-aggregated level of the hierarchy). We assume that the leaf forecasts are last in the lists ``forecasts`` & ``errs``, and that ``sum_matrix`` reflects this fact. :return: reconciled forecasts for each aggregation level of the hierarchy
Here is the function:
def minT_reconciliation(
forecasts: List[TimeSeries], errs: List[TimeSeries], sum_matrix: np.ndarray, n_leaves: int
) -> List[TimeSeries]:
"""
Computes the minimum trace reconciliation for hierarchical time series, as described by
`Wickramasuriya et al. 2018 <https://robjhyndman.com/papers/mint.pdf>`__. This algorithm assumes that
we have a number of time series aggregated at various levels (the aggregation tree is described by ``sum_matrix``),
and we obtain independent forecasts at each level of the hierarchy. Minimum trace reconciliation finds the optimal
way to adjust (reconcile) the forecasts to reduce the variance of the estimation.
:param forecasts: forecast for each aggregation level of the hierarchy
:param errs: standard errors of forecasts for each level of the hierarchy. While not strictly necessary,
reconciliation performs better if all forecasts are accompanied by uncertainty estimates.
:param sum_matrix: matrix describing how the hierarchy is aggregated
:param n_leaves: the number of leaf forecasts (i.e. the number of forecasts at the most dis-aggregated level
of the hierarchy). We assume that the leaf forecasts are last in the lists ``forecasts`` & ``errs``,
and that ``sum_matrix`` reflects this fact.
:return: reconciled forecasts for each aggregation level of the hierarchy
"""
m = len(forecasts)
n = n_leaves
assert len(errs) == m > n
assert all(yhat.dim == 1 for yhat in forecasts)
assert sum_matrix.shape == (m, n), f"Expected sum_matrix to have shape ({m}, {n}) got {sum_matrix.shape}"
assert (sum_matrix[-n:] == np.eye(n)).all()
# Convert forecasts to a single aligned multivariate time series
names = [yhat.names[0] for yhat in forecasts]
forecasts = OrderedDict((i, yhat.univariates[yhat.names[0]]) for i, yhat in enumerate(forecasts))
forecasts = TimeSeries(univariates=forecasts).align()
t_ref = forecasts.time_stamps
H = len(forecasts)
# Matrix of stderrs (if any) at each prediction horizon. shape is [m, H].
# If no stderrs are given, we the estimation error is proportional to the number of leaf nodes being combined.
coefs = sum_matrix.sum(axis=1)
if all(e is None for e in errs):
# FIXME: This heuristic can be improved if training errors are given.
# However, the model code should probably be responsible for this, not the reconciliation code.
Wh = [np.diag(coefs) for _ in range(H)]
else:
coefs = coefs.reshape(-1, 1)
errs = np.asarray(
[np.full(H, np.nan) if e is None else e.align(reference=t_ref).to_pd().values.flatten() ** 2 for e in errs]
) # [m, H]
# Replace NaN's w/ the mean of non-NaN stderrs & create diagonal error matrices
nan_errs = np.isnan(errs[:, 0])
if nan_errs.any():
errs[nan_errs] = np.nanmean(errs / coefs, axis=0) * coefs[nan_errs]
Wh = [np.diag(errs[:, h]) for h in range(H)]
# Create other supplementary matrices
J = np.zeros((n, m))
J[:, -n:] = np.eye(n)
U = np.zeros((m - n, m))
U[:, : m - n] = np.eye(m - n)
U[:, m - n :] = -sum_matrix[:-n]
# Compute projection matrices to compute coherent leaf forecasts
Ph = []
for W in Wh:
inv = np.linalg.inv(U @ W @ U.T)
P = J - ((J @ W) @ U.T) @ (inv @ U)
Ph.append(P)
# Compute reconciled forecasts
reconciled = []
for (t, yhat_h), P in zip(forecasts, Ph):
reconciled.append(sum_matrix @ (P @ yhat_h))
reconciled = pd.DataFrame(np.asarray(reconciled), index=to_pd_datetime(t_ref))
return [u.to_ts(name=name) for u, name in zip(TimeSeries.from_pd(reconciled).univariates, names)] | Computes the minimum trace reconciliation for hierarchical time series, as described by `Wickramasuriya et al. 2018 <https://robjhyndman.com/papers/mint.pdf>`__. This algorithm assumes that we have a number of time series aggregated at various levels (the aggregation tree is described by ``sum_matrix``), and we obtain independent forecasts at each level of the hierarchy. Minimum trace reconciliation finds the optimal way to adjust (reconcile) the forecasts to reduce the variance of the estimation. :param forecasts: forecast for each aggregation level of the hierarchy :param errs: standard errors of forecasts for each level of the hierarchy. While not strictly necessary, reconciliation performs better if all forecasts are accompanied by uncertainty estimates. :param sum_matrix: matrix describing how the hierarchy is aggregated :param n_leaves: the number of leaf forecasts (i.e. the number of forecasts at the most dis-aggregated level of the hierarchy). We assume that the leaf forecasts are last in the lists ``forecasts`` & ``errs``, and that ``sum_matrix`` reflects this fact. :return: reconciled forecasts for each aggregation level of the hierarchy |
311 | import argparse
import copy
import json
import logging
import os
import sys
import time
import git
from typing import Tuple
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from tqdm import tqdm
from merlion.evaluate.anomaly import (
TSADEvaluatorConfig,
accumulate_tsad_score,
TSADScoreAccumulator as ScoreAcc,
TSADEvaluator,
)
from merlion.models.anomaly.base import DetectorBase
from merlion.models.ensemble.anomaly import DetectorEnsemble
from merlion.evaluate.anomaly import TSADMetric, ScoreType
from merlion.models.factory import ModelFactory
from merlion.transform.resample import TemporalResample
from merlion.utils import TimeSeries
from merlion.utils.resample import to_pd_datetime
from ts_datasets.anomaly import *
CONFIG_JSON = os.path.join(MERLION_ROOT, "conf", "benchmark_anomaly.json")
class TSADMetric(Enum):
def parse_args():
with open(CONFIG_JSON, "r") as f:
valid_models = list(json.load(f).keys())
parser = argparse.ArgumentParser(
description="Script to benchmark Merlion time series anomaly detection "
"models. This script assumes that you have pip installed "
"both merlion (this repo's main package) and ts_datasets "
"(a sub-repo)."
)
parser.add_argument(
"--dataset",
default="NAB_all",
help="Name of dataset to run benchmark on. See get_dataset() "
"in ts_datasets/ts_datasets/anomaly/__init__.py for "
"valid options.",
)
parser.add_argument("--data_root", default=None, help="Root directory/file of dataset.")
parser.add_argument("--data_kwargs", default="{}", help="JSON of keyword arguemtns for the data loader.")
parser.add_argument(
"--models",
type=str,
nargs="+",
default=["DefaultDetector"],
help="Name of model (or models in ensemble) to benchmark.",
choices=valid_models,
)
parser.add_argument(
"--retrain_freq",
type=str,
default="default",
help="String (e.g. 1d, 2w, etc.) specifying how often "
"to re-train the model before evaluating it on "
"the next window of data. Note that re-training "
"is unsupervised, i.e. does not use ground truth "
"anomaly labels in any way. Default retrain_freq is "
"1d for univariate data and None for multivariate.",
)
parser.add_argument(
"--train_window",
type=str,
default=None,
help="String (e.g. 30d, 6m, etc.) specifying how much "
"data (in terms of a time window) the model "
"should train on at any point.",
)
parser.add_argument(
"--metric",
type=str,
default="F1",
choices=list(TSADMetric.__members__.keys()),
help="Metric to optimize for (where relevant)",
)
parser.add_argument(
"--point_adj_metric",
type=str,
default="PointAdjustedF1",
choices=list(TSADMetric.__members__.keys()),
help="Final metric to optimize for when evaluating point-adjusted performance",
)
parser.add_argument(
"--pointwise_metric",
type=str,
default="PointwiseF1",
choices=list(TSADMetric.__members__.keys()),
help="Final metric to optimize for when evaluating pointwise performance",
)
parser.add_argument("--unsupervised", action="store_true")
parser.add_argument(
"--tune_on_test",
action="store_true",
default=False,
help="Whether to tune the threshold on both train and "
"test splits of the time series. Useful for "
"metrics like Best F1, or NAB score with "
"threshold optimization.",
)
parser.add_argument(
"--load_checkpoint",
action="store_true",
default=False,
help="Specify this option if you would like continue "
"training your model on a dataset from a "
"checkpoint, instead of restarting from scratch.",
)
parser.add_argument(
"--eval_only",
action="store_true",
default=False,
help="Specify this option if you would like to skip "
"the model training phase, and simply evaluate "
"on partial saved results.",
)
parser.add_argument("--debug", action="store_true", default=False, help="Whether to enable INFO-level logs.")
parser.add_argument(
"--visualize",
action="store_true",
default=False,
help="Whether to plot the model's predictions after "
"training on each example. Mutually exclusive "
"with running any sort of evaluation.",
)
args = parser.parse_args()
args.metric = TSADMetric[args.metric]
args.pointwise_metric = TSADMetric[args.pointwise_metric]
args.visualize = args.visualize and not args.eval_only
args.data_kwargs = json.loads(args.data_kwargs)
assert isinstance(args.data_kwargs, dict)
if args.retrain_freq.lower() in ["", "none", "null"]:
args.retrain_freq = None
elif args.retrain_freq != "default":
rf = pd.to_timedelta(args.retrain_freq).total_seconds()
if rf % (3600 * 24) == 0:
args.retrain_freq = f"{int(rf/3600/24)}d"
elif rf % 3600 == 0:
args.retrain_freq = f"{int(rf/3600)}h"
elif rf % 60 == 0:
args.retrain_freq = f"{int(rf//60)}min"
else:
args.retrain_freq = f"{int(rf)}s"
return args | null |
312 | import argparse
import copy
import json
import logging
import os
import sys
import time
import git
from typing import Tuple
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from tqdm import tqdm
from merlion.evaluate.anomaly import (
TSADEvaluatorConfig,
accumulate_tsad_score,
TSADScoreAccumulator as ScoreAcc,
TSADEvaluator,
)
from merlion.models.anomaly.base import DetectorBase
from merlion.models.ensemble.anomaly import DetectorEnsemble
from merlion.evaluate.anomaly import TSADMetric, ScoreType
from merlion.models.factory import ModelFactory
from merlion.transform.resample import TemporalResample
from merlion.utils import TimeSeries
from merlion.utils.resample import to_pd_datetime
from ts_datasets.anomaly import *
logger = logging.getLogger(__name__)
def get_dataset_name(dataset: TSADBaseDataset):
name = type(dataset).__name__
if hasattr(dataset, "subset") and dataset.subset is not None:
name += "_" + dataset.subset
if isinstance(dataset, CustomAnomalyDataset):
root = dataset.rootdir
name = os.path.join(name, os.path.basename(os.path.dirname(root) if os.path.isfile(root) else root))
return name
def resolve_model_name(model_name: str):
with open(CONFIG_JSON, "r") as f:
config_dict = json.load(f)
if model_name not in config_dict:
raise NotImplementedError(
f"Benchmarking not implemented for model {model_name}. Valid model names are {list(config_dict.keys())}"
)
while "alias" in config_dict[model_name]:
assert model_name != config_dict[model_name]["alias"], "Alias name cannot be the same as the model name"
model_name = config_dict[model_name]["alias"]
return model_name
def get_model(
model_name: str, dataset: TSADBaseDataset, metric: TSADMetric, tune_on_test=False, unsupervised=False
) -> Tuple[DetectorBase, dict]:
with open(CONFIG_JSON, "r") as f:
config_dict = json.load(f)
if model_name not in config_dict:
raise NotImplementedError(
f"Benchmarking not implemented for model {model_name}. Valid model names are {list(config_dict.keys())}"
)
while "alias" in config_dict[model_name]:
model_name = config_dict[model_name]["alias"]
# Load the model with default kwargs, but override with dataset-specific
# kwargs where relevant
model_configs = config_dict[model_name]["config"]
model_type = config_dict[model_name].get("model_type", model_name)
model_kwargs = model_configs["default"]
model_kwargs.update(model_configs.get(type(dataset).__name__, {}))
model = ModelFactory.create(name=model_type, **model_kwargs)
# The post-rule train configs are fully specified for each dataset (where
# relevant), with a default option if there is no dataset-specific option.
post_rule_train_configs = config_dict[model_name].get("post_rule_train_config", {})
d = post_rule_train_configs.get("default", {})
d.update(post_rule_train_configs.get(type(dataset).__name__, {}))
if len(d) == 0:
d = copy.copy(model._default_post_rule_train_config)
d["metric"] = None if unsupervised else metric
d.update({"max_early_sec": dataset.max_lead_sec, "max_delay_sec": dataset.max_lag_sec})
t = dataset_to_threshold(dataset, tune_on_test)
model.threshold.alm_threshold = t
d["unsup_quantile"] = None
return model, d
def df_to_merlion(df: pd.DataFrame, md: pd.DataFrame, get_ground_truth=False, transform=None) -> TimeSeries:
"""Converts a pandas dataframe time series to the Merlion format."""
if get_ground_truth:
if False and "changepoint" in md.keys():
series = md["anomaly"] | md["changepoint"]
else:
series = md["anomaly"]
else:
series = df
time_series = TimeSeries.from_pd(series)
if transform is not None:
time_series = transform(time_series)
return time_series
def get_code_version_info():
return dict(time=str(pd.Timestamp.now()), commit=git.Repo(search_parent_directories=True).head.object.hexsha)
class ScoreType(Enum):
"""
The algorithm to use to compute true/false positives/negatives. See the technical report
for more details on each score type. Merlion's preferred default is revised point-adjusted.
"""
Pointwise = 0
PointAdjusted = 1
RevisedPointAdjusted = 2
class TSADEvaluatorConfig(EvaluatorConfig):
"""
Configuration class for a `TSADEvaluator`.
"""
def __init__(self, max_early_sec: float = None, max_delay_sec: float = None, **kwargs):
"""
:param max_early_sec: the maximum number of seconds we allow an anomaly
to be detected early.
:param max_delay_sec: if an anomaly is detected more than this many
seconds after its start, it is not counted as being detected.
"""
super().__init__(**kwargs)
self.max_early_sec = max_early_sec
self.max_delay_sec = max_delay_sec
class TemporalResample(TransformBase):
"""
Defines a policy to temporally resample a time series at a specified granularity. Note that while this transform
does support inversion, the recovered time series may differ from the input due to information loss when resampling.
"""
def __init__(
self,
granularity: Union[str, int, float] = None,
origin: int = None,
trainable_granularity: bool = None,
remove_non_overlapping=True,
aggregation_policy: Union[str, AggregationPolicy] = "Mean",
missing_value_policy: Union[str, MissingValuePolicy] = "Interpolate",
):
"""
Defines a policy to temporally resample a time series.
:param granularity: The granularity at which we want to resample.
:param origin: The time stamp defining the offset to start at.
:param trainable_granularity: Whether we will automatically infer the granularity of the time series.
If ``None`` (default), it will be trainable only if no granularity is explicitly given.
:param remove_non_overlapping: If ``True``, we will only keep the portions
of the univariates that overlap with each other. For example, if we
have 3 univariates which span timestamps [0, 3600], [60, 3660], and
[30, 3540], we will only keep timestamps in the range [60, 3540]. If
``False``, we will keep all timestamps produced by the resampling.
:param aggregation_policy: The policy we will use to aggregate multiple values in a window (downsampling).
:param missing_value_policy: The policy we will use to impute missing values (upsampling).
"""
super().__init__()
self.granularity = granularity
self.origin = origin
self.trainable_granularity = (granularity is None) if trainable_granularity is None else trainable_granularity
self.remove_non_overlapping = remove_non_overlapping
self.aggregation_policy = aggregation_policy
self.missing_value_policy = missing_value_policy
def requires_inversion_state(self):
return False
def proper_inversion(self):
"""
We treat resampling as a proper inversion to avoid emitting warnings.
"""
return True
def granularity(self):
return self._granularity
def granularity(self, granularity):
if not isinstance(granularity, (int, float)):
try:
granularity = granularity_str_to_seconds(granularity)
except:
granularity = getattr(granularity, "freqstr", granularity)
self._granularity = granularity
def aggregation_policy(self) -> AggregationPolicy:
return self._aggregation_policy
def aggregation_policy(self, agg: Union[str, AggregationPolicy]):
if isinstance(agg, str):
valid = set(AggregationPolicy.__members__.keys())
if agg not in valid:
raise KeyError(f"{agg} is not a valid aggregation policy. Valid aggregation policies are: {valid}")
agg = AggregationPolicy[agg]
self._aggregation_policy = agg
def missing_value_policy(self) -> MissingValuePolicy:
return self._missing_value_policy
def missing_value_policy(self, mv: Union[str, MissingValuePolicy]):
if isinstance(mv, str):
valid = set(MissingValuePolicy.__members__.keys())
if mv not in valid:
raise KeyError(f"{mv} is not a valid missing value policy. Valid aggregation policies are: {valid}")
mv = MissingValuePolicy[mv]
self._missing_value_policy = mv
def train(self, time_series: TimeSeries):
if self.trainable_granularity:
granularity = infer_granularity(time_series.np_time_stamps)
logger.warning(f"Inferred granularity {granularity}")
self.granularity = granularity
if self.trainable_granularity or self.origin is None:
t0, tf = time_series.t0, time_series.tf
if isinstance(self.granularity, (int, float)):
offset = (tf - t0) % self.granularity
else:
offset = 0
self.origin = t0 + offset
def __call__(self, time_series: TimeSeries) -> TimeSeries:
if self.granularity is None:
logger.warning(
f"Skipping resampling step because granularity is "
f"None. Please either specify a granularity or train "
f"this transformation on a time series."
)
return time_series
return time_series.align(
alignment_policy=AlignPolicy.FixedGranularity,
granularity=self.granularity,
origin=self.origin,
remove_non_overlapping=self.remove_non_overlapping,
aggregation_policy=self.aggregation_policy,
missing_value_policy=self.missing_value_policy,
)
def to_pd_datetime(timestamp):
"""
Converts a timestamp (or list/iterable of timestamps) to pandas Datetime, truncated at the millisecond.
"""
if isinstance(timestamp, pd.DatetimeIndex):
return timestamp
elif isinstance(timestamp, (int, float)):
return pd.to_datetime(int(timestamp * 1000), unit="ms")
elif isinstance(timestamp, Iterable) and all(isinstance(t, (int, float)) for t in timestamp):
timestamp = pd.to_datetime(np.asarray(timestamp).astype(float) * 1000, unit="ms")
elif isinstance(timestamp, np.ndarray) and timestamp.dtype in [int, np.float32, np.float64]:
timestamp = pd.to_datetime(np.asarray(timestamp).astype(float) * 1000, unit="ms")
return pd.to_datetime(timestamp)
The provided code snippet includes necessary dependencies for implementing the `train_model` function. Write a Python function `def train_model( model_name, metric, dataset, retrain_freq=None, train_window=None, load_checkpoint=False, visualize=False, debug=False, unsupervised=False, tune_on_test=False, )` to solve the following problem:
Trains a model on the time series dataset given, and save their predictions to a dataset.
Here is the function:
def train_model(
model_name,
metric,
dataset,
retrain_freq=None,
train_window=None,
load_checkpoint=False,
visualize=False,
debug=False,
unsupervised=False,
tune_on_test=False,
):
"""Trains a model on the time series dataset given, and save their predictions to a dataset."""
resampler = None
if isinstance(dataset, IOpsCompetition):
resampler = TemporalResample("5min")
model_name = resolve_model_name(model_name)
dataset_name = get_dataset_name(dataset)
model_dir = model_name if retrain_freq is None else f"{model_name}_{retrain_freq}"
dirname = os.path.join("results", "anomaly", model_dir)
csv = os.path.join(dirname, f"pred_{dataset_name}.csv.gz")
config_fname = os.path.join(dirname, f"{dataset_name}_config.json")
checkpoint = os.path.join(dirname, f"ckpt_{dataset_name}.txt")
# Determine where to start within the dataset if there is a checkpoint
i0 = 0
if os.path.isfile(checkpoint) and os.path.isfile(csv) and load_checkpoint:
with open(checkpoint, "r") as f:
i0 = int(f.read().rstrip("\n"))
# Validate & sanitize the existing CSV checkpoint
df = pd.read_csv(csv, dtype={"trainval": bool, "idx": int})
df = df[df["idx"] < i0]
if set(df["idx"]) == set(range(i0)):
df.to_csv(csv, index=False)
else:
i0 = 0
model = None
for i, (df, md) in enumerate(tqdm(dataset)):
if i < i0:
continue
# Reload model & get the train / test split for this time series
model, post_rule_train_config = get_model(
model_name=model_name, dataset=dataset, metric=metric, tune_on_test=tune_on_test, unsupervised=unsupervised
)
delay = post_rule_train_config["max_delay_sec"]
train_vals = df_to_merlion(df[md.trainval], md[md.trainval], get_ground_truth=False, transform=resampler)
test_vals = df_to_merlion(df[~md.trainval], md[~md.trainval], get_ground_truth=False, transform=resampler)
train_anom = df_to_merlion(df[md.trainval], md[md.trainval], get_ground_truth=True)
test_anom = df_to_merlion(df[~md.trainval], md[~md.trainval], get_ground_truth=True)
# Set up an evaluator & get predictions
evaluator = TSADEvaluator(
model=model,
config=TSADEvaluatorConfig(
train_window=train_window,
retrain_freq=retrain_freq,
max_delay_sec=delay,
max_early_sec=getattr(model.threshold, "suppress_secs", delay),
),
)
train_scores, test_scores = evaluator.get_predict(
train_vals=train_vals,
test_vals=test_vals,
post_process=False,
train_kwargs={"anomaly_labels": train_anom, "post_rule_train_config": post_rule_train_config},
)
# Write the model's predictions to the csv file, starting a new one
# if we aren't loading an existing checkpoint. Scores from all time
# series in the dataset are combined together in a single csv. Each
# line in the csv corresponds to a point in a time series, and contains
# the timestamp, raw anomaly score, and index of the time series.
if not visualize:
if i == i0 == 0:
os.makedirs(os.path.dirname(csv), exist_ok=True)
os.makedirs(os.path.dirname(checkpoint), exist_ok=True)
df = pd.DataFrame({"timestamp": [], "y": [], "trainval": [], "idx": []})
df.to_csv(csv, index=False)
df = pd.read_csv(csv)
ts_df = pd.concat((train_scores.to_pd(), test_scores.to_pd()))
ts_df.columns = ["y"]
ts_df.loc[:, "timestamp"] = ts_df.index.view(int) // 1e9
ts_df.loc[:, "trainval"] = [j < len(train_scores) for j in range(len(ts_df))]
ts_df.loc[:, "idx"] = i
df = pd.concat((df, ts_df), ignore_index=True)
df.to_csv(csv, index=False)
# Start from time series i+1 if loading a checkpoint.
with open(checkpoint, "w") as f:
f.write(str(i + 1))
if visualize or debug:
# Train the post-rule on the appropriate labels
score = test_scores if tune_on_test else train_scores
label = test_anom if tune_on_test else train_anom
model.train_post_process(
train_result=score, anomaly_labels=label, post_rule_train_config=post_rule_train_config
)
# Log (many) evaluation metrics for the time series
score_acc = evaluator.evaluate(ground_truth=test_anom, predict=model.threshold(test_scores))
mttd = score_acc.mean_time_to_detect()
if mttd < pd.to_timedelta(0):
mttd = f"-{-mttd}"
logger.info(f"\nPerformance on time series {i+1}/{len(dataset)}")
logger.info("Revised Point-Adjusted Metrics")
logger.info(f"F1 Score: {score_acc.f1(score_type=ScoreType.RevisedPointAdjusted):.4f}")
logger.info(f"Precision: {score_acc.precision(score_type=ScoreType.RevisedPointAdjusted):.4f}")
logger.info(f"Recall: {score_acc.recall(score_type=ScoreType.RevisedPointAdjusted):.4f}\n")
logger.info(f"Mean Time To Detect Anomalies: {mttd}")
logger.info(f"Mean Detected Anomaly Duration: {score_acc.mean_detected_anomaly_duration()}")
logger.info(f"Mean Anomaly Duration: {score_acc.mean_anomaly_duration()}\n")
if debug:
logger.info(f"Pointwise metrics")
logger.info(f"F1 Score: {score_acc.f1(score_type=ScoreType.Pointwise):.4f}")
logger.info(f"Precision: {score_acc.precision(score_type=ScoreType.Pointwise):.4f}")
logger.info(f"Recall: {score_acc.recall(score_type=ScoreType.Pointwise):.4f}\n")
logger.info("Point-Adjusted Metrics")
logger.info(f"F1 Score: {score_acc.f1(score_type=ScoreType.PointAdjusted):.4f}")
logger.info(f"Precision: {score_acc.precision(score_type=ScoreType.PointAdjusted):.4f}")
logger.info(f"Recall: {score_acc.recall(score_type=ScoreType.PointAdjusted):.4f}\n")
logger.info(f"NAB Scores")
logger.info(f"NAB score (balanced): {score_acc.nab_score():.4f}")
logger.info(f"NAB score (low FP): {score_acc.nab_score(fp_weight=0.22):.4f}")
logger.info(f"NAB score (low FN): {score_acc.nab_score(fn_weight=2.0):.4f}\n")
if visualize:
# Make a plot
alarms = model.threshold(test_scores)
fig = model.get_figure(time_series=test_vals, time_series_prev=train_vals, plot_time_series_prev=True)
fig.anom = alarms.univariates[alarms.names[0]]
fig, ax = fig.plot(figsize=(1800, 600))
# Overlay windows indicating the true anomalies
all_anom = train_anom + test_anom
t, y = zip(*all_anom)
y = np.asarray(y).flatten()
splits = np.where(y[1:] != y[:-1])[0] + 1
splits = np.concatenate(([0], splits, [len(y) - 1]))
anom_windows = [(splits[k], splits[k + 1]) for k in range(len(splits) - 1) if y[splits[k]]]
for i_0, i_f in anom_windows:
t_0 = to_pd_datetime(t[i_0])
t_f = to_pd_datetime(t[i_f])
ax.axvspan(t_0, t_f, color="#d07070", zorder=-1, alpha=0.5)
time.sleep(2)
plt.show()
# Save full experimental config
if model is not None and not visualize:
full_config = dict(
model_config=model.config.to_dict(),
evaluator_config=evaluator.config.to_dict(),
code_version_info=get_code_version_info(),
)
os.makedirs(os.path.dirname(config_fname), exist_ok=True)
with open(config_fname, "w") as f:
json.dump(full_config, f, indent=2, sort_keys=True) | Trains a model on the time series dataset given, and save their predictions to a dataset. |
313 | import argparse
import copy
import json
import logging
import os
import sys
import time
import git
from typing import Tuple
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from tqdm import tqdm
from merlion.evaluate.anomaly import (
TSADEvaluatorConfig,
accumulate_tsad_score,
TSADScoreAccumulator as ScoreAcc,
TSADEvaluator,
)
from merlion.models.anomaly.base import DetectorBase
from merlion.models.ensemble.anomaly import DetectorEnsemble
from merlion.evaluate.anomaly import TSADMetric, ScoreType
from merlion.models.factory import ModelFactory
from merlion.transform.resample import TemporalResample
from merlion.utils import TimeSeries
from merlion.utils.resample import to_pd_datetime
from ts_datasets.anomaly import *
def get_dataset_name(dataset: TSADBaseDataset):
name = type(dataset).__name__
if hasattr(dataset, "subset") and dataset.subset is not None:
name += "_" + dataset.subset
if isinstance(dataset, CustomAnomalyDataset):
root = dataset.rootdir
name = os.path.join(name, os.path.basename(os.path.dirname(root) if os.path.isfile(root) else root))
return name
def to_pd_datetime(timestamp):
"""
Converts a timestamp (or list/iterable of timestamps) to pandas Datetime, truncated at the millisecond.
"""
if isinstance(timestamp, pd.DatetimeIndex):
return timestamp
elif isinstance(timestamp, (int, float)):
return pd.to_datetime(int(timestamp * 1000), unit="ms")
elif isinstance(timestamp, Iterable) and all(isinstance(t, (int, float)) for t in timestamp):
timestamp = pd.to_datetime(np.asarray(timestamp).astype(float) * 1000, unit="ms")
elif isinstance(timestamp, np.ndarray) and timestamp.dtype in [int, np.float32, np.float64]:
timestamp = pd.to_datetime(np.asarray(timestamp).astype(float) * 1000, unit="ms")
return pd.to_datetime(timestamp)
The provided code snippet includes necessary dependencies for implementing the `read_model_predictions` function. Write a Python function `def read_model_predictions(dataset: TSADBaseDataset, model_dir: str)` to solve the following problem:
Returns a list of lists all_preds, where all_preds[i] is the model's raw anomaly scores for time series i in the dataset.
Here is the function:
def read_model_predictions(dataset: TSADBaseDataset, model_dir: str):
"""
Returns a list of lists all_preds, where all_preds[i] is the model's raw
anomaly scores for time series i in the dataset.
"""
csv = os.path.join("results", "anomaly", model_dir, f"pred_{get_dataset_name(dataset)}.csv.gz")
preds = pd.read_csv(csv, dtype={"trainval": bool, "idx": int})
preds["timestamp"] = to_pd_datetime(preds["timestamp"])
return [preds[preds["idx"] == i].set_index("timestamp") for i in sorted(preds["idx"].unique())] | Returns a list of lists all_preds, where all_preds[i] is the model's raw anomaly scores for time series i in the dataset. |
314 | import argparse
import copy
import json
import logging
import os
import sys
import time
import git
from typing import Tuple
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from tqdm import tqdm
from merlion.evaluate.anomaly import (
TSADEvaluatorConfig,
accumulate_tsad_score,
TSADScoreAccumulator as ScoreAcc,
TSADEvaluator,
)
from merlion.models.anomaly.base import DetectorBase
from merlion.models.ensemble.anomaly import DetectorEnsemble
from merlion.evaluate.anomaly import TSADMetric, ScoreType
from merlion.models.factory import ModelFactory
from merlion.transform.resample import TemporalResample
from merlion.utils import TimeSeries
from merlion.utils.resample import to_pd_datetime
from ts_datasets.anomaly import *
def dataset_to_threshold(dataset: TSADBaseDataset, tune_on_test=False):
if isinstance(dataset, IOpsCompetition):
return 2.25
elif isinstance(dataset, NAB):
return 3.5
elif isinstance(dataset, Synthetic):
return 2
elif isinstance(dataset, MSL):
return 3.0
elif isinstance(dataset, SMAP):
return 3.5
elif isinstance(dataset, SMD):
return 3 if not tune_on_test else 2.5
elif hasattr(dataset, "default_threshold"):
return dataset.default_threshold
return 3
def get_model(
model_name: str, dataset: TSADBaseDataset, metric: TSADMetric, tune_on_test=False, unsupervised=False
) -> Tuple[DetectorBase, dict]:
with open(CONFIG_JSON, "r") as f:
config_dict = json.load(f)
if model_name not in config_dict:
raise NotImplementedError(
f"Benchmarking not implemented for model {model_name}. Valid model names are {list(config_dict.keys())}"
)
while "alias" in config_dict[model_name]:
model_name = config_dict[model_name]["alias"]
# Load the model with default kwargs, but override with dataset-specific
# kwargs where relevant
model_configs = config_dict[model_name]["config"]
model_type = config_dict[model_name].get("model_type", model_name)
model_kwargs = model_configs["default"]
model_kwargs.update(model_configs.get(type(dataset).__name__, {}))
model = ModelFactory.create(name=model_type, **model_kwargs)
# The post-rule train configs are fully specified for each dataset (where
# relevant), with a default option if there is no dataset-specific option.
post_rule_train_configs = config_dict[model_name].get("post_rule_train_config", {})
d = post_rule_train_configs.get("default", {})
d.update(post_rule_train_configs.get(type(dataset).__name__, {}))
if len(d) == 0:
d = copy.copy(model._default_post_rule_train_config)
d["metric"] = None if unsupervised else metric
d.update({"max_early_sec": dataset.max_lead_sec, "max_delay_sec": dataset.max_lag_sec})
t = dataset_to_threshold(dataset, tune_on_test)
model.threshold.alm_threshold = t
d["unsup_quantile"] = None
return model, d
def df_to_merlion(df: pd.DataFrame, md: pd.DataFrame, get_ground_truth=False, transform=None) -> TimeSeries:
"""Converts a pandas dataframe time series to the Merlion format."""
if get_ground_truth:
if False and "changepoint" in md.keys():
series = md["anomaly"] | md["changepoint"]
else:
series = md["anomaly"]
else:
series = df
time_series = TimeSeries.from_pd(series)
if transform is not None:
time_series = transform(time_series)
return time_series
class ScoreType(Enum):
"""
The algorithm to use to compute true/false positives/negatives. See the technical report
for more details on each score type. Merlion's preferred default is revised point-adjusted.
"""
Pointwise = 0
PointAdjusted = 1
RevisedPointAdjusted = 2
def accumulate_tsad_score(
ground_truth: Union[TimeSeries, UnivariateTimeSeries],
predict: Union[TimeSeries, UnivariateTimeSeries],
max_early_sec=None,
max_delay_sec=None,
metric=None,
) -> Union[TSADScoreAccumulator, float]:
"""
Computes the components required to compute multiple different types of
performance metrics for time series anomaly detection.
:param ground_truth: A time series indicating whether each time step
corresponds to an anomaly.
:param predict: A time series with the anomaly score predicted for each
time step. Detections correspond to nonzero scores.
:param max_early_sec: The maximum amount of time (in seconds) the anomaly
detection is allowed to occur before the actual incidence. If None, no
early detections are allowed. Note that None is the same as 0.
:param max_delay_sec: The maximum amount of time (in seconds) the anomaly
detection is allowed to occur after the start of the actual incident
(but before the end of the actual incident). If None, we allow any
detection during the duration of the incident. Note that None differs
from 0 because 0 means that we only permit detections that are early
or exactly on time!
:param metric: A function which takes a `TSADScoreAccumulator` as input and
returns a ``float``. The `TSADScoreAccumulator` object is returned if
``metric`` is ``None``.
"""
ground_truth = ground_truth.to_ts() if isinstance(ground_truth, UnivariateTimeSeries) else ground_truth
predict = predict.to_ts() if isinstance(predict, UnivariateTimeSeries) else predict
assert (
ground_truth.dim == 1 and predict.dim == 1
), "Can only evaluate anomaly scores when ground truth and prediction are single-variable time series."
ground_truth = ground_truth.univariates[ground_truth.names[0]]
ts = ground_truth.np_time_stamps
ys = ground_truth.np_values.astype(bool)
i_split = np.where(ys[1:] != ys[:-1])[0] + 1
predict = predict.univariates[predict.names[0]]
ts_pred = predict.np_time_stamps
ys_pred = predict.np_values.astype(bool)
t = t_prev = ts[0]
window_is_anomaly = ys[0]
t0_anomaly, tf_anomaly = None, None
num_tp_pointwise, num_tp_point_adj, num_tp_anom = 0, 0, 0
num_fn_pointwise, num_fn_point_adj, num_fn_anom = 0, 0, 0
num_tn, num_fp = 0, 0
tp_score, fp_score = 0.0, 0.0
tp_detection_delays, anom_durations, tp_anom_durations = [], [], []
for i in [*i_split, -1]:
t_next = ts[i] + int(i == -1)
# Determine the boundaries of the window
# Add buffer if it's anomalous, remove buffer if it's not
t0, tf = t, t_next
if window_is_anomaly:
t0_anomaly, tf_anomaly = t0, tf
if max_early_sec is not None and max_early_sec > 0:
t0 = max(t_prev, t - max_early_sec)
if max_delay_sec is not None and max_delay_sec > 0 and i != -1:
tf = min(t_next, t + max_delay_sec)
else:
if max_delay_sec is not None and max_delay_sec > 0:
t0 = min(t, t_prev + max_delay_sec)
if max_early_sec is not None and max_early_sec > 0:
tf = max(t, t_next - max_early_sec)
j0 = bisect_left(ts_pred, t0)
jf = max(bisect_left(ts_pred, tf), j0 + 1)
window = ys_pred[j0:jf]
if window_is_anomaly:
anom_durations.append(tf_anomaly - t0_anomaly)
num_tp_pointwise += sum(y != 0 for y in window)
num_fn_pointwise += sum(y == 0 for y in window)
if not any(window):
num_fn_anom += 1
num_fn_point_adj += len(window)
# true positives are more beneficial if they occur earlier
else:
num_tp_anom += 1
num_tp_point_adj += len(window)
t_detect = ts_pred[np.where(window)[0][0] + j0]
tp_detection_delays.append(t_detect - t0_anomaly)
tp_anom_durations.append(tf_anomaly - t0_anomaly)
delay = 0 if tf - t0 == 0 else (t_detect - t0) / (tf - t0)
tp_score += sum(scaled_sigmoid(delay))
else:
# false positives are more severe if they occur later
# FIXME: false positives can be fired in data spans that are
# not present in the original data. Should we still
# count these, or should we remove them from the window?
if any(window):
t_fp = ts_pred[np.where(window)[0] + j0]
num_fp += len(t_fp)
if tf != t0:
delays = (t_fp - t0) / (tf - t0)
else:
delays = np.infty * np.ones(len(t_fp))
fp_score += sum(scaled_sigmoid(delays))
# do nothing for true negatives, except count them
num_tn += sum(window == 0)
# Advance to the next window
t_prev = t
t = t_next
window_is_anomaly = not window_is_anomaly
score_components = TSADScoreAccumulator(
num_tp_anom=num_tp_anom,
num_tp_pointwise=num_tp_pointwise,
num_tp_point_adj=num_tp_point_adj,
num_fp=num_fp,
num_fn_anom=num_fn_anom,
num_fn_pointwise=num_fn_pointwise,
num_fn_point_adj=num_fn_point_adj,
num_tn=num_tn,
tp_score=tp_score,
fp_score=fp_score,
tp_detection_delays=tp_detection_delays,
tp_anom_durations=tp_anom_durations,
anom_durations=anom_durations,
)
if metric is not None:
return metric(score_components)
return score_components
class TSADMetric(Enum):
"""
Enumeration of evaluation metrics for time series anomaly detection.
For each value, the name is the metric, and the value is a partial
function of form ``f(ground_truth, predicted, **kwargs)``
"""
MeanTimeToDetect = partial(accumulate_tsad_score, metric=TSADScoreAccumulator.mean_time_to_detect)
# Revised point-adjusted metrics (default)
F1 = partial(
accumulate_tsad_score, metric=partial(TSADScoreAccumulator.f1, score_type=ScoreType.RevisedPointAdjusted)
)
Precision = partial(
accumulate_tsad_score, metric=partial(TSADScoreAccumulator.precision, score_type=ScoreType.RevisedPointAdjusted)
)
Recall = partial(
accumulate_tsad_score, metric=partial(TSADScoreAccumulator.recall, score_type=ScoreType.RevisedPointAdjusted)
)
# Pointwise metrics
PointwiseF1 = partial(
accumulate_tsad_score, metric=partial(TSADScoreAccumulator.f1, score_type=ScoreType.Pointwise)
)
PointwisePrecision = partial(
accumulate_tsad_score, metric=partial(TSADScoreAccumulator.precision, score_type=ScoreType.Pointwise)
)
PointwiseRecall = partial(
accumulate_tsad_score, metric=partial(TSADScoreAccumulator.recall, score_type=ScoreType.Pointwise)
)
# Point-adjusted metrics
PointAdjustedF1 = partial(
accumulate_tsad_score, metric=partial(TSADScoreAccumulator.f1, score_type=ScoreType.PointAdjusted)
)
PointAdjustedPrecision = partial(
accumulate_tsad_score, metric=partial(TSADScoreAccumulator.precision, score_type=ScoreType.PointAdjusted)
)
PointAdjustedRecall = partial(
accumulate_tsad_score, metric=partial(TSADScoreAccumulator.recall, score_type=ScoreType.PointAdjusted)
)
# NAB scores
NABScore = partial(accumulate_tsad_score, metric=TSADScoreAccumulator.nab_score)
NABScoreLowFN = partial(accumulate_tsad_score, metric=partial(TSADScoreAccumulator.nab_score, fn_weight=2.0))
NABScoreLowFP = partial(accumulate_tsad_score, metric=partial(TSADScoreAccumulator.nab_score, fp_weight=0.22))
# Argus metrics
F2 = partial(
accumulate_tsad_score,
metric=partial(TSADScoreAccumulator.f_beta, score_type=ScoreType.RevisedPointAdjusted, beta=2.0),
)
F5 = partial(
accumulate_tsad_score,
metric=partial(TSADScoreAccumulator.f_beta, score_type=ScoreType.RevisedPointAdjusted, beta=5.0),
)
class DetectorEnsemble(EnsembleBase, DetectorBase):
"""
Class representing an ensemble of multiple anomaly detection models.
"""
models: List[DetectorBase]
config_class = DetectorEnsembleConfig
def __init__(self, config: DetectorEnsembleConfig = None, models: List[DetectorBase] = None):
super().__init__(config=config, models=models)
for model in self.models:
assert isinstance(model, DetectorBase), (
f"Expected all models in {type(self).__name__} to be anomaly "
f"detectors, but got a {type(model).__name__}."
)
model.config.enable_threshold = self.per_model_threshold
def require_even_sampling(self) -> bool:
return False
def require_univariate(self) -> bool:
return False
def _default_post_rule_train_config(self):
return dict(metric=TSADMetric.F1, unsup_quantile=None)
def _default_train_config(self):
return DetectorEnsembleTrainConfig()
def per_model_threshold(self):
"""
:return: whether to apply the threshold rule of each individual model
before aggregating their anomaly scores.
"""
return self.config.per_model_threshold
def _train(
self,
train_data: TimeSeries,
train_config: DetectorEnsembleTrainConfig = None,
anomaly_labels: TimeSeries = None,
) -> TimeSeries:
"""
Trains each anomaly detector in the ensemble unsupervised, and each of
their post-rules supervised (if labels are given).
:param train_data: a `TimeSeries` of metric values to train the model.
:param train_config: `DetectorEnsembleTrainConfig` for ensemble training.
:param anomaly_labels: a `TimeSeries` indicating which timestamps are anomalous. Optional.
:return: A `TimeSeries` of the ensemble's anomaly scores on the training data.
"""
train, valid = self.train_valid_split(train_data, train_config)
if valid is not None:
logger.warning("Using a train/validation split to train a DetectorEnsemble is not recommended!")
train_cfgs = train_config.per_model_train_configs
if train_cfgs is None:
train_cfgs = [None] * len(self.models)
assert len(train_cfgs) == len(self.models), (
f"You must provide the same number of per-model train configs as models, but received received"
f"{len(train_cfgs)} train configs for an ensemble with {len(self.models)} models."
)
pr_cfgs = train_config.per_model_post_rule_train_configs
if pr_cfgs is None:
pr_cfgs = [None] * len(self.models)
assert len(pr_cfgs) == len(self.models), (
f"You must provide the same number of per-model post-rule train configs as models, but received "
f"{len(pr_cfgs)} post-rule train configs for an ensemble with {len(self.models)} models."
)
# Train each model individually, with its own train config & post-rule train config
all_scores = []
eval_cfg = TSADEvaluatorConfig(retrain_freq=None, cadence=self.get_max_common_horizon(train))
# TODO: parallelize me
for i, (model, cfg, pr_cfg) in enumerate(zip(self.models, train_cfgs, pr_cfgs)):
try:
train_kwargs = dict(train_config=cfg, anomaly_labels=anomaly_labels, post_rule_train_config=pr_cfg)
train_scores, valid_scores = TSADEvaluator(model=model, config=eval_cfg).get_predict(
train_vals=train, test_vals=valid, train_kwargs=train_kwargs, post_process=True
)
scores = train_scores if valid is None else valid_scores
except Exception:
logger.warning(
f"Caught an exception while training model {i + 1}/{len(self.models)} ({type(model).__name__}). "
f"Model will not be used. {traceback.format_exc()}"
)
self.combiner.set_model_used(i, False)
scores = None
all_scores.append(scores)
# Train combiner on train data if there is no validation data
if valid is None:
return self.train_combiner(all_scores, anomaly_labels)
# Otherwise, train the combiner on the validation data, and re-train the models on the full data
self.train_combiner(all_scores, anomaly_labels.bisect(t=valid.time_stamps[0], t_in_left=False)[1])
all_scores = []
# TODO: parallelize me
for i, (model, cfg, pr_cfg, used) in enumerate(zip(self.models, train_cfgs, pr_cfgs, self.models_used)):
model.reset()
if used:
logger.info(f"Re-training model {i+1}/{len(self.models)} ({type(model).__name__}) on full data...")
train_kwargs = dict(train_config=cfg, anomaly_labels=anomaly_labels, post_rule_train_config=pr_cfg)
train_scores = model.train(train_data, **train_kwargs)
train_scores = model.post_rule(train_scores)
else:
train_scores = None
all_scores.append(train_scores)
return self.combiner(all_scores, anomaly_labels)
def _get_anomaly_score(self, time_series: pd.DataFrame, time_series_prev: pd.DataFrame = None) -> pd.DataFrame:
time_series, time_series_prev = TimeSeries.from_pd(time_series), TimeSeries.from_pd(time_series_prev)
y = [
model.get_anomaly_label(time_series, time_series_prev)
for model, used in zip(self.models, self.models_used)
if used
]
return self.combiner(y, time_series).to_pd()
class TemporalResample(TransformBase):
"""
Defines a policy to temporally resample a time series at a specified granularity. Note that while this transform
does support inversion, the recovered time series may differ from the input due to information loss when resampling.
"""
def __init__(
self,
granularity: Union[str, int, float] = None,
origin: int = None,
trainable_granularity: bool = None,
remove_non_overlapping=True,
aggregation_policy: Union[str, AggregationPolicy] = "Mean",
missing_value_policy: Union[str, MissingValuePolicy] = "Interpolate",
):
"""
Defines a policy to temporally resample a time series.
:param granularity: The granularity at which we want to resample.
:param origin: The time stamp defining the offset to start at.
:param trainable_granularity: Whether we will automatically infer the granularity of the time series.
If ``None`` (default), it will be trainable only if no granularity is explicitly given.
:param remove_non_overlapping: If ``True``, we will only keep the portions
of the univariates that overlap with each other. For example, if we
have 3 univariates which span timestamps [0, 3600], [60, 3660], and
[30, 3540], we will only keep timestamps in the range [60, 3540]. If
``False``, we will keep all timestamps produced by the resampling.
:param aggregation_policy: The policy we will use to aggregate multiple values in a window (downsampling).
:param missing_value_policy: The policy we will use to impute missing values (upsampling).
"""
super().__init__()
self.granularity = granularity
self.origin = origin
self.trainable_granularity = (granularity is None) if trainable_granularity is None else trainable_granularity
self.remove_non_overlapping = remove_non_overlapping
self.aggregation_policy = aggregation_policy
self.missing_value_policy = missing_value_policy
def requires_inversion_state(self):
return False
def proper_inversion(self):
"""
We treat resampling as a proper inversion to avoid emitting warnings.
"""
return True
def granularity(self):
return self._granularity
def granularity(self, granularity):
if not isinstance(granularity, (int, float)):
try:
granularity = granularity_str_to_seconds(granularity)
except:
granularity = getattr(granularity, "freqstr", granularity)
self._granularity = granularity
def aggregation_policy(self) -> AggregationPolicy:
return self._aggregation_policy
def aggregation_policy(self, agg: Union[str, AggregationPolicy]):
if isinstance(agg, str):
valid = set(AggregationPolicy.__members__.keys())
if agg not in valid:
raise KeyError(f"{agg} is not a valid aggregation policy. Valid aggregation policies are: {valid}")
agg = AggregationPolicy[agg]
self._aggregation_policy = agg
def missing_value_policy(self) -> MissingValuePolicy:
return self._missing_value_policy
def missing_value_policy(self, mv: Union[str, MissingValuePolicy]):
if isinstance(mv, str):
valid = set(MissingValuePolicy.__members__.keys())
if mv not in valid:
raise KeyError(f"{mv} is not a valid missing value policy. Valid aggregation policies are: {valid}")
mv = MissingValuePolicy[mv]
self._missing_value_policy = mv
def train(self, time_series: TimeSeries):
if self.trainable_granularity:
granularity = infer_granularity(time_series.np_time_stamps)
logger.warning(f"Inferred granularity {granularity}")
self.granularity = granularity
if self.trainable_granularity or self.origin is None:
t0, tf = time_series.t0, time_series.tf
if isinstance(self.granularity, (int, float)):
offset = (tf - t0) % self.granularity
else:
offset = 0
self.origin = t0 + offset
def __call__(self, time_series: TimeSeries) -> TimeSeries:
if self.granularity is None:
logger.warning(
f"Skipping resampling step because granularity is "
f"None. Please either specify a granularity or train "
f"this transformation on a time series."
)
return time_series
return time_series.align(
alignment_policy=AlignPolicy.FixedGranularity,
granularity=self.granularity,
origin=self.origin,
remove_non_overlapping=self.remove_non_overlapping,
aggregation_policy=self.aggregation_policy,
missing_value_policy=self.missing_value_policy,
)
def evaluate_predictions(
model_names,
dataset,
all_model_preds,
metric: TSADMetric,
pointwise_metric: TSADMetric,
point_adj_metric: TSADMetric,
tune_on_test=False,
unsupervised=False,
debug=False,
):
scores_rpa, scores_pw, scores_pa = [], [], []
use_ucr_eval = isinstance(dataset, UCR) and (unsupervised or not tune_on_test)
resampler = None
if isinstance(dataset, IOpsCompetition):
resampler = TemporalResample("5min")
for i, (true, md) in enumerate(tqdm(dataset)):
# Get time series for the train & test splits of the ground truth
idx = ~md.trainval if tune_on_test else md.trainval
true_train = df_to_merlion(true[idx], md[idx], get_ground_truth=True)
true_test = df_to_merlion(true[~md.trainval], md[~md.trainval], get_ground_truth=True)
for acc_id, (simple_threshold, opt_metric, scores) in enumerate(
[
(use_ucr_eval and not tune_on_test, metric, scores_rpa),
(True, pointwise_metric, scores_pw),
(True, point_adj_metric, scores_pa),
]
):
if acc_id > 0 and use_ucr_eval:
scores_pw = scores_rpa
scores_pa = scores_rpa
continue
# For each model, load its raw anomaly scores for the i'th time series
# as a UnivariateTimeSeries, and collect all the models' scores as a
# TimeSeries. Do this for both the train and test splits.
if i >= min(len(p) for p in all_model_preds):
break
pred = [model_preds[i] for model_preds in all_model_preds]
pred_train = [p[~p["trainval"]] if tune_on_test else p[p["trainval"]] for p in pred]
pred_train = [TimeSeries.from_pd(p["y"]) for p in pred_train]
pred_test = [p[~p["trainval"]] for p in pred]
pred_test = [TimeSeries.from_pd(p["y"]) for p in pred_test]
# Train each model's post rule on the train split
models = []
for name, train, og_pred in zip(model_names, pred_train, pred):
m, prtc = get_model(
model_name=name,
dataset=dataset,
metric=opt_metric,
tune_on_test=tune_on_test,
unsupervised=unsupervised,
)
m.config.enable_threshold = len(model_names) == 1
if simple_threshold:
m.threshold = m.threshold.to_simple_threshold()
if tune_on_test and not unsupervised:
m.calibrator.train(TimeSeries.from_pd(og_pred["y"][og_pred["trainval"]]))
m.train_post_process(train_result=train, anomaly_labels=true_train, post_rule_train_config=prtc)
models.append(m)
# Get the lead & lag time for the dataset
early, delay = dataset.max_lead_sec, dataset.max_lag_sec
if early is None:
leads = [getattr(m.threshold, "suppress_secs", delay) for m in models]
leads = [dt for dt in leads if dt is not None]
early = None if len(leads) == 0 else max(leads)
# No further training if we only have 1 model
if len(models) == 1:
model = models[0]
pred_test_raw = pred_test[0]
# If we have multiple models, train an ensemble model
else:
threshold = dataset_to_threshold(dataset, tune_on_test)
ensemble_threshold_train_config = dict(
metric=opt_metric if tune_on_test else None,
max_early_sec=early,
max_delay_sec=delay,
unsup_quantile=None,
)
# Train the ensemble and its post-rule on the current time series
model = DetectorEnsemble(models=models)
use_m = [len(p) > 1 for p in zip(models, pred_train)]
pred_train = [m.post_rule(p) for m, p, use in zip(models, pred_train, use_m) if use]
pred_test = [m.post_rule(p) for m, p, use in zip(models, pred_test, use_m) if use]
pred_train = model.train_combiner(pred_train, true_train)
if simple_threshold:
model.threshold = model.threshold.to_simple_threshold()
model.threshold.alm_threshold = threshold
model.train_post_process(
train_result=pred_train,
anomaly_labels=true_train,
post_rule_train_config=ensemble_threshold_train_config,
)
pred_test_raw = model.combiner(pred_test, true_test)
# For UCR dataset, the evaluation just checks whether the point with the highest
# anomaly score is anomalous or not.
if acc_id == 0 and use_ucr_eval and not unsupervised:
df = pred_test_raw.to_pd()
df[np.abs(df) < df.max()] = 0
pred_test = TimeSeries.from_pd(df)
else:
pred_test = model.post_rule(pred_test_raw)
# Compute the individual components comprising various scores.
score = accumulate_tsad_score(true_test, pred_test, max_early_sec=early, max_delay_sec=delay)
# Make sure all time series have exactly one detection for UCR dataset (either 1 TP, or 1 FN & 1 FP).
if acc_id == 0 and use_ucr_eval:
n_anom = score.num_tp_anom + score.num_fn_anom
if n_anom == 0:
score.num_tp_anom, score.num_fn_anom, score.num_fp = 0, 0, 0
elif score.num_tp_anom > 0:
score.num_tp_anom, score.num_fn_anom, score.num_fp = 1, 0, 0
else:
score.num_tp_anom, score.num_fn_anom, score.num_fp = 0, 1, 1
scores.append(score)
# Aggregate statistics from full dataset
score_rpa = sum(scores_rpa, ScoreAcc())
score_pw = sum(scores_pw, ScoreAcc())
score_pa = sum(scores_pa, ScoreAcc())
# Determine if it's better to have all negatives for each time series if
# using the test data in a supervised way.
if tune_on_test and not unsupervised:
# Convert true positives to false negatives, and remove all false positives.
# Keep the updated version if it improves F1 score.
for s in sorted(scores_rpa, key=lambda x: x.num_fp, reverse=True):
stype = ScoreType.RevisedPointAdjusted
sprime = copy.deepcopy(score_rpa)
sprime.num_tp_anom -= s.num_tp_anom
sprime.num_fn_anom += s.num_tp_anom
sprime.num_fp -= s.num_fp
sprime.tp_score -= s.tp_score
sprime.fp_score -= s.fp_score
if score_rpa.f1(stype) < sprime.f1(stype):
# Update anomaly durations
for duration, delay in zip(s.tp_anom_durations, s.tp_detection_delays):
sprime.tp_anom_durations.remove(duration)
sprime.tp_detection_delays.remove(delay)
score_rpa = sprime
# Repeat for pointwise scores
for s in sorted(scores_pw, key=lambda x: x.num_fp, reverse=True):
stype = ScoreType.Pointwise
sprime = copy.deepcopy(score_pw)
sprime.num_tp_pointwise -= s.num_tp_pointwise
sprime.num_fn_pointwise += s.num_tp_pointwise
sprime.num_fp -= s.num_fp
if score_pw.f1(stype) < sprime.f1(stype):
score_pw = sprime
# Repeat for point-adjusted scores
for s in sorted(scores_pa, key=lambda x: x.num_fp, reverse=True):
stype = ScoreType.PointAdjusted
sprime = copy.deepcopy(score_pa)
sprime.num_tp_point_adj -= s.num_tp_point_adj
sprime.num_fn_point_adj += s.num_tp_point_adj
sprime.num_fp -= s.num_fp
if score_pa.f1(stype) < sprime.f1(stype):
score_pa = sprime
# Compute MTTD & report F1, precision, and recall
mttd = score_rpa.mean_time_to_detect()
if mttd < pd.to_timedelta(0):
mttd = f"-{-mttd}"
print()
print("Revised point-adjusted metrics")
print(f"F1 score: {score_rpa.f1(ScoreType.RevisedPointAdjusted):.4f}")
print(f"Precision: {score_rpa.precision(ScoreType.RevisedPointAdjusted):.4f}")
print(f"Recall: {score_rpa.recall(ScoreType.RevisedPointAdjusted):.4f}")
print()
print(f"Mean Time To Detect Anomalies: {mttd}")
print(f"Mean Detected Anomaly Duration: {score_rpa.mean_detected_anomaly_duration()}")
print(f"Mean Anomaly Duration: {score_rpa.mean_anomaly_duration()}")
print()
if debug:
print("Pointwise metrics")
print(f"F1 score: {score_pw.f1(ScoreType.Pointwise):.4f}")
print(f"Precision: {score_pw.precision(ScoreType.Pointwise):.4f}")
print(f"Recall: {score_pw.recall(ScoreType.Pointwise):.4f}")
print()
print("Point-adjusted metrics")
print(f"F1 score: {score_pa.f1(ScoreType.PointAdjusted):.4f}")
print(f"Precision: {score_pa.precision(ScoreType.PointAdjusted):.4f}")
print(f"Recall: {score_pa.recall(ScoreType.PointAdjusted):.4f}")
print()
print("NAB Scores")
print(f"NAB Score (balanced): {score_rpa.nab_score():.4f}")
print(f"NAB Score (high precision): {score_rpa.nab_score(fp_weight=0.22):.4f}")
print(f"NAB Score (high recall): {score_rpa.nab_score(fn_weight=2.0):.4f}")
print()
return score_rpa, score_pw, score_pa | null |
315 | import logging
import os
import requests
from tqdm import tqdm
import pandas as pd
from ts_datasets.base import BaseDataset
logger = logging.getLogger(__name__)
def download(datapath, url, name, split=None):
os.makedirs(datapath, exist_ok=True)
if split is not None:
namesplit = split + "/" + name
else:
namesplit = name
url = url.format(namesplit)
file_path = os.path.join(datapath, name) + ".csv"
if os.path.isfile(file_path):
logger.info(name + " already exists")
return
logger.info("Downloading " + url)
r = requests.get(url, stream=True)
with open(file_path, "wb") as f:
for chunk in r.iter_content(chunk_size=16 * 1024**2):
if chunk: # filter out keep-alive new chunks
f.write(chunk)
f.flush() | null |
316 | import os
import sys
import logging
import requests
import tarfile
import numpy as np
import pandas as pd
from pathlib import Path
from ts_datasets.anomaly.base import TSADBaseDataset
def combine_train_test_datasets(train_df, test_df, test_labels):
train_df.columns = [str(c) for c in train_df.columns]
test_df.columns = [str(c) for c in test_df.columns]
df = pd.concat([train_df, test_df]).reset_index()
if "index" in df:
df.drop(columns=["index"], inplace=True)
df.index = pd.to_datetime(df.index * 60, unit="s")
df.index.rename("timestamp", inplace=True)
# There are no labels for training examples, so the training labels are set to 0 by default
# The dataset is only for unsupervised time series anomaly detection
metadata = pd.DataFrame(
{
"trainval": df.index < df.index[train_df.shape[0]],
"anomaly": np.concatenate([np.zeros(train_df.shape[0], dtype=int), test_labels]),
},
index=df.index,
)
return df, metadata | null |
317 | import os
import sys
import logging
import requests
import tarfile
import numpy as np
import pandas as pd
from pathlib import Path
from ts_datasets.anomaly.base import TSADBaseDataset
def download(logger, datapath, url, filename):
os.makedirs(datapath, exist_ok=True)
compressed_file = os.path.join(datapath, f"{filename}.tar.gz")
# Download the compressed dataset
if not os.path.exists(compressed_file):
logger.info("Downloading " + url)
with requests.get(url, stream=True) as r:
with open(compressed_file, "wb") as f:
for chunk in r.iter_content(chunk_size=16 * 1024**2):
if chunk: # filter out keep-alive new chunks
f.write(chunk)
f.flush()
# Uncompress the downloaded tar file
if not os.path.exists(os.path.join(datapath, "_SUCCESS")):
logger.info(f"Uncompressing {compressed_file}")
tar = tarfile.open(compressed_file, "r:gz")
tar.extractall(path=datapath)
tar.close()
Path(os.path.join(datapath, "_SUCCESS")).touch() | null |
318 | import os
import sys
import csv
import ast
import logging
import pickle
import numpy as np
import pandas as pd
from ts_datasets.anomaly.base import TSADBaseDataset
from ts_datasets.anomaly.smd import download, combine_train_test_datasets
def preprocess(logger, data_folder, dataset):
if (
os.path.exists(os.path.join(data_folder, f"{dataset}_test_label.pkl"))
and os.path.exists(os.path.join(data_folder, f"{dataset}_train.pkl"))
and os.path.exists(os.path.join(data_folder, f"{dataset}_test.pkl"))
):
return
logger.info(f"Preprocessing {dataset}")
with open(os.path.join(data_folder, "labeled_anomalies.csv"), "r") as f:
csv_reader = csv.reader(f, delimiter=",")
res = [row for row in csv_reader][1:]
res = sorted(res, key=lambda k: k[0])
labels = []
data_info = [row for row in res if row[1] == dataset and row[0] != "P-2"]
for row in data_info:
anomalies = ast.literal_eval(row[2])
length = int(row[-1])
label = np.zeros([length], dtype=bool)
for anomaly in anomalies:
label[anomaly[0] : anomaly[1] + 1] = True
labels.extend(label)
labels = np.asarray(labels)
with open(os.path.join(data_folder, f"{dataset}_test_label.pkl"), "wb") as f:
pickle.dump(labels, f)
for category in ["train", "test"]:
data = []
for row in data_info:
data.extend(np.load(os.path.join(data_folder, category, row[0] + ".npy")))
data = np.asarray(data)
with open(os.path.join(data_folder, f"{dataset}_{category}.pkl"), "wb") as f:
pickle.dump(data, f) | null |
319 | import os
import sys
import csv
import ast
import logging
import pickle
import numpy as np
import pandas as pd
from ts_datasets.anomaly.base import TSADBaseDataset
from ts_datasets.anomaly.smd import download, combine_train_test_datasets
def load_data(directory, dataset):
with open(os.path.join(directory, f"{dataset}_test.pkl"), "rb") as f:
test_data = pickle.load(f)
with open(os.path.join(directory, f"{dataset}_test_label.pkl"), "rb") as f:
test_labels = pickle.load(f)
with open(os.path.join(directory, f"{dataset}_train.pkl"), "rb") as f:
train_data = pickle.load(f)
train_df, test_df = pd.DataFrame(train_data), pd.DataFrame(test_data)
return train_df, test_df, test_labels.astype(int) | null |
320 | from __future__ import print_function
from __future__ import absolute_import
from __future__ import division
import numpy as np
import torch
def to_tensor(array, dtype=torch.float32):
if 'torch.tensor' not in str(type(array)):
return torch.tensor(array, dtype=dtype) | null |
321 | from __future__ import print_function
from __future__ import absolute_import
from __future__ import division
import numpy as np
import torch
def to_np(array, dtype=np.float32):
if 'scipy.sparse' in str(type(array)):
array = array.todense()
return np.array(array, dtype=dtype) | null |
322 | from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import numpy as np
import torch
import torch.nn.functional as F
from .utils import rot_mat_to_euler
def batch_rodrigues(rot_vecs, epsilon=1e-8, dtype=torch.float32):
''' Calculates the rotation matrices for a batch of rotation vectors
Parameters
----------
rot_vecs: torch.tensor Nx3
array of N axis-angle vectors
Returns
-------
R: torch.tensor Nx3x3
The rotation matrices for the given axis-angle parameters
'''
batch_size = rot_vecs.shape[0]
device = rot_vecs.device
angle = torch.norm(rot_vecs + 1e-8, dim=1, keepdim=True)
rot_dir = rot_vecs / angle
cos = torch.unsqueeze(torch.cos(angle), dim=1)
sin = torch.unsqueeze(torch.sin(angle), dim=1)
# Bx1 arrays
rx, ry, rz = torch.split(rot_dir, 1, dim=1)
K = torch.zeros((batch_size, 3, 3), dtype=dtype, device=device)
zeros = torch.zeros((batch_size, 1), dtype=dtype, device=device)
K = torch.cat([zeros, -rz, ry, rz, zeros, -rx, -ry, rx, zeros], dim=1) \
.view((batch_size, 3, 3))
ident = torch.eye(3, dtype=dtype, device=device).unsqueeze(dim=0)
rot_mat = ident + sin * K + (1 - cos) * torch.bmm(K, K)
return rot_mat
def rot_mat_to_euler(rot_mats):
# Calculates rotation matrix to euler angles
# Careful for extreme cases of eular angles like [0.0, pi, 0.0]
sy = torch.sqrt(rot_mats[:, 0, 0] * rot_mats[:, 0, 0] +
rot_mats[:, 1, 0] * rot_mats[:, 1, 0])
return torch.atan2(-rot_mats[:, 2, 0], sy)
The provided code snippet includes necessary dependencies for implementing the `find_dynamic_lmk_idx_and_bcoords` function. Write a Python function `def find_dynamic_lmk_idx_and_bcoords(vertices, pose, dynamic_lmk_faces_idx, dynamic_lmk_b_coords, neck_kin_chain, dtype=torch.float32)` to solve the following problem:
Compute the faces, barycentric coordinates for the dynamic landmarks To do so, we first compute the rotation of the neck around the y-axis and then use a pre-computed look-up table to find the faces and the barycentric coordinates that will be used. Special thanks to Soubhik Sanyal ([email protected]) for providing the original TensorFlow implementation and for the LUT. Parameters ---------- vertices: torch.tensor BxVx3, dtype = torch.float32 The tensor of input vertices pose: torch.tensor Bx(Jx3), dtype = torch.float32 The current pose of the body model dynamic_lmk_faces_idx: torch.tensor L, dtype = torch.long The look-up table from neck rotation to faces dynamic_lmk_b_coords: torch.tensor Lx3, dtype = torch.float32 The look-up table from neck rotation to barycentric coordinates neck_kin_chain: list A python list that contains the indices of the joints that form the kinematic chain of the neck. dtype: torch.dtype, optional Returns ------- dyn_lmk_faces_idx: torch.tensor, dtype = torch.long A tensor of size BxL that contains the indices of the faces that will be used to compute the current dynamic landmarks. dyn_lmk_b_coords: torch.tensor, dtype = torch.float32 A tensor of size BxL that contains the indices of the faces that will be used to compute the current dynamic landmarks.
Here is the function:
def find_dynamic_lmk_idx_and_bcoords(vertices, pose, dynamic_lmk_faces_idx,
dynamic_lmk_b_coords,
neck_kin_chain, dtype=torch.float32):
''' Compute the faces, barycentric coordinates for the dynamic landmarks
To do so, we first compute the rotation of the neck around the y-axis
and then use a pre-computed look-up table to find the faces and the
barycentric coordinates that will be used.
Special thanks to Soubhik Sanyal ([email protected])
for providing the original TensorFlow implementation and for the LUT.
Parameters
----------
vertices: torch.tensor BxVx3, dtype = torch.float32
The tensor of input vertices
pose: torch.tensor Bx(Jx3), dtype = torch.float32
The current pose of the body model
dynamic_lmk_faces_idx: torch.tensor L, dtype = torch.long
The look-up table from neck rotation to faces
dynamic_lmk_b_coords: torch.tensor Lx3, dtype = torch.float32
The look-up table from neck rotation to barycentric coordinates
neck_kin_chain: list
A python list that contains the indices of the joints that form the
kinematic chain of the neck.
dtype: torch.dtype, optional
Returns
-------
dyn_lmk_faces_idx: torch.tensor, dtype = torch.long
A tensor of size BxL that contains the indices of the faces that
will be used to compute the current dynamic landmarks.
dyn_lmk_b_coords: torch.tensor, dtype = torch.float32
A tensor of size BxL that contains the indices of the faces that
will be used to compute the current dynamic landmarks.
'''
batch_size = vertices.shape[0]
aa_pose = torch.index_select(pose.view(batch_size, -1, 3), 1,
neck_kin_chain)
rot_mats = batch_rodrigues(
aa_pose.view(-1, 3), dtype=dtype).view(batch_size, -1, 3, 3)
rel_rot_mat = torch.eye(3, device=vertices.device,
dtype=dtype).unsqueeze_(dim=0)
for idx in range(len(neck_kin_chain)):
rel_rot_mat = torch.bmm(rot_mats[:, idx], rel_rot_mat)
y_rot_angle = torch.round(
torch.clamp(-rot_mat_to_euler(rel_rot_mat) * 180.0 / np.pi,
max=39)).to(dtype=torch.long)
neg_mask = y_rot_angle.lt(0).to(dtype=torch.long)
mask = y_rot_angle.lt(-39).to(dtype=torch.long)
neg_vals = mask * 78 + (1 - mask) * (39 - y_rot_angle)
y_rot_angle = (neg_mask * neg_vals +
(1 - neg_mask) * y_rot_angle)
dyn_lmk_faces_idx = torch.index_select(dynamic_lmk_faces_idx,
0, y_rot_angle)
dyn_lmk_b_coords = torch.index_select(dynamic_lmk_b_coords,
0, y_rot_angle)
return dyn_lmk_faces_idx, dyn_lmk_b_coords | Compute the faces, barycentric coordinates for the dynamic landmarks To do so, we first compute the rotation of the neck around the y-axis and then use a pre-computed look-up table to find the faces and the barycentric coordinates that will be used. Special thanks to Soubhik Sanyal ([email protected]) for providing the original TensorFlow implementation and for the LUT. Parameters ---------- vertices: torch.tensor BxVx3, dtype = torch.float32 The tensor of input vertices pose: torch.tensor Bx(Jx3), dtype = torch.float32 The current pose of the body model dynamic_lmk_faces_idx: torch.tensor L, dtype = torch.long The look-up table from neck rotation to faces dynamic_lmk_b_coords: torch.tensor Lx3, dtype = torch.float32 The look-up table from neck rotation to barycentric coordinates neck_kin_chain: list A python list that contains the indices of the joints that form the kinematic chain of the neck. dtype: torch.dtype, optional Returns ------- dyn_lmk_faces_idx: torch.tensor, dtype = torch.long A tensor of size BxL that contains the indices of the faces that will be used to compute the current dynamic landmarks. dyn_lmk_b_coords: torch.tensor, dtype = torch.float32 A tensor of size BxL that contains the indices of the faces that will be used to compute the current dynamic landmarks. |
323 | from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import numpy as np
import torch
import torch.nn.functional as F
from .utils import rot_mat_to_euler
The provided code snippet includes necessary dependencies for implementing the `vertices2landmarks` function. Write a Python function `def vertices2landmarks(vertices, faces, lmk_faces_idx, lmk_bary_coords)` to solve the following problem:
Calculates landmarks by barycentric interpolation Parameters ---------- vertices: torch.tensor BxVx3, dtype = torch.float32 The tensor of input vertices faces: torch.tensor Fx3, dtype = torch.long The faces of the mesh lmk_faces_idx: torch.tensor L, dtype = torch.long The tensor with the indices of the faces used to calculate the landmarks. lmk_bary_coords: torch.tensor Lx3, dtype = torch.float32 The tensor of barycentric coordinates that are used to interpolate the landmarks Returns ------- landmarks: torch.tensor BxLx3, dtype = torch.float32 The coordinates of the landmarks for each mesh in the batch
Here is the function:
def vertices2landmarks(vertices, faces, lmk_faces_idx, lmk_bary_coords):
''' Calculates landmarks by barycentric interpolation
Parameters
----------
vertices: torch.tensor BxVx3, dtype = torch.float32
The tensor of input vertices
faces: torch.tensor Fx3, dtype = torch.long
The faces of the mesh
lmk_faces_idx: torch.tensor L, dtype = torch.long
The tensor with the indices of the faces used to calculate the
landmarks.
lmk_bary_coords: torch.tensor Lx3, dtype = torch.float32
The tensor of barycentric coordinates that are used to interpolate
the landmarks
Returns
-------
landmarks: torch.tensor BxLx3, dtype = torch.float32
The coordinates of the landmarks for each mesh in the batch
'''
# Extract the indices of the vertices for each face
# BxLx3
batch_size, num_verts = vertices.shape[:2]
device = vertices.device
lmk_faces = torch.index_select(faces, 0, lmk_faces_idx.view(-1)).expand(
batch_size, -1, -1).long()
lmk_faces = lmk_faces + torch.arange(
batch_size, dtype=torch.long, device=device).view(-1, 1, 1) * num_verts
lmk_vertices = vertices.view(-1, 3)[lmk_faces].view(
batch_size, -1, 3, 3)
landmarks = torch.einsum('blfi,blf->bli', [lmk_vertices, lmk_bary_coords])
return landmarks | Calculates landmarks by barycentric interpolation Parameters ---------- vertices: torch.tensor BxVx3, dtype = torch.float32 The tensor of input vertices faces: torch.tensor Fx3, dtype = torch.long The faces of the mesh lmk_faces_idx: torch.tensor L, dtype = torch.long The tensor with the indices of the faces used to calculate the landmarks. lmk_bary_coords: torch.tensor Lx3, dtype = torch.float32 The tensor of barycentric coordinates that are used to interpolate the landmarks Returns ------- landmarks: torch.tensor BxLx3, dtype = torch.float32 The coordinates of the landmarks for each mesh in the batch |
324 | from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import numpy as np
import torch
import torch.nn.functional as F
from .utils import rot_mat_to_euler
def vertices2joints(J_regressor, vertices):
''' Calculates the 3D joint locations from the vertices
Parameters
----------
J_regressor : torch.tensor JxV
The regressor array that is used to calculate the joints from the
position of the vertices
vertices : torch.tensor BxVx3
The tensor of mesh vertices
Returns
-------
torch.tensor BxJx3
The location of the joints
'''
return torch.einsum('bik,ji->bjk', [vertices, J_regressor])
def blend_shapes(betas, shape_disps):
''' Calculates the per vertex displacement due to the blend shapes
Parameters
----------
betas : torch.tensor Bx(num_betas)
Blend shape coefficients
shape_disps: torch.tensor Vx3x(num_betas)
Blend shapes
Returns
-------
torch.tensor BxVx3
The per-vertex displacement due to shape deformation
'''
# Displacement[b, m, k] = sum_{l} betas[b, l] * shape_disps[m, k, l]
# i.e. Multiply each shape displacement by its corresponding beta and
# then sum them.
blend_shape = torch.einsum('bl,mkl->bmk', [betas, shape_disps])
return blend_shape
def batch_rodrigues(rot_vecs, epsilon=1e-8, dtype=torch.float32):
''' Calculates the rotation matrices for a batch of rotation vectors
Parameters
----------
rot_vecs: torch.tensor Nx3
array of N axis-angle vectors
Returns
-------
R: torch.tensor Nx3x3
The rotation matrices for the given axis-angle parameters
'''
batch_size = rot_vecs.shape[0]
device = rot_vecs.device
angle = torch.norm(rot_vecs + 1e-8, dim=1, keepdim=True)
rot_dir = rot_vecs / angle
cos = torch.unsqueeze(torch.cos(angle), dim=1)
sin = torch.unsqueeze(torch.sin(angle), dim=1)
# Bx1 arrays
rx, ry, rz = torch.split(rot_dir, 1, dim=1)
K = torch.zeros((batch_size, 3, 3), dtype=dtype, device=device)
zeros = torch.zeros((batch_size, 1), dtype=dtype, device=device)
K = torch.cat([zeros, -rz, ry, rz, zeros, -rx, -ry, rx, zeros], dim=1) \
.view((batch_size, 3, 3))
ident = torch.eye(3, dtype=dtype, device=device).unsqueeze(dim=0)
rot_mat = ident + sin * K + (1 - cos) * torch.bmm(K, K)
return rot_mat
def batch_rigid_transform(rot_mats, joints, parents, dtype=torch.float32):
"""
Applies a batch of rigid transformations to the joints
Parameters
----------
rot_mats : torch.tensor BxNx3x3
Tensor of rotation matrices
joints : torch.tensor BxNx3
Locations of joints
parents : torch.tensor BxN
The kinematic tree of each object
dtype : torch.dtype, optional:
The data type of the created tensors, the default is torch.float32
Returns
-------
posed_joints : torch.tensor BxNx3
The locations of the joints after applying the pose rotations
rel_transforms : torch.tensor BxNx4x4
The relative (with respect to the root joint) rigid transformations
for all the joints
"""
joints = torch.unsqueeze(joints, dim=-1)
rel_joints = joints.clone()
rel_joints[:, 1:] = rel_joints[:, 1:] - joints[:, parents[1:]]
transforms_mat = transform_mat(
rot_mats.reshape(-1, 3, 3),
rel_joints.reshape(-1, 3, 1)).reshape(-1, joints.shape[1], 4, 4)
transform_chain = [transforms_mat[:, 0]]
for i in range(1, parents.shape[0]):
# Subtract the joint location at the rest pose
# No need for rotation, since it's identity when at rest
curr_res = torch.matmul(transform_chain[parents[i]],
transforms_mat[:, i])
transform_chain.append(curr_res)
transforms = torch.stack(transform_chain, dim=1)
# The last column of the transformations contains the posed joints
posed_joints = transforms[:, :, :3, 3]
# The last column of the transformations contains the posed joints
posed_joints = transforms[:, :, :3, 3]
joints_homogen = F.pad(joints, [0, 0, 0, 1])
rel_transforms = transforms - F.pad(
torch.matmul(transforms, joints_homogen), [3, 0, 0, 0, 0, 0, 0, 0])
return posed_joints, rel_transforms
The provided code snippet includes necessary dependencies for implementing the `lbs` function. Write a Python function `def lbs(betas, pose, v_template, shapedirs, posedirs, J_regressor, parents, lbs_weights, pose2rot=True, dtype=torch.float32, pose_blend=True)` to solve the following problem:
Performs Linear Blend Skinning with the given shape and pose parameters Parameters ---------- betas : torch.tensor BxNB The tensor of shape parameters pose : torch.tensor Bx(J + 1) * 3 The pose parameters in axis-angle format v_template torch.tensor BxVx3 The template mesh that will be deformed shapedirs : torch.tensor 1xNB The tensor of PCA shape displacements posedirs : torch.tensor Px(V * 3) The pose PCA coefficients J_regressor : torch.tensor JxV The regressor array that is used to calculate the joints from the position of the vertices parents: torch.tensor J The array that describes the kinematic tree for the model lbs_weights: torch.tensor N x V x (J + 1) The linear blend skinning weights that represent how much the rotation matrix of each part affects each vertex pose2rot: bool, optional Flag on whether to convert the input pose tensor to rotation matrices. The default value is True. If False, then the pose tensor should already contain rotation matrices and have a size of Bx(J + 1)x9 dtype: torch.dtype, optional Returns ------- verts: torch.tensor BxVx3 The vertices of the mesh after applying the shape and pose displacements. joints: torch.tensor BxJx3 The joints of the model
Here is the function:
def lbs(betas, pose, v_template, shapedirs, posedirs, J_regressor, parents,
lbs_weights, pose2rot=True, dtype=torch.float32, pose_blend=True):
''' Performs Linear Blend Skinning with the given shape and pose parameters
Parameters
----------
betas : torch.tensor BxNB
The tensor of shape parameters
pose : torch.tensor Bx(J + 1) * 3
The pose parameters in axis-angle format
v_template torch.tensor BxVx3
The template mesh that will be deformed
shapedirs : torch.tensor 1xNB
The tensor of PCA shape displacements
posedirs : torch.tensor Px(V * 3)
The pose PCA coefficients
J_regressor : torch.tensor JxV
The regressor array that is used to calculate the joints from
the position of the vertices
parents: torch.tensor J
The array that describes the kinematic tree for the model
lbs_weights: torch.tensor N x V x (J + 1)
The linear blend skinning weights that represent how much the
rotation matrix of each part affects each vertex
pose2rot: bool, optional
Flag on whether to convert the input pose tensor to rotation
matrices. The default value is True. If False, then the pose tensor
should already contain rotation matrices and have a size of
Bx(J + 1)x9
dtype: torch.dtype, optional
Returns
-------
verts: torch.tensor BxVx3
The vertices of the mesh after applying the shape and pose
displacements.
joints: torch.tensor BxJx3
The joints of the model
'''
batch_size = max(betas.shape[0], pose.shape[0])
device = betas.device
# Add shape contribution
v_shaped = v_template + blend_shapes(betas, shapedirs)
# Get the joints
# NxJx3 array
J = vertices2joints(J_regressor, v_shaped)
# 3. Add pose blend shapes
# N x J x 3 x 3
ident = torch.eye(3, dtype=dtype, device=device)
if pose2rot:
rot_mats = batch_rodrigues(
pose.view(-1, 3), dtype=dtype).view([batch_size, -1, 3, 3])
pose_feature = (rot_mats[:, 1:, :, :] - ident).view([batch_size, -1])
# (N x P) x (P, V * 3) -> N x V x 3
pose_offsets = torch.matmul(pose_feature, posedirs) \
.view(batch_size, -1, 3)
else:
pose_feature = pose[:, 1:].view(batch_size, -1, 3, 3) - ident
rot_mats = pose.view(batch_size, -1, 3, 3)
pose_offsets = torch.matmul(pose_feature.view(batch_size, -1),
posedirs).view(batch_size, -1, 3)
if pose_blend:
v_posed = pose_offsets + v_shaped
else:
v_posed = v_shaped
# 4. Get the global joint location
J_transformed, A = batch_rigid_transform(rot_mats, J, parents, dtype=dtype)
# 5. Do skinning:
# W is N x V x (J + 1)
W = lbs_weights.unsqueeze(dim=0).expand([batch_size, -1, -1])
# (N x V x (J + 1)) x (N x (J + 1) x 16)
num_joints = J_regressor.shape[0]
T = torch.matmul(W, A.view(batch_size, num_joints, 16)) \
.view(batch_size, -1, 4, 4)
homogen_coord = torch.ones([batch_size, v_posed.shape[1], 1],
dtype=dtype, device=device)
v_posed_homo = torch.cat([v_posed, homogen_coord], dim=2)
v_homo = torch.matmul(T, torch.unsqueeze(v_posed_homo, dim=-1))
verts = v_homo[:, :, :3, 0]
return verts, J_transformed, T, W, A.view(batch_size, num_joints, 4,4) | Performs Linear Blend Skinning with the given shape and pose parameters Parameters ---------- betas : torch.tensor BxNB The tensor of shape parameters pose : torch.tensor Bx(J + 1) * 3 The pose parameters in axis-angle format v_template torch.tensor BxVx3 The template mesh that will be deformed shapedirs : torch.tensor 1xNB The tensor of PCA shape displacements posedirs : torch.tensor Px(V * 3) The pose PCA coefficients J_regressor : torch.tensor JxV The regressor array that is used to calculate the joints from the position of the vertices parents: torch.tensor J The array that describes the kinematic tree for the model lbs_weights: torch.tensor N x V x (J + 1) The linear blend skinning weights that represent how much the rotation matrix of each part affects each vertex pose2rot: bool, optional Flag on whether to convert the input pose tensor to rotation matrices. The default value is True. If False, then the pose tensor should already contain rotation matrices and have a size of Bx(J + 1)x9 dtype: torch.dtype, optional Returns ------- verts: torch.tensor BxVx3 The vertices of the mesh after applying the shape and pose displacements. joints: torch.tensor BxJx3 The joints of the model |
325 | import torch
import torch.nn.functional as F
from .smpl import SMPLServer
from pytorch3d import ops
The provided code snippet includes necessary dependencies for implementing the `skinning` function. Write a Python function `def skinning(x, w, tfs, inverse=False)` to solve the following problem:
Linear blend skinning Args: x (tensor): canonical points. shape: [B, N, D] w (tensor): conditional input. [B, N, J] tfs (tensor): bone transformation matrices. shape: [B, J, D+1, D+1] Returns: x (tensor): skinned points. shape: [B, N, D]
Here is the function:
def skinning(x, w, tfs, inverse=False):
"""Linear blend skinning
Args:
x (tensor): canonical points. shape: [B, N, D]
w (tensor): conditional input. [B, N, J]
tfs (tensor): bone transformation matrices. shape: [B, J, D+1, D+1]
Returns:
x (tensor): skinned points. shape: [B, N, D]
"""
x_h = F.pad(x, (0, 1), value=1.0)
if inverse:
# p:n_point, n:n_bone, i,k: n_dim+1
w_tf = torch.einsum("bpn,bnij->bpij", w, tfs)
x_h = torch.einsum("bpij,bpj->bpi", w_tf.inverse(), x_h)
else:
x_h = torch.einsum("bpn,bnij,bpj->bpi", w, tfs, x_h)
return x_h[:, :, :3] | Linear blend skinning Args: x (tensor): canonical points. shape: [B, N, D] w (tensor): conditional input. [B, N, J] tfs (tensor): bone transformation matrices. shape: [B, J, D+1, D+1] Returns: x (tensor): skinned points. shape: [B, N, D] |
326 | from .networks import ImplicitNet, RenderingNet
from .density import LaplaceDensity, AbsDensity
from .ray_sampler import ErrorBoundSampler
from .deformer import SMPLDeformer
from .smpl import SMPLServer
from .sampler import PointInSpace
from ..utils import utils
import numpy as np
import torch
import torch.nn as nn
from torch.autograd import grad
import hydra
import kaolin
from kaolin.ops.mesh import index_vertices_by_faces
def gradient(inputs, outputs):
d_points = torch.ones_like(outputs, requires_grad=False, device=outputs.device)
points_grad = grad(
outputs=outputs,
inputs=inputs,
grad_outputs=d_points,
create_graph=True,
retain_graph=True,
only_inputs=True)[0][:, :, -3:]
return points_grad | null |
327 | import torch
class Embedder:
def __init__(self, **kwargs):
self.kwargs = kwargs
self.create_embedding_fn()
def create_embedding_fn(self):
embed_fns = []
d = self.kwargs['input_dims']
out_dim = 0
if self.kwargs['include_input']:
embed_fns.append(lambda x: x)
out_dim += d
max_freq = self.kwargs['max_freq_log2']
N_freqs = self.kwargs['num_freqs']
if self.kwargs['log_sampling']:
freq_bands = 2. ** torch.linspace(0., max_freq, N_freqs)
else:
freq_bands = torch.linspace(2.**0., 2.**max_freq, N_freqs)
for freq in freq_bands:
for p_fn in self.kwargs['periodic_fns']:
embed_fns.append(lambda x, p_fn=p_fn,
freq=freq: p_fn(x * freq))
out_dim += d
self.embed_fns = embed_fns
self.out_dim = out_dim
def embed(self, inputs):
return torch.cat([fn(inputs) for fn in self.embed_fns], -1)
def get_embedder(multires, input_dims=3, mode='fourier'):
embed_kwargs = {
'include_input': True,
'input_dims': input_dims,
'max_freq_log2': multires-1,
'num_freqs': multires,
'log_sampling': True,
'periodic_fns': [torch.sin, torch.cos],
}
if mode == 'fourier':
embedder_obj = Embedder(**embed_kwargs)
def embed(x, eo=embedder_obj): return eo.embed(x)
return embed, embedder_obj.out_dim | null |
328 | import numpy as np
import cv2
import torch
from torch.nn import functional as F
The provided code snippet includes necessary dependencies for implementing the `split_input` function. Write a Python function `def split_input(model_input, total_pixels, n_pixels = 10000)` to solve the following problem:
Split the input to fit Cuda memory for large resolution. Can decrease the value of n_pixels in case of cuda out of memory error.
Here is the function:
def split_input(model_input, total_pixels, n_pixels = 10000):
'''
Split the input to fit Cuda memory for large resolution.
Can decrease the value of n_pixels in case of cuda out of memory error.
'''
split = []
for i, indx in enumerate(torch.split(torch.arange(total_pixels).cuda(), n_pixels, dim=0)):
data = model_input.copy()
data['uv'] = torch.index_select(model_input['uv'], 1, indx)
split.append(data)
return split | Split the input to fit Cuda memory for large resolution. Can decrease the value of n_pixels in case of cuda out of memory error. |
329 | import numpy as np
import cv2
import torch
from torch.nn import functional as F
The provided code snippet includes necessary dependencies for implementing the `merge_output` function. Write a Python function `def merge_output(res, total_pixels, batch_size)` to solve the following problem:
Merge the split output.
Here is the function:
def merge_output(res, total_pixels, batch_size):
''' Merge the split output. '''
model_outputs = {}
for entry in res[0]:
if res[0][entry] is None:
continue
if len(res[0][entry].shape) == 1:
model_outputs[entry] = torch.cat([r[entry].reshape(batch_size, -1, 1) for r in res],
1).reshape(batch_size * total_pixels)
else:
model_outputs[entry] = torch.cat([r[entry].reshape(batch_size, -1, r[entry].shape[-1]) for r in res],
1).reshape(batch_size * total_pixels, -1)
return model_outputs | Merge the split output. |
330 | import numpy as np
import cv2
import torch
from torch.nn import functional as F
def get_psnr(img1, img2, normalize_rgb=False):
if normalize_rgb: # [-1,1] --> [0,1]
img1 = (img1 + 1.) / 2.
img2 = (img2 + 1. ) / 2.
mse = torch.mean((img1 - img2) ** 2)
psnr = -10. * torch.log(mse) / torch.log(torch.Tensor([10.]).cuda())
return psnr | null |
331 | import numpy as np
import cv2
import torch
from torch.nn import functional as F
def load_K_Rt_from_P(filename, P=None):
if P is None:
lines = open(filename).read().splitlines()
if len(lines) == 4:
lines = lines[1:]
lines = [[x[0], x[1], x[2], x[3]] for x in (x.split(" ") for x in lines)]
P = np.asarray(lines).astype(np.float32).squeeze()
out = cv2.decomposeProjectionMatrix(P)
K = out[0]
R = out[1]
t = out[2]
K = K/K[2,2]
intrinsics = np.eye(4)
intrinsics[:3, :3] = K
pose = np.eye(4, dtype=np.float32)
pose[:3, :3] = R.transpose()
pose[:3,3] = (t[:3] / t[3])[:,0]
return intrinsics, pose | null |
332 | import numpy as np
import cv2
import torch
from torch.nn import functional as F
def lift(x, y, z, intrinsics):
# parse intrinsics
intrinsics = intrinsics.cuda()
fx = intrinsics[:, 0, 0]
fy = intrinsics[:, 1, 1]
cx = intrinsics[:, 0, 2]
cy = intrinsics[:, 1, 2]
sk = intrinsics[:, 0, 1]
x_lift = (x - cx.unsqueeze(-1) + cy.unsqueeze(-1)*sk.unsqueeze(-1)/fy.unsqueeze(-1) - sk.unsqueeze(-1)*y/fy.unsqueeze(-1)) / fx.unsqueeze(-1) * z
y_lift = (y - cy.unsqueeze(-1)) / fy.unsqueeze(-1) * z
# homogeneous
return torch.stack((x_lift, y_lift, z, torch.ones_like(z).cuda()), dim=-1)
def quat_to_rot(q):
batch_size, _ = q.shape
q = F.normalize(q, dim=1)
R = torch.ones((batch_size, 3,3)).cuda()
qr=q[:,0]
qi = q[:, 1]
qj = q[:, 2]
qk = q[:, 3]
R[:, 0, 0]=1-2 * (qj**2 + qk**2)
R[:, 0, 1] = 2 * (qj *qi -qk*qr)
R[:, 0, 2] = 2 * (qi * qk + qr * qj)
R[:, 1, 0] = 2 * (qj * qi + qk * qr)
R[:, 1, 1] = 1-2 * (qi**2 + qk**2)
R[:, 1, 2] = 2*(qj*qk - qi*qr)
R[:, 2, 0] = 2 * (qk * qi-qj * qr)
R[:, 2, 1] = 2 * (qj*qk + qi*qr)
R[:, 2, 2] = 1-2 * (qi**2 + qj**2)
return R
def get_camera_params(uv, pose, intrinsics):
if pose.shape[1] == 7: #In case of quaternion vector representation
cam_loc = pose[:, 4:]
R = quat_to_rot(pose[:,:4])
p = torch.eye(4).repeat(pose.shape[0],1,1).cuda().float()
p[:, :3, :3] = R
p[:, :3, 3] = cam_loc
else: # In case of pose matrix representation
cam_loc = pose[:, :3, 3]
p = pose
batch_size, num_samples, _ = uv.shape
depth = torch.ones((batch_size, num_samples)).cuda()
x_cam = uv[:, :, 0].view(batch_size, -1)
y_cam = uv[:, :, 1].view(batch_size, -1)
z_cam = depth.view(batch_size, -1)
pixel_points_cam = lift(x_cam, y_cam, z_cam, intrinsics=intrinsics)
# permute for batch matrix product
pixel_points_cam = pixel_points_cam.permute(0, 2, 1)
world_coords = torch.bmm(p, pixel_points_cam).permute(0, 2, 1)[:, :, :3]
ray_dirs = world_coords - cam_loc[:, None, :]
ray_dirs = F.normalize(ray_dirs, dim=2)
return ray_dirs, cam_loc | null |
333 | import numpy as np
import cv2
import torch
from torch.nn import functional as F
def rot_to_quat(R):
batch_size, _,_ = R.shape
q = torch.ones((batch_size, 4)).cuda()
R00 = R[:, 0,0]
R01 = R[:, 0, 1]
R02 = R[:, 0, 2]
R10 = R[:, 1, 0]
R11 = R[:, 1, 1]
R12 = R[:, 1, 2]
R20 = R[:, 2, 0]
R21 = R[:, 2, 1]
R22 = R[:, 2, 2]
q[:,0]=torch.sqrt(1.0+R00+R11+R22)/2
q[:, 1]=(R21-R12)/(4*q[:,0])
q[:, 2] = (R02 - R20) / (4 * q[:, 0])
q[:, 3] = (R10 - R01) / (4 * q[:, 0])
return q | null |
334 | import numpy as np
import cv2
import torch
from torch.nn import functional as F
def get_sphere_intersections(cam_loc, ray_directions, r = 1.0):
# Input: n_rays x 3 ; n_rays x 3
# Output: n_rays x 1, n_rays x 1 (close and far)
ray_cam_dot = torch.bmm(ray_directions.view(-1, 1, 3),
cam_loc.view(-1, 3, 1)).squeeze(-1)
under_sqrt = ray_cam_dot ** 2 - (cam_loc.norm(2, 1, keepdim=True) ** 2 - r ** 2)
# sanity check
if (under_sqrt <= 0).sum() > 0:
print('BOUNDING SPHERE PROBLEM!')
exit()
sphere_intersections = torch.sqrt(under_sqrt) * torch.Tensor([-1, 1]).cuda().float() - ray_cam_dot
sphere_intersections = sphere_intersections.clamp_min(0.0)
return sphere_intersections | null |
335 | import numpy as np
import cv2
import torch
from torch.nn import functional as F
def bilinear_interpolation(xs, ys, dist_map):
x1 = np.floor(xs).astype(np.int32)
y1 = np.floor(ys).astype(np.int32)
x2 = x1 + 1
y2 = y1 + 1
dx = np.expand_dims(np.stack([x2 - xs, xs - x1], axis=1), axis=1)
dy = np.expand_dims(np.stack([y2 - ys, ys - y1], axis=1), axis=2)
Q = np.stack([
dist_map[x1, y1], dist_map[x1, y2], dist_map[x2, y1], dist_map[x2, y2]
], axis=1).reshape(-1, 2, 2)
return np.squeeze(dx @ Q @ dy) # ((x2 - x1) * (y2 - y1)) = 1
def get_index_outside_of_bbox(samples_uniform, bbox_min, bbox_max):
samples_uniform_row = samples_uniform[:, 0]
samples_uniform_col = samples_uniform[:, 1]
index_outside = np.where((samples_uniform_row < bbox_min[0]) | (samples_uniform_row > bbox_max[0]) | (samples_uniform_col < bbox_min[1]) | (samples_uniform_col > bbox_max[1]))[0]
return index_outside
The provided code snippet includes necessary dependencies for implementing the `weighted_sampling` function. Write a Python function `def weighted_sampling(data, img_size, num_sample, bbox_ratio=0.9)` to solve the following problem:
More sampling within the bounding box
Here is the function:
def weighted_sampling(data, img_size, num_sample, bbox_ratio=0.9):
"""
More sampling within the bounding box
"""
# calculate bounding box
mask = data["object_mask"]
where = np.asarray(np.where(mask))
bbox_min = where.min(axis=1)
bbox_max = where.max(axis=1)
num_sample_bbox = int(num_sample * bbox_ratio)
samples_bbox = np.random.rand(num_sample_bbox, 2)
samples_bbox = samples_bbox * (bbox_max - bbox_min) + bbox_min
num_sample_uniform = num_sample - num_sample_bbox
samples_uniform = np.random.rand(num_sample_uniform, 2)
samples_uniform *= (img_size[0] - 1, img_size[1] - 1)
# get indices for uniform samples outside of bbox
index_outside = get_index_outside_of_bbox(samples_uniform, bbox_min, bbox_max) + num_sample_bbox
indices = np.concatenate([samples_bbox, samples_uniform], axis=0)
output = {}
for key, val in data.items():
if len(val.shape) == 3:
new_val = np.stack([
bilinear_interpolation(indices[:, 0], indices[:, 1], val[:, :, i])
for i in range(val.shape[2])
], axis=-1)
else:
new_val = bilinear_interpolation(indices[:, 0], indices[:, 1], val)
new_val = new_val.reshape(-1, *val.shape[2:])
output[key] = new_val
return output, index_outside | More sampling within the bounding box |
336 | import numpy as np
import torch
from skimage import measure
from lib.libmise import mise
import trimesh
def generate_mesh(func, verts, level_set=0, res_init=32, res_up=3, point_batch=5000):
scale = 1.1 # Scale of the padded bbox regarding the tight one.
verts = verts.data.cpu().numpy()
gt_bbox = np.stack([verts.min(axis=0), verts.max(axis=0)], axis=0)
gt_center = (gt_bbox[0] + gt_bbox[1]) * 0.5
gt_scale = (gt_bbox[1] - gt_bbox[0]).max()
mesh_extractor = mise.MISE(res_init, res_up, level_set)
points = mesh_extractor.query()
# query occupancy grid
while points.shape[0] != 0:
orig_points = points
points = points.astype(np.float32)
points = (points / mesh_extractor.resolution - 0.5) * scale
points = points * gt_scale + gt_center
points = torch.tensor(points).float().cuda()
values = []
for _, pnts in enumerate((torch.split(points,point_batch,dim=0))):
out = func(pnts)
values.append(out['sdf'].data.cpu().numpy())
values = np.concatenate(values, axis=0).astype(np.float64)[:,0]
mesh_extractor.update(orig_points, values)
points = mesh_extractor.query()
value_grid = mesh_extractor.to_dense()
# marching cube
verts, faces, normals, values = measure.marching_cubes_lewiner(
volume=value_grid,
gradient_direction='ascent',
level=level_set)
verts = (verts / mesh_extractor.resolution - 0.5) * scale
verts = verts * gt_scale + gt_center
faces = faces[:, [0,2,1]]
meshexport = trimesh.Trimesh(verts, faces, normals, vertex_colors=values)
#remove disconnect part
connected_comp = meshexport.split(only_watertight=False)
max_area = 0
max_comp = None
for comp in connected_comp:
if comp.area > max_area:
max_area = comp.area
max_comp = comp
meshexport = max_comp
return meshexport | null |
337 | import trimesh
from aitviewer.viewer import Viewer
from aitviewer.renderables.meshes import Meshes, VariableTopologyMeshes
import glob
import argparse
def vis_dynamic(args):
vertices = []
faces = []
vertex_normals = []
deformed_mesh_paths = sorted(glob.glob(f'{args.path}/*_deformed.ply'))
for deformed_mesh_path in deformed_mesh_paths:
mesh = trimesh.load(deformed_mesh_path, process=False)
# center the human
mesh.vertices = mesh.vertices - mesh.vertices.mean(axis=0)
vertices.append(mesh.vertices)
faces.append(mesh.faces)
vertex_normals.append(mesh.vertex_normals)
meshes = VariableTopologyMeshes(vertices,
faces,
vertex_normals,
preload=True
)
meshes.norm_coloring = True
meshes.flat_shading = True
viewer = Viewer()
viewer.scene.add(meshes)
viewer.scene.origin.enabled = False
viewer.scene.floor.enabled = True
viewer.run() | null |
338 | import trimesh
from aitviewer.viewer import Viewer
from aitviewer.renderables.meshes import Meshes, VariableTopologyMeshes
import glob
import argparse
def vis_static(args):
mesh = trimesh.load(args.path, process=False)
mesh = Meshes(mesh.vertices, mesh.faces, mesh.vertex_normals, name='mesh', flat_shading=True)
mesh.norm_coloring = True
viewer = Viewer()
viewer.scene.add(mesh)
viewer.scene.origin.enabled = False
viewer.scene.floor.enabled = True
viewer.run() | null |
339 | import sys
import cv2
import os
import numpy as np
import argparse
import time
import glob
from sklearn.neighbors import NearestNeighbors
def get_bbox_center(img_path, mask_path):
_img = cv2.imread(img_path)
W, H = _img.shape[1], _img.shape[0]
mask = cv2.imread(mask_path)[:, :, 0]
where = np.asarray(np.where(mask))
bbox_min = where.min(axis=1)
bbox_max = where.max(axis=1)
left, top, right, bottom = bbox_min[1], bbox_min[0], bbox_max[1], bbox_max[
0]
left = max(left, 0)
top = max(top, 0)
right = min(right, W)
bottom = min(bottom, H)
bbox_center = np.array([left + (right - left) / 2, top + (bottom - top) / 2])
return bbox_center | null |
340 | import numpy as np
import cv2
import torch
import torch.nn as nn
import torch.nn.functional as F
from pytorch3d.renderer import (
SfMPerspectiveCameras,
RasterizationSettings,
MeshRenderer,
MeshRasterizer,
SoftPhongShader,
PointLights,
)
from pytorch3d.structures import Meshes
from pytorch3d.renderer.mesh import Textures
The provided code snippet includes necessary dependencies for implementing the `smpl_to_pose` function. Write a Python function `def smpl_to_pose(model_type='smplx', use_hands=True, use_face=True, use_face_contour=False, openpose_format='coco25')` to solve the following problem:
Returns the indices of the permutation that maps OpenPose to SMPL Parameters ---------- model_type: str, optional The type of SMPL-like model that is used. The default mapping returned is for the SMPLX model use_hands: bool, optional Flag for adding to the returned permutation the mapping for the hand keypoints. Defaults to True use_face: bool, optional Flag for adding to the returned permutation the mapping for the face keypoints. Defaults to True use_face_contour: bool, optional Flag for appending the facial contour keypoints. Defaults to False openpose_format: bool, optional The output format of OpenPose. For now only COCO-25 and COCO-19 is supported. Defaults to 'coco25'
Here is the function:
def smpl_to_pose(model_type='smplx', use_hands=True, use_face=True,
use_face_contour=False, openpose_format='coco25'):
''' Returns the indices of the permutation that maps OpenPose to SMPL
Parameters
----------
model_type: str, optional
The type of SMPL-like model that is used. The default mapping
returned is for the SMPLX model
use_hands: bool, optional
Flag for adding to the returned permutation the mapping for the
hand keypoints. Defaults to True
use_face: bool, optional
Flag for adding to the returned permutation the mapping for the
face keypoints. Defaults to True
use_face_contour: bool, optional
Flag for appending the facial contour keypoints. Defaults to False
openpose_format: bool, optional
The output format of OpenPose. For now only COCO-25 and COCO-19 is
supported. Defaults to 'coco25'
'''
if openpose_format.lower() == 'coco25':
if model_type == 'smpl':
return np.array([24, 12, 17, 19, 21, 16, 18, 20, 0, 2, 5, 8, 1, 4,
7, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34],
dtype=np.int32)
elif model_type == 'smplh':
body_mapping = np.array([52, 12, 17, 19, 21, 16, 18, 20, 0, 2, 5,
8, 1, 4, 7, 53, 54, 55, 56, 57, 58, 59,
60, 61, 62], dtype=np.int32)
mapping = [body_mapping]
if use_hands:
lhand_mapping = np.array([20, 34, 35, 36, 63, 22, 23, 24, 64,
25, 26, 27, 65, 31, 32, 33, 66, 28,
29, 30, 67], dtype=np.int32)
rhand_mapping = np.array([21, 49, 50, 51, 68, 37, 38, 39, 69,
40, 41, 42, 70, 46, 47, 48, 71, 43,
44, 45, 72], dtype=np.int32)
mapping += [lhand_mapping, rhand_mapping]
return np.concatenate(mapping)
# SMPLX
elif model_type == 'smplx':
body_mapping = np.array([55, 12, 17, 19, 21, 16, 18, 20, 0, 2, 5,
8, 1, 4, 7, 56, 57, 58, 59, 60, 61, 62,
63, 64, 65], dtype=np.int32)
mapping = [body_mapping]
if use_hands:
lhand_mapping = np.array([20, 37, 38, 39, 66, 25, 26, 27,
67, 28, 29, 30, 68, 34, 35, 36, 69,
31, 32, 33, 70], dtype=np.int32)
rhand_mapping = np.array([21, 52, 53, 54, 71, 40, 41, 42, 72,
43, 44, 45, 73, 49, 50, 51, 74, 46,
47, 48, 75], dtype=np.int32)
mapping += [lhand_mapping, rhand_mapping]
if use_face:
# end_idx = 127 + 17 * use_face_contour
face_mapping = np.arange(76, 127 + 17 * use_face_contour,
dtype=np.int32)
mapping += [face_mapping]
return np.concatenate(mapping)
else:
raise ValueError('Unknown model type: {}'.format(model_type))
elif openpose_format == 'coco19':
if model_type == 'smpl':
return np.array([24, 12, 17, 19, 21, 16, 18, 20, 2, 5, 8,
1, 4, 7, 25, 26, 27, 28],
dtype=np.int32)
elif model_type == 'smpl_neutral':
return np.array([14, 12, 8, 7, 6, 9, 10, 11, 2, 1, 0, 3, 4, 5, 16, 15,18, 17,],
dtype=np.int32)
elif model_type == 'smplh':
body_mapping = np.array([52, 12, 17, 19, 21, 16, 18, 20, 0, 2, 5,
8, 1, 4, 7, 53, 54, 55, 56],
dtype=np.int32)
mapping = [body_mapping]
if use_hands:
lhand_mapping = np.array([20, 34, 35, 36, 57, 22, 23, 24, 58,
25, 26, 27, 59, 31, 32, 33, 60, 28,
29, 30, 61], dtype=np.int32)
rhand_mapping = np.array([21, 49, 50, 51, 62, 37, 38, 39, 63,
40, 41, 42, 64, 46, 47, 48, 65, 43,
44, 45, 66], dtype=np.int32)
mapping += [lhand_mapping, rhand_mapping]
return np.concatenate(mapping)
# SMPLX
elif model_type == 'smplx':
body_mapping = np.array([55, 12, 17, 19, 21, 16, 18, 20, 0, 2, 5,
8, 1, 4, 7, 56, 57, 58, 59],
dtype=np.int32)
mapping = [body_mapping]
if use_hands:
lhand_mapping = np.array([20, 37, 38, 39, 60, 25, 26, 27,
61, 28, 29, 30, 62, 34, 35, 36, 63,
31, 32, 33, 64], dtype=np.int32)
rhand_mapping = np.array([21, 52, 53, 54, 65, 40, 41, 42, 66,
43, 44, 45, 67, 49, 50, 51, 68, 46,
47, 48, 69], dtype=np.int32)
mapping += [lhand_mapping, rhand_mapping]
if use_face:
face_mapping = np.arange(70, 70 + 51 +
17 * use_face_contour,
dtype=np.int32)
mapping += [face_mapping]
return np.concatenate(mapping)
else:
raise ValueError('Unknown model type: {}'.format(model_type))
elif openpose_format == 'h36':
if model_type == 'smpl':
return np.array([2,5,8,1,4,7,12,24,16,18,20,17,19,21],dtype=np.int32)
elif model_type == 'smpl_neutral':
#return np.array([2,1,0,3,4,5,12,13,9,10,11,8,7,6], dtype=np.int32)
return [6, 5, 4, 1, 2, 3, 16, 15, 14, 11, 12, 13, 8, 10]
else:
raise ValueError('Unknown joint format: {}'.format(openpose_format)) | Returns the indices of the permutation that maps OpenPose to SMPL Parameters ---------- model_type: str, optional The type of SMPL-like model that is used. The default mapping returned is for the SMPLX model use_hands: bool, optional Flag for adding to the returned permutation the mapping for the hand keypoints. Defaults to True use_face: bool, optional Flag for adding to the returned permutation the mapping for the face keypoints. Defaults to True use_face_contour: bool, optional Flag for appending the facial contour keypoints. Defaults to False openpose_format: bool, optional The output format of OpenPose. For now only COCO-25 and COCO-19 is supported. Defaults to 'coco25' |
341 | import numpy as np
import cv2
import torch
import torch.nn as nn
import torch.nn.functional as F
from pytorch3d.renderer import (
SfMPerspectiveCameras,
RasterizationSettings,
MeshRenderer,
MeshRasterizer,
SoftPhongShader,
PointLights,
)
from pytorch3d.structures import Meshes
from pytorch3d.renderer.mesh import Textures
def render_trimesh(renderer,mesh,R,T, mode='np'):
verts = torch.tensor(mesh.vertices).cuda().float()[None]
faces = torch.tensor(mesh.faces).cuda()[None]
colors = torch.tensor(mesh.visual.vertex_colors).float().cuda()[None,...,:3]/255
renderer.set_camera(R,T)
image = renderer.render_mesh_recon(verts, faces, colors=colors, mode=mode)[0]
image = (255*image).data.cpu().numpy().astype(np.uint8)
return image | null |
342 | import numpy as np
import cv2
import torch
import torch.nn as nn
import torch.nn.functional as F
from pytorch3d.renderer import (
SfMPerspectiveCameras,
RasterizationSettings,
MeshRenderer,
MeshRasterizer,
SoftPhongShader,
PointLights,
)
from pytorch3d.structures import Meshes
from pytorch3d.renderer.mesh import Textures
INVALID_TRANS=np.ones(3)*-1
def estimate_translation_cv2(joints_3d, joints_2d, focal_length=600, img_size=np.array([512.,512.]), proj_mat=None, cam_dist=None):
if proj_mat is None:
camK = np.eye(3)
camK[0,0], camK[1,1] = focal_length, focal_length
camK[:2,2] = img_size//2
else:
camK = proj_mat
_, _, tvec,inliers = cv2.solvePnPRansac(joints_3d, joints_2d, camK, cam_dist,\
flags=cv2.SOLVEPNP_EPNP,reprojectionError=20,iterationsCount=100)
if inliers is None:
return INVALID_TRANS
else:
tra_pred = tvec[:,0]
return tra_pred | null |
343 | import numpy as np
import cv2
import torch
import torch.nn as nn
import torch.nn.functional as F
from pytorch3d.renderer import (
SfMPerspectiveCameras,
RasterizationSettings,
MeshRenderer,
MeshRasterizer,
SoftPhongShader,
PointLights,
)
from pytorch3d.structures import Meshes
from pytorch3d.renderer.mesh import Textures
The provided code snippet includes necessary dependencies for implementing the `transform_mat` function. Write a Python function `def transform_mat(R, t)` to solve the following problem:
Creates a batch of transformation matrices Args: - R: Bx3x3 array of a batch of rotation matrices - t: Bx3x1 array of a batch of translation vectors Returns: - T: Bx4x4 Transformation matrix
Here is the function:
def transform_mat(R, t):
''' Creates a batch of transformation matrices
Args:
- R: Bx3x3 array of a batch of rotation matrices
- t: Bx3x1 array of a batch of translation vectors
Returns:
- T: Bx4x4 Transformation matrix
'''
# No padding left or right, only add an extra row
return torch.cat([F.pad(R, [0, 0, 0, 1]),
F.pad(t, [0, 0, 0, 1], value=1)], dim=2) | Creates a batch of transformation matrices Args: - R: Bx3x3 array of a batch of rotation matrices - t: Bx3x1 array of a batch of translation vectors Returns: - T: Bx4x4 Transformation matrix |
344 | import numpy as np
import cv2
import torch
import torch.nn as nn
import torch.nn.functional as F
from pytorch3d.renderer import (
SfMPerspectiveCameras,
RasterizationSettings,
MeshRenderer,
MeshRasterizer,
SoftPhongShader,
PointLights,
)
from pytorch3d.structures import Meshes
from pytorch3d.renderer.mesh import Textures
def transform_smpl(curr_extrinsic, target_extrinsic, smpl_pose, smpl_trans, T_hip):
R_root = cv2.Rodrigues(smpl_pose[:3])[0]
transf_global_ori = np.linalg.inv(target_extrinsic[:3,:3]) @ curr_extrinsic[:3,:3] @ R_root
target_extrinsic[:3, -1] = curr_extrinsic[:3,:3] @ (smpl_trans + T_hip) + curr_extrinsic[:3, -1] - smpl_trans - target_extrinsic[:3,:3] @ T_hip
smpl_pose[:3] = cv2.Rodrigues(transf_global_ori)[0].reshape(3)
smpl_trans = np.linalg.inv(target_extrinsic[:3,:3]) @ smpl_trans # we assume
return target_extrinsic, smpl_pose, smpl_trans | null |
345 | from preprocessing_utils import GMoF
import torch
def get_loss_weights():
loss_weight = {'J2D_Loss': lambda cst, it: 1e-2 * cst,
'Temporal_Loss': lambda cst, it: 6e0 * cst,
}
return loss_weight | null |
346 | from preprocessing_utils import GMoF
import torch
joint_weights = torch.ones(num_joints)
joint_weights[joints_to_ign] = 0
joint_weights = joint_weights.reshape((-1,1)).cuda()
robustifier = GMoF(rho=100)
def joints_2d_loss(gt_joints_2d=None, joints_2d=None, joint_confidence=None):
joint_diff = robustifier(gt_joints_2d - joints_2d)
joints_2dloss = torch.mean((joint_confidence*joint_weights[:, 0]).unsqueeze(-1) ** 2 * joint_diff)
return joints_2dloss | null |
347 | from preprocessing_utils import GMoF
import torch
def pose_temporal_loss(last_pose, param_pose):
temporal_loss = torch.mean(torch.square(last_pose - param_pose))
return temporal_loss | null |
348 | import cv2
import numpy as np
import argparse
def get_center_point(num_cams,cameras):
def normalize_cameras(original_cameras_filename,output_cameras_filename,num_of_cameras, scene_bounding_sphere=3.0):
cameras = np.load(original_cameras_filename)
if num_of_cameras==-1:
all_files=cameras.files
maximal_ind=0
for field in all_files:
maximal_ind=np.maximum(maximal_ind,int(field.split('_')[-1]))
num_of_cameras=maximal_ind+1
camera_centers = get_center_point(num_of_cameras, cameras)
center = np.array([0, 0, 0])
max_radius = np.linalg.norm((center[:, np.newaxis] - camera_centers), axis=0).max() * 1.1
normalization = np.eye(4).astype(np.float32)
normalization[0, 0] = max_radius / scene_bounding_sphere
normalization[1, 1] = max_radius / scene_bounding_sphere
normalization[2, 2] = max_radius / scene_bounding_sphere
cameras_new = {}
for i in range(num_of_cameras):
cameras_new['scale_mat_%d' % i] = normalization
cameras_new['world_mat_%d' % i] = cameras['cam_%d' % i].copy()
np.savez(output_cameras_filename, **cameras_new) | null |
349 | from typing import Optional, Dict, Union
import os
import os.path as osp
import pickle
import numpy as np
import torch
import torch.nn as nn
from .lbs import (
lbs, vertices2landmarks, find_dynamic_lmk_idx_and_bcoords, vertices2joints, blend_shapes)
from .vertex_ids import vertex_ids as VERTEX_IDS
from .utils import (
Struct, to_np, to_tensor, Tensor, Array,
SMPLOutput,
SMPLHOutput,
SMPLXOutput,
MANOOutput,
FLAMEOutput,
find_joint_kin_chain)
from .vertex_joint_selector import VertexJointSelector
class SMPLLayer(SMPL):
def __init__(
self,
*args
) -> None:
# Just create a SMPL module without any member variables
super(SMPLLayer, self).__init__(
create_body_pose=False,
create_betas=False,
create_global_orient=False,
create_transl=False,
*args,
)
def forward(
self,
betas: Optional[Tensor] = None,
body_pose: Optional[Tensor] = None,
global_orient: Optional[Tensor] = None,
transl: Optional[Tensor] = None,
return_verts=True,
return_full_pose: bool = False,
pose2rot: bool = True
) -> SMPLOutput:
''' Forward pass for the SMPL model
Parameters
----------
global_orient: torch.tensor, optional, shape Bx3x3
Global rotation of the body. Useful if someone wishes to
predicts this with an external model. It is expected to be in
rotation matrix format. (default=None)
betas: torch.tensor, optional, shape BxN_b
Shape parameters. For example, it can used if shape parameters
`betas` are predicted from some external model.
(default=None)
body_pose: torch.tensor, optional, shape BxJx3x3
Body pose. For example, it can used if someone predicts the
pose of the body joints are predicted from some external model.
It should be a tensor that contains joint rotations in
rotation matrix format. (default=None)
transl: torch.tensor, optional, shape Bx3
Translation vector of the body.
For example, it can used if the translation
`transl` is predicted from some external model.
(default=None)
return_verts: bool, optional
Return the vertices. (default=True)
return_full_pose: bool, optional
Returns the full axis-angle pose vector (default=False)
Returns
-------
'''
model_vars = [betas, global_orient, body_pose, transl]
batch_size = 1
for var in model_vars:
if var is None:
continue
batch_size = max(batch_size, len(var))
device, dtype = self.shapedirs.device, self.shapedirs.dtype
if global_orient is None:
global_orient = torch.eye(3, device=device, dtype=dtype).view(
1, 1, 3, 3).expand(batch_size, -1, -1, -1).contiguous()
if body_pose is None:
body_pose = torch.eye(3, device=device, dtype=dtype).view(
1, 1, 3, 3).expand(
batch_size, self.NUM_BODY_JOINTS, -1, -1).contiguous()
if betas is None:
betas = torch.zeros([batch_size, self.num_betas],
dtype=dtype, device=device)
if transl is None:
transl = torch.zeros([batch_size, 3], dtype=dtype, device=device)
full_pose = torch.cat(
[global_orient.reshape(-1, 1, 3, 3),
body_pose.reshape(-1, self.NUM_BODY_JOINTS, 3, 3)],
dim=1)
vertices, joints = lbs(betas, full_pose, self.v_template,
self.shapedirs, self.posedirs,
self.J_regressor, self.parents,
self.lbs_weights,
pose2rot=False)
joints = self.vertex_joint_selector(vertices, joints)
# Map the joints to the current dataset
if self.joint_mapper is not None:
joints = self.joint_mapper(joints)
if transl is not None:
joints += transl.unsqueeze(dim=1)
vertices += transl.unsqueeze(dim=1)
output = SMPLOutput(vertices=vertices if return_verts else None,
global_orient=global_orient,
body_pose=body_pose,
joints=joints,
betas=betas,
full_pose=full_pose if return_full_pose else None)
return output
class SMPLHLayer(SMPLH):
def __init__(
self, *args
) -> None:
''' SMPL+H as a layer model constructor
'''
super(SMPLHLayer, self).__init__(
create_global_orient=False,
create_body_pose=False,
create_left_hand_pose=False,
create_right_hand_pose=False,
create_betas=False,
create_transl=False,
*args)
def forward(
self,
betas: Optional[Tensor] = None,
global_orient: Optional[Tensor] = None,
body_pose: Optional[Tensor] = None,
left_hand_pose: Optional[Tensor] = None,
right_hand_pose: Optional[Tensor] = None,
transl: Optional[Tensor] = None,
return_verts: bool = True,
return_full_pose: bool = False,
pose2rot: bool = True
) -> SMPLHOutput:
''' Forward pass for the SMPL+H model
Parameters
----------
global_orient: torch.tensor, optional, shape Bx3x3
Global rotation of the body. Useful if someone wishes to
predicts this with an external model. It is expected to be in
rotation matrix format. (default=None)
betas: torch.tensor, optional, shape BxN_b
Shape parameters. For example, it can used if shape parameters
`betas` are predicted from some external model.
(default=None)
body_pose: torch.tensor, optional, shape BxJx3x3
If given, ignore the member variable `body_pose` and use it
instead. For example, it can used if someone predicts the
pose of the body joints are predicted from some external model.
It should be a tensor that contains joint rotations in
rotation matrix format. (default=None)
left_hand_pose: torch.tensor, optional, shape Bx15x3x3
If given, contains the pose of the left hand.
It should be a tensor that contains joint rotations in
rotation matrix format. (default=None)
right_hand_pose: torch.tensor, optional, shape Bx15x3x3
If given, contains the pose of the right hand.
It should be a tensor that contains joint rotations in
rotation matrix format. (default=None)
transl: torch.tensor, optional, shape Bx3
Translation vector of the body.
For example, it can used if the translation
`transl` is predicted from some external model.
(default=None)
return_verts: bool, optional
Return the vertices. (default=True)
return_full_pose: bool, optional
Returns the full axis-angle pose vector (default=False)
Returns
-------
'''
model_vars = [betas, global_orient, body_pose, transl, left_hand_pose,
right_hand_pose]
batch_size = 1
for var in model_vars:
if var is None:
continue
batch_size = max(batch_size, len(var))
device, dtype = self.shapedirs.device, self.shapedirs.dtype
if global_orient is None:
global_orient = torch.eye(3, device=device, dtype=dtype).view(
1, 1, 3, 3).expand(batch_size, -1, -1, -1).contiguous()
if body_pose is None:
body_pose = torch.eye(3, device=device, dtype=dtype).view(
1, 1, 3, 3).expand(batch_size, 21, -1, -1).contiguous()
if left_hand_pose is None:
left_hand_pose = torch.eye(3, device=device, dtype=dtype).view(
1, 1, 3, 3).expand(batch_size, 15, -1, -1).contiguous()
if right_hand_pose is None:
right_hand_pose = torch.eye(3, device=device, dtype=dtype).view(
1, 1, 3, 3).expand(batch_size, 15, -1, -1).contiguous()
if betas is None:
betas = torch.zeros([batch_size, self.num_betas],
dtype=dtype, device=device)
if transl is None:
transl = torch.zeros([batch_size, 3], dtype=dtype, device=device)
# Concatenate all pose vectors
full_pose = torch.cat(
[global_orient.reshape(-1, 1, 3, 3),
body_pose.reshape(-1, self.NUM_BODY_JOINTS, 3, 3),
left_hand_pose.reshape(-1, self.NUM_HAND_JOINTS, 3, 3),
right_hand_pose.reshape(-1, self.NUM_HAND_JOINTS, 3, 3)],
dim=1)
vertices, joints = lbs(betas, full_pose, self.v_template,
self.shapedirs, self.posedirs,
self.J_regressor, self.parents,
self.lbs_weights, pose2rot=False)
# Add any extra joints that might be needed
joints = self.vertex_joint_selector(vertices, joints)
if self.joint_mapper is not None:
joints = self.joint_mapper(joints)
if transl is not None:
joints += transl.unsqueeze(dim=1)
vertices += transl.unsqueeze(dim=1)
output = SMPLHOutput(vertices=vertices if return_verts else None,
joints=joints,
betas=betas,
global_orient=global_orient,
body_pose=body_pose,
left_hand_pose=left_hand_pose,
right_hand_pose=right_hand_pose,
full_pose=full_pose if return_full_pose else None)
return output
class SMPLXLayer(SMPLX):
def __init__(
self,
*args
) -> None:
# Just create a SMPLX module without any member variables
super(SMPLXLayer, self).__init__(
create_global_orient=False,
create_body_pose=False,
create_left_hand_pose=False,
create_right_hand_pose=False,
create_jaw_pose=False,
create_leye_pose=False,
create_reye_pose=False,
create_betas=False,
create_expression=False,
create_transl=False,
*args,
)
def forward(
self,
betas: Optional[Tensor] = None,
global_orient: Optional[Tensor] = None,
body_pose: Optional[Tensor] = None,
left_hand_pose: Optional[Tensor] = None,
right_hand_pose: Optional[Tensor] = None,
transl: Optional[Tensor] = None,
expression: Optional[Tensor] = None,
jaw_pose: Optional[Tensor] = None,
leye_pose: Optional[Tensor] = None,
reye_pose: Optional[Tensor] = None,
return_verts: bool = True,
return_full_pose: bool = False
) -> SMPLXOutput:
'''
Forward pass for the SMPLX model
Parameters
----------
global_orient: torch.tensor, optional, shape Bx3x3
If given, ignore the member variable and use it as the global
rotation of the body. Useful if someone wishes to predicts this
with an external model. It is expected to be in rotation matrix
format. (default=None)
betas: torch.tensor, optional, shape BxN_b
If given, ignore the member variable `betas` and use it
instead. For example, it can used if shape parameters
`betas` are predicted from some external model.
(default=None)
expression: torch.tensor, optional, shape BxN_e
Expression coefficients.
For example, it can used if expression parameters
`expression` are predicted from some external model.
body_pose: torch.tensor, optional, shape BxJx3x3
If given, ignore the member variable `body_pose` and use it
instead. For example, it can used if someone predicts the
pose of the body joints are predicted from some external model.
It should be a tensor that contains joint rotations in
rotation matrix format. (default=None)
left_hand_pose: torch.tensor, optional, shape Bx15x3x3
If given, contains the pose of the left hand.
It should be a tensor that contains joint rotations in
rotation matrix format. (default=None)
right_hand_pose: torch.tensor, optional, shape Bx15x3x3
If given, contains the pose of the right hand.
It should be a tensor that contains joint rotations in
rotation matrix format. (default=None)
jaw_pose: torch.tensor, optional, shape Bx3x3
Jaw pose. It should either joint rotations in
rotation matrix format.
transl: torch.tensor, optional, shape Bx3
Translation vector of the body.
For example, it can used if the translation
`transl` is predicted from some external model.
(default=None)
return_verts: bool, optional
Return the vertices. (default=True)
return_full_pose: bool, optional
Returns the full pose vector (default=False)
Returns
-------
output: ModelOutput
A data class that contains the posed vertices and joints
'''
device, dtype = self.shapedirs.device, self.shapedirs.dtype
model_vars = [betas, global_orient, body_pose, transl,
expression, left_hand_pose, right_hand_pose, jaw_pose]
batch_size = 1
for var in model_vars:
if var is None:
continue
batch_size = max(batch_size, len(var))
if global_orient is None:
global_orient = torch.eye(3, device=device, dtype=dtype).view(
1, 1, 3, 3).expand(batch_size, -1, -1, -1).contiguous()
if body_pose is None:
body_pose = torch.eye(3, device=device, dtype=dtype).view(
1, 1, 3, 3).expand(
batch_size, self.NUM_BODY_JOINTS, -1, -1).contiguous()
if left_hand_pose is None:
left_hand_pose = torch.eye(3, device=device, dtype=dtype).view(
1, 1, 3, 3).expand(batch_size, 15, -1, -1).contiguous()
if right_hand_pose is None:
right_hand_pose = torch.eye(3, device=device, dtype=dtype).view(
1, 1, 3, 3).expand(batch_size, 15, -1, -1).contiguous()
if jaw_pose is None:
jaw_pose = torch.eye(3, device=device, dtype=dtype).view(
1, 1, 3, 3).expand(batch_size, -1, -1, -1).contiguous()
if leye_pose is None:
leye_pose = torch.eye(3, device=device, dtype=dtype).view(
1, 1, 3, 3).expand(batch_size, -1, -1, -1).contiguous()
if reye_pose is None:
reye_pose = torch.eye(3, device=device, dtype=dtype).view(
1, 1, 3, 3).expand(batch_size, -1, -1, -1).contiguous()
if expression is None:
expression = torch.zeros([batch_size, self.num_expression_coeffs],
dtype=dtype, device=device)
if betas is None:
betas = torch.zeros([batch_size, self.num_betas],
dtype=dtype, device=device)
if transl is None:
transl = torch.zeros([batch_size, 3], dtype=dtype, device=device)
# Concatenate all pose vectors
full_pose = torch.cat(
[global_orient.reshape(-1, 1, 3, 3),
body_pose.reshape(-1, self.NUM_BODY_JOINTS, 3, 3),
jaw_pose.reshape(-1, 1, 3, 3),
leye_pose.reshape(-1, 1, 3, 3),
reye_pose.reshape(-1, 1, 3, 3),
left_hand_pose.reshape(-1, self.NUM_HAND_JOINTS, 3, 3),
right_hand_pose.reshape(-1, self.NUM_HAND_JOINTS, 3, 3)],
dim=1)
shape_components = torch.cat([betas, expression], dim=-1)
shapedirs = torch.cat([self.shapedirs, self.expr_dirs], dim=-1)
vertices, joints = lbs(shape_components, full_pose, self.v_template,
shapedirs, self.posedirs,
self.J_regressor, self.parents,
self.lbs_weights, pose2rot=False)
lmk_faces_idx = self.lmk_faces_idx.unsqueeze(
dim=0).expand(batch_size, -1).contiguous()
lmk_bary_coords = self.lmk_bary_coords.unsqueeze(dim=0).repeat(
batch_size, 1, 1)
if self.use_face_contour:
lmk_idx_and_bcoords = find_dynamic_lmk_idx_and_bcoords(
vertices, full_pose,
self.dynamic_lmk_faces_idx,
self.dynamic_lmk_bary_coords,
self.neck_kin_chain,
pose2rot=False,
)
dyn_lmk_faces_idx, dyn_lmk_bary_coords = lmk_idx_and_bcoords
lmk_faces_idx = torch.cat([lmk_faces_idx, dyn_lmk_faces_idx], 1)
lmk_bary_coords = torch.cat(
[lmk_bary_coords.expand(batch_size, -1, -1),
dyn_lmk_bary_coords], 1)
landmarks = vertices2landmarks(vertices, self.faces_tensor,
lmk_faces_idx,
lmk_bary_coords)
# Add any extra joints that might be needed
joints = self.vertex_joint_selector(vertices, joints)
# Add the landmarks to the joints
joints = torch.cat([joints, landmarks], dim=1)
# Map the joints to the current dataset
if self.joint_mapper is not None:
joints = self.joint_mapper(joints=joints, vertices=vertices)
if transl is not None:
joints += transl.unsqueeze(dim=1)
vertices += transl.unsqueeze(dim=1)
output = SMPLXOutput(vertices=vertices if return_verts else None,
joints=joints,
betas=betas,
expression=expression,
global_orient=global_orient,
body_pose=body_pose,
left_hand_pose=left_hand_pose,
right_hand_pose=right_hand_pose,
jaw_pose=jaw_pose,
transl=transl,
full_pose=full_pose if return_full_pose else None)
return output
class MANOLayer(MANO):
def __init__(self, *args) -> None:
''' MANO as a layer model constructor
'''
super(MANOLayer, self).__init__(
create_global_orient=False,
create_hand_pose=False,
create_betas=False,
create_transl=False,
*args)
def name(self) -> str:
return 'MANO'
def forward(
self,
betas: Optional[Tensor] = None,
global_orient: Optional[Tensor] = None,
hand_pose: Optional[Tensor] = None,
transl: Optional[Tensor] = None,
return_verts: bool = True,
return_full_pose: bool = False
) -> MANOOutput:
''' Forward pass for the MANO model
'''
device, dtype = self.shapedirs.device, self.shapedirs.dtype
if global_orient is None:
batch_size = 1
global_orient = torch.eye(3, device=device, dtype=dtype).view(
1, 1, 3, 3).expand(batch_size, -1, -1, -1).contiguous()
else:
batch_size = global_orient.shape[0]
if hand_pose is None:
hand_pose = torch.eye(3, device=device, dtype=dtype).view(
1, 1, 3, 3).expand(batch_size, 15, -1, -1).contiguous()
if betas is None:
betas = torch.zeros(
[batch_size, self.num_betas], dtype=dtype, device=device)
if transl is None:
transl = torch.zeros([batch_size, 3], dtype=dtype, device=device)
full_pose = torch.cat([global_orient, hand_pose], dim=1)
vertices, joints = lbs(betas, full_pose, self.v_template,
self.shapedirs, self.posedirs,
self.J_regressor, self.parents,
self.lbs_weights, pose2rot=False)
if self.joint_mapper is not None:
joints = self.joint_mapper(joints)
if transl is not None:
joints = joints + transl.unsqueeze(dim=1)
vertices = vertices + transl.unsqueeze(dim=1)
output = MANOOutput(
vertices=vertices if return_verts else None,
joints=joints if return_verts else None,
betas=betas,
global_orient=global_orient,
hand_pose=hand_pose,
full_pose=full_pose if return_full_pose else None)
return output
class FLAMELayer(FLAME):
def __init__(self, *args) -> None:
''' FLAME as a layer model constructor '''
super(FLAMELayer, self).__init__(
create_betas=False,
create_expression=False,
create_global_orient=False,
create_neck_pose=False,
create_jaw_pose=False,
create_leye_pose=False,
create_reye_pose=False,
*args)
def forward(
self,
betas: Optional[Tensor] = None,
global_orient: Optional[Tensor] = None,
neck_pose: Optional[Tensor] = None,
transl: Optional[Tensor] = None,
expression: Optional[Tensor] = None,
jaw_pose: Optional[Tensor] = None,
leye_pose: Optional[Tensor] = None,
reye_pose: Optional[Tensor] = None,
return_verts: bool = True,
return_full_pose: bool = False,
pose2rot: bool = True
) -> FLAMEOutput:
'''
Forward pass for the SMPLX model
Parameters
----------
global_orient: torch.tensor, optional, shape Bx3x3
Global rotation of the body. Useful if someone wishes to
predicts this with an external model. It is expected to be in
rotation matrix format. (default=None)
betas: torch.tensor, optional, shape BxN_b
Shape parameters. For example, it can used if shape parameters
`betas` are predicted from some external model.
(default=None)
expression: torch.tensor, optional, shape BxN_e
If given, ignore the member variable `expression` and use it
instead. For example, it can used if expression parameters
`expression` are predicted from some external model.
jaw_pose: torch.tensor, optional, shape Bx3x3
Jaw pose. It should either joint rotations in
rotation matrix format.
transl: torch.tensor, optional, shape Bx3
Translation vector of the body.
For example, it can used if the translation
`transl` is predicted from some external model.
(default=None)
return_verts: bool, optional
Return the vertices. (default=True)
return_full_pose: bool, optional
Returns the full axis-angle pose vector (default=False)
Returns
-------
output: ModelOutput
A named tuple of type `ModelOutput`
'''
device, dtype = self.shapedirs.device, self.shapedirs.dtype
if global_orient is None:
batch_size = 1
global_orient = torch.eye(3, device=device, dtype=dtype).view(
1, 1, 3, 3).expand(batch_size, -1, -1, -1).contiguous()
else:
batch_size = global_orient.shape[0]
if neck_pose is None:
neck_pose = torch.eye(3, device=device, dtype=dtype).view(
1, 1, 3, 3).expand(batch_size, 1, -1, -1).contiguous()
if jaw_pose is None:
jaw_pose = torch.eye(3, device=device, dtype=dtype).view(
1, 1, 3, 3).expand(batch_size, -1, -1, -1).contiguous()
if leye_pose is None:
leye_pose = torch.eye(3, device=device, dtype=dtype).view(
1, 1, 3, 3).expand(batch_size, -1, -1, -1).contiguous()
if reye_pose is None:
reye_pose = torch.eye(3, device=device, dtype=dtype).view(
1, 1, 3, 3).expand(batch_size, -1, -1, -1).contiguous()
if betas is None:
betas = torch.zeros([batch_size, self.num_betas],
dtype=dtype, device=device)
if expression is None:
expression = torch.zeros([batch_size, self.num_expression_coeffs],
dtype=dtype, device=device)
if transl is None:
transl = torch.zeros([batch_size, 3], dtype=dtype, device=device)
full_pose = torch.cat(
[global_orient, neck_pose, jaw_pose, leye_pose, reye_pose], dim=1)
shape_components = torch.cat([betas, expression], dim=-1)
shapedirs = torch.cat([self.shapedirs, self.expr_dirs], dim=-1)
vertices, joints = lbs(shape_components, full_pose, self.v_template,
shapedirs, self.posedirs,
self.J_regressor, self.parents,
self.lbs_weights, pose2rot=False,
)
lmk_faces_idx = self.lmk_faces_idx.unsqueeze(
dim=0).expand(batch_size, -1).contiguous()
lmk_bary_coords = self.lmk_bary_coords.unsqueeze(dim=0).repeat(
self.batch_size, 1, 1)
if self.use_face_contour:
lmk_idx_and_bcoords = find_dynamic_lmk_idx_and_bcoords(
vertices, full_pose, self.dynamic_lmk_faces_idx,
self.dynamic_lmk_bary_coords,
self.neck_kin_chain,
pose2rot=False,
)
dyn_lmk_faces_idx, dyn_lmk_bary_coords = lmk_idx_and_bcoords
lmk_faces_idx = torch.cat([lmk_faces_idx,
dyn_lmk_faces_idx], 1)
lmk_bary_coords = torch.cat(
[lmk_bary_coords.expand(batch_size, -1, -1),
dyn_lmk_bary_coords], 1)
landmarks = vertices2landmarks(vertices, self.faces_tensor,
lmk_faces_idx,
lmk_bary_coords)
# Add any extra joints that might be needed
joints = self.vertex_joint_selector(vertices, joints)
# Add the landmarks to the joints
joints = torch.cat([joints, landmarks], dim=1)
# Map the joints to the current dataset
if self.joint_mapper is not None:
joints = self.joint_mapper(joints=joints, vertices=vertices)
joints += transl.unsqueeze(dim=1)
vertices += transl.unsqueeze(dim=1)
output = FLAMEOutput(vertices=vertices if return_verts else None,
joints=joints,
betas=betas,
expression=expression,
global_orient=global_orient,
neck_pose=neck_pose,
jaw_pose=jaw_pose,
full_pose=full_pose if return_full_pose else None)
return output
The provided code snippet includes necessary dependencies for implementing the `build_layer` function. Write a Python function `def build_layer( model_path: str, model_type: str = 'smpl' ) -> Union[SMPLLayer, SMPLHLayer, SMPLXLayer, MANOLayer, FLAMELayer]` to solve the following problem:
Method for creating a model from a path and a model type Parameters ---------- model_path: str Either the path to the model you wish to load or a folder, where each subfolder contains the differents types, i.e.: model_path: | |-- smpl |-- SMPL_FEMALE |-- SMPL_NEUTRAL |-- SMPL_MALE |-- smplh |-- SMPLH_FEMALE |-- SMPLH_MALE |-- smplx |-- SMPLX_FEMALE |-- SMPLX_NEUTRAL |-- SMPLX_MALE |-- mano |-- MANO RIGHT |-- MANO LEFT |-- flame |-- FLAME_FEMALE |-- FLAME_MALE |-- FLAME_NEUTRAL model_type: str, optional When model_path is a folder, then this parameter specifies the type of model to be loaded **kwargs: dict Keyword arguments Returns ------- body_model: nn.Module The PyTorch module that implements the corresponding body model Raises ------ ValueError: In case the model type is not one of SMPL, SMPLH, SMPLX, MANO or FLAME
Here is the function:
def build_layer(
model_path: str,
model_type: str = 'smpl'
) -> Union[SMPLLayer, SMPLHLayer, SMPLXLayer, MANOLayer, FLAMELayer]:
''' Method for creating a model from a path and a model type
Parameters
----------
model_path: str
Either the path to the model you wish to load or a folder,
where each subfolder contains the differents types, i.e.:
model_path:
|
|-- smpl
|-- SMPL_FEMALE
|-- SMPL_NEUTRAL
|-- SMPL_MALE
|-- smplh
|-- SMPLH_FEMALE
|-- SMPLH_MALE
|-- smplx
|-- SMPLX_FEMALE
|-- SMPLX_NEUTRAL
|-- SMPLX_MALE
|-- mano
|-- MANO RIGHT
|-- MANO LEFT
|-- flame
|-- FLAME_FEMALE
|-- FLAME_MALE
|-- FLAME_NEUTRAL
model_type: str, optional
When model_path is a folder, then this parameter specifies the
type of model to be loaded
**kwargs: dict
Keyword arguments
Returns
-------
body_model: nn.Module
The PyTorch module that implements the corresponding body model
Raises
------
ValueError: In case the model type is not one of SMPL, SMPLH,
SMPLX, MANO or FLAME
'''
if osp.isdir(model_path):
model_path = os.path.join(model_path, model_type)
else:
model_type = osp.basename(model_path).split('_')[0].lower()
if model_type.lower() == 'smpl':
return SMPLLayer(model_path)
elif model_type.lower() == 'smplh':
return SMPLHLayer(model_path)
elif model_type.lower() == 'smplx':
return SMPLXLayer(model_path)
elif 'mano' in model_type.lower():
return MANOLayer(model_path)
elif 'flame' in model_type.lower():
return FLAMELayer(model_path)
else:
raise ValueError(f'Unknown model type {model_type}, exiting!') | Method for creating a model from a path and a model type Parameters ---------- model_path: str Either the path to the model you wish to load or a folder, where each subfolder contains the differents types, i.e.: model_path: | |-- smpl |-- SMPL_FEMALE |-- SMPL_NEUTRAL |-- SMPL_MALE |-- smplh |-- SMPLH_FEMALE |-- SMPLH_MALE |-- smplx |-- SMPLX_FEMALE |-- SMPLX_NEUTRAL |-- SMPLX_MALE |-- mano |-- MANO RIGHT |-- MANO LEFT |-- flame |-- FLAME_FEMALE |-- FLAME_MALE |-- FLAME_NEUTRAL model_type: str, optional When model_path is a folder, then this parameter specifies the type of model to be loaded **kwargs: dict Keyword arguments Returns ------- body_model: nn.Module The PyTorch module that implements the corresponding body model Raises ------ ValueError: In case the model type is not one of SMPL, SMPLH, SMPLX, MANO or FLAME |
350 | from typing import Optional, Dict, Union
import os
import os.path as osp
import pickle
import numpy as np
import torch
import torch.nn as nn
from .lbs import (
lbs, vertices2landmarks, find_dynamic_lmk_idx_and_bcoords, vertices2joints, blend_shapes)
from .vertex_ids import vertex_ids as VERTEX_IDS
from .utils import (
Struct, to_np, to_tensor, Tensor, Array,
SMPLOutput,
SMPLHOutput,
SMPLXOutput,
MANOOutput,
FLAMEOutput,
find_joint_kin_chain)
from .vertex_joint_selector import VertexJointSelector
class SMPL(nn.Module):
NUM_JOINTS = 23
NUM_BODY_JOINTS = 23
SHAPE_SPACE_DIM = 300
def __init__(
self, model_path: str,
data_struct: Optional[Struct] = None,
create_betas: bool = True,
betas: Optional[Tensor] = None,
num_betas: int = 10,
create_global_orient: bool = True,
global_orient: Optional[Tensor] = None,
create_body_pose: bool = True,
body_pose: Optional[Tensor] = None,
create_transl: bool = True,
transl: Optional[Tensor] = None,
dtype=torch.float32,
batch_size: int = 1,
joint_mapper=None,
gender: str = 'neutral',
vertex_ids: Dict[str, int] = None,
v_template: Optional[Union[Tensor, Array]] = None
) -> None:
''' SMPL model constructor
Parameters
----------
model_path: str
The path to the folder or to the file where the model
parameters are stored
data_struct: Strct
A struct object. If given, then the parameters of the model are
read from the object. Otherwise, the model tries to read the
parameters from the given `model_path`. (default = None)
create_global_orient: bool, optional
Flag for creating a member variable for the global orientation
of the body. (default = True)
global_orient: torch.tensor, optional, Bx3
The default value for the global orientation variable.
(default = None)
create_body_pose: bool, optional
Flag for creating a member variable for the pose of the body.
(default = True)
body_pose: torch.tensor, optional, Bx(Body Joints * 3)
The default value for the body pose variable.
(default = None)
num_betas: int, optional
Number of shape components to use
(default = 10).
create_betas: bool, optional
Flag for creating a member variable for the shape space
(default = True).
betas: torch.tensor, optional, Bx10
The default value for the shape member variable.
(default = None)
create_transl: bool, optional
Flag for creating a member variable for the translation
of the body. (default = True)
transl: torch.tensor, optional, Bx3
The default value for the transl variable.
(default = None)
dtype: torch.dtype, optional
The data type for the created variables
batch_size: int, optional
The batch size used for creating the member variables
joint_mapper: object, optional
An object that re-maps the joints. Useful if one wants to
re-order the SMPL joints to some other convention (e.g. MSCOCO)
(default = None)
gender: str, optional
Which gender to load
vertex_ids: dict, optional
A dictionary containing the indices of the extra vertices that
will be selected
'''
self.gender = gender
if data_struct is None:
if osp.isdir(model_path):
model_fn = 'SMPL_{}.{ext}'.format(gender.upper(), ext='pkl')
smpl_path = os.path.join(model_path, model_fn)
else:
smpl_path = model_path
assert osp.exists(smpl_path), 'Path {} does not exist!'.format(
smpl_path)
with open(smpl_path, 'rb') as smpl_file:
data_struct = Struct(**pickle.load(smpl_file,
encoding='latin1'))
super(SMPL, self).__init__()
self.batch_size = batch_size
shapedirs = data_struct.shapedirs
if (shapedirs.shape[-1] < self.SHAPE_SPACE_DIM):
print(f'WARNING: You are using a {self.name()} model, with only'
' 10 shape coefficients.')
num_betas = min(num_betas, 10)
else:
num_betas = min(num_betas, self.SHAPE_SPACE_DIM)
self._num_betas = num_betas
shapedirs = shapedirs[:, :, :num_betas]
# The shape components
self.register_buffer(
'shapedirs',
to_tensor(to_np(shapedirs), dtype=dtype))
if vertex_ids is None:
# SMPL and SMPL-H share the same topology, so any extra joints can
# be drawn from the same place
vertex_ids = VERTEX_IDS['smplh']
self.dtype = dtype
self.joint_mapper = joint_mapper
self.vertex_joint_selector = VertexJointSelector(
vertex_ids=vertex_ids)
self.faces = data_struct.f
self.register_buffer('faces_tensor',
to_tensor(to_np(self.faces, dtype=np.int64),
dtype=torch.long))
if create_betas:
if betas is None:
default_betas = torch.zeros(
[batch_size, self.num_betas], dtype=dtype)
else:
if torch.is_tensor(betas):
default_betas = betas.clone().detach()
else:
default_betas = torch.tensor(betas, dtype=dtype)
self.register_parameter(
'betas', nn.Parameter(default_betas, requires_grad=True))
# The tensor that contains the global rotation of the model
# It is separated from the pose of the joints in case we wish to
# optimize only over one of them
if create_global_orient:
if global_orient is None:
default_global_orient = torch.zeros(
[batch_size, 3], dtype=dtype)
else:
if torch.is_tensor(global_orient):
default_global_orient = global_orient.clone().detach()
else:
default_global_orient = torch.tensor(
global_orient, dtype=dtype)
global_orient = nn.Parameter(default_global_orient,
requires_grad=True)
self.register_parameter('global_orient', global_orient)
if create_body_pose:
if body_pose is None:
default_body_pose = torch.zeros(
[batch_size, self.NUM_BODY_JOINTS * 3], dtype=dtype)
else:
if torch.is_tensor(body_pose):
default_body_pose = body_pose.clone().detach()
else:
default_body_pose = torch.tensor(body_pose,
dtype=dtype)
self.register_parameter(
'body_pose',
nn.Parameter(default_body_pose, requires_grad=True))
if create_transl:
if transl is None:
default_transl = torch.zeros([batch_size, 3],
dtype=dtype,
requires_grad=True)
else:
default_transl = torch.tensor(transl, dtype=dtype)
self.register_parameter(
'transl', nn.Parameter(default_transl, requires_grad=True))
if v_template is None:
v_template = data_struct.v_template
if not torch.is_tensor(v_template):
v_template = to_tensor(to_np(v_template), dtype=dtype)
# The vertices of the template model
self.register_buffer('v_template', v_template)
j_regressor = to_tensor(to_np(
data_struct.J_regressor), dtype=dtype)
self.register_buffer('J_regressor', j_regressor)
# Pose blend shape basis: 6890 x 3 x 207, reshaped to 6890*3 x 207
num_pose_basis = data_struct.posedirs.shape[-1]
# 207 x 20670
posedirs = np.reshape(data_struct.posedirs, [-1, num_pose_basis]).T
self.register_buffer('posedirs',
to_tensor(to_np(posedirs), dtype=dtype))
# indices of parents for each joints
parents = to_tensor(to_np(data_struct.kintree_table[0])).long()
parents[0] = -1
self.register_buffer('parents', parents)
self.register_buffer(
'lbs_weights', to_tensor(to_np(data_struct.weights), dtype=dtype))
def num_betas(self):
return self._num_betas
def num_expression_coeffs(self):
return 0
def create_mean_pose(self, data_struct) -> Tensor:
pass
def name(self) -> str:
return 'SMPL'
def reset_params(self, **params_dict) -> None:
for param_name, param in self.named_parameters():
if param_name in params_dict:
param[:] = torch.tensor(params_dict[param_name])
else:
param.fill_(0)
def get_num_verts(self) -> int:
return self.v_template.shape[0]
def get_num_faces(self) -> int:
return self.faces.shape[0]
def get_T_hip(self, betas=None, displacement=None):
if displacement is not None:
v_shaped = self.v_template+displacement + blend_shapes(betas, self.shapedirs)
else:
v_shaped = self.v_template + blend_shapes(betas, self.shapedirs)
J = vertices2joints(self.J_regressor, v_shaped)
T_hip = J[0,0]
return T_hip
def extra_repr(self) -> str:
msg = [
f'Gender: {self.gender.upper()}',
f'Number of joints: {self.J_regressor.shape[0]}',
f'Betas: {self.num_betas}',
]
return '\n'.join(msg)
def forward(
self,
betas: Optional[Tensor] = None,
body_pose: Optional[Tensor] = None,
global_orient: Optional[Tensor] = None,
transl: Optional[Tensor] = None,
return_verts=True,
return_full_pose: bool = False,
pose2rot: bool = True,
displacement=None,
absolute_displacement=True,
) -> SMPLOutput:
''' Forward pass for the SMPL model
Parameters
----------
global_orient: torch.tensor, optional, shape Bx3
If given, ignore the member variable and use it as the global
rotation of the body. Useful if someone wishes to predicts this
with an external model. (default=None)
betas: torch.tensor, optional, shape BxN_b
If given, ignore the member variable `betas` and use it
instead. For example, it can used if shape parameters
`betas` are predicted from some external model.
(default=None)
body_pose: torch.tensor, optional, shape Bx(J*3)
If given, ignore the member variable `body_pose` and use it
instead. For example, it can used if someone predicts the
pose of the body joints are predicted from some external model.
It should be a tensor that contains joint rotations in
axis-angle format. (default=None)
transl: torch.tensor, optional, shape Bx3
If given, ignore the member variable `transl` and use it
instead. For example, it can used if the translation
`transl` is predicted from some external model.
(default=None)
return_verts: bool, optional
Return the vertices. (default=True)
return_full_pose: bool, optional
Returns the full axis-angle pose vector (default=False)
Returns
-------
'''
# If no shape and pose parameters are passed along, then use the
# ones from the module
global_orient = (global_orient if global_orient is not None else
self.global_orient)
body_pose = body_pose if body_pose is not None else self.body_pose
betas = betas if betas is not None else self.betas
apply_trans = transl is not None or hasattr(self, 'transl')
if transl is None and hasattr(self, 'transl'):
transl = self.transl
full_pose = torch.cat([global_orient, body_pose], dim=1)
batch_size = max(betas.shape[0], global_orient.shape[0],
body_pose.shape[0])
if betas.shape[0] != batch_size:
num_repeats = int(batch_size / betas.shape[0])
betas = betas.expand(num_repeats, -1)
if displacement is not None:
if absolute_displacement:
vertices, joints = lbs(betas, full_pose, displacement,
self.shapedirs, self.posedirs,
self.J_regressor, self.parents,
self.lbs_weights, pose2rot=pose2rot)
else:
vertices, joints = lbs(betas, full_pose, self.v_template+displacement,
self.shapedirs, self.posedirs,
self.J_regressor, self.parents,
self.lbs_weights, pose2rot=pose2rot)
else:
vertices, joints = lbs(betas, full_pose, self.v_template,
self.shapedirs, self.posedirs,
self.J_regressor, self.parents,
self.lbs_weights, pose2rot=pose2rot)
joints = self.vertex_joint_selector(vertices, joints)
# Map the joints to the current dataset
if self.joint_mapper is not None:
joints = self.joint_mapper(joints)
if apply_trans:
joints += transl.unsqueeze(dim=1)
vertices += transl.unsqueeze(dim=1)
output = SMPLOutput(vertices=vertices if return_verts else None,
faces=self.faces,
global_orient=global_orient,
body_pose=body_pose,
joints=joints,
betas=betas,
full_pose=full_pose if return_full_pose else None)
return output
class SMPLH(SMPL):
# The hand joints are replaced by MANO
NUM_BODY_JOINTS = SMPL.NUM_JOINTS - 2
NUM_HAND_JOINTS = 15
NUM_JOINTS = NUM_BODY_JOINTS + 2 * NUM_HAND_JOINTS
def __init__(
self, model_path,
data_struct: Optional[Struct] = None,
create_left_hand_pose: bool = True,
left_hand_pose: Optional[Tensor] = None,
create_right_hand_pose: bool = True,
right_hand_pose: Optional[Tensor] = None,
use_pca: bool = True,
num_pca_comps: int = 6,
flat_hand_mean: bool = False,
batch_size: int = 1,
gender: str = 'neutral',
dtype=torch.float32,
vertex_ids=None,
use_compressed: bool = True,
ext: str = 'pkl'
) -> None:
''' SMPLH model constructor
Parameters
----------
model_path: str
The path to the folder or to the file where the model
parameters are stored
data_struct: Strct
A struct object. If given, then the parameters of the model are
read from the object. Otherwise, the model tries to read the
parameters from the given `model_path`. (default = None)
create_left_hand_pose: bool, optional
Flag for creating a member variable for the pose of the left
hand. (default = True)
left_hand_pose: torch.tensor, optional, BxP
The default value for the left hand pose member variable.
(default = None)
create_right_hand_pose: bool, optional
Flag for creating a member variable for the pose of the right
hand. (default = True)
right_hand_pose: torch.tensor, optional, BxP
The default value for the right hand pose member variable.
(default = None)
num_pca_comps: int, optional
The number of PCA components to use for each hand.
(default = 6)
flat_hand_mean: bool, optional
If False, then the pose of the hand is initialized to False.
batch_size: int, optional
The batch size used for creating the member variables
gender: str, optional
Which gender to load
dtype: torch.dtype, optional
The data type for the created variables
vertex_ids: dict, optional
A dictionary containing the indices of the extra vertices that
will be selected
'''
self.num_pca_comps = num_pca_comps
# If no data structure is passed, then load the data from the given
# model folder
if data_struct is None:
# Load the model
if osp.isdir(model_path):
model_fn = 'SMPLH_{}.{ext}'.format(gender.upper(), ext=ext)
smplh_path = os.path.join(model_path, model_fn)
else:
smplh_path = model_path
assert osp.exists(smplh_path), 'Path {} does not exist!'.format(
smplh_path)
if ext == 'pkl':
with open(smplh_path, 'rb') as smplh_file:
model_data = pickle.load(smplh_file, encoding='latin1')
elif ext == 'npz':
model_data = np.load(smplh_path, allow_pickle=True)
else:
raise ValueError('Unknown extension: {}'.format(ext))
data_struct = Struct(**model_data)
if vertex_ids is None:
vertex_ids = VERTEX_IDS['smplh']
super(SMPLH, self).__init__(
model_path=model_path,
data_struct=data_struct,
batch_size=batch_size, vertex_ids=vertex_ids, gender=gender,
use_compressed=use_compressed, dtype=dtype, ext=ext)
self.use_pca = use_pca
self.num_pca_comps = num_pca_comps
self.flat_hand_mean = flat_hand_mean
left_hand_components = data_struct.hands_componentsl[:num_pca_comps]
right_hand_components = data_struct.hands_componentsr[:num_pca_comps]
self.np_left_hand_components = left_hand_components
self.np_right_hand_components = right_hand_components
if self.use_pca:
self.register_buffer(
'left_hand_components',
torch.tensor(left_hand_components, dtype=dtype))
self.register_buffer(
'right_hand_components',
torch.tensor(right_hand_components, dtype=dtype))
if self.flat_hand_mean:
left_hand_mean = np.zeros_like(data_struct.hands_meanl)
else:
left_hand_mean = data_struct.hands_meanl
if self.flat_hand_mean:
right_hand_mean = np.zeros_like(data_struct.hands_meanr)
else:
right_hand_mean = data_struct.hands_meanr
self.register_buffer('left_hand_mean',
to_tensor(left_hand_mean, dtype=self.dtype))
self.register_buffer('right_hand_mean',
to_tensor(right_hand_mean, dtype=self.dtype))
# Create the buffers for the pose of the left hand
hand_pose_dim = num_pca_comps if use_pca else 3 * self.NUM_HAND_JOINTS
if create_left_hand_pose:
if left_hand_pose is None:
default_lhand_pose = torch.zeros([batch_size, hand_pose_dim],
dtype=dtype)
else:
default_lhand_pose = torch.tensor(left_hand_pose, dtype=dtype)
left_hand_pose_param = nn.Parameter(default_lhand_pose,
requires_grad=True)
self.register_parameter('left_hand_pose',
left_hand_pose_param)
if create_right_hand_pose:
if right_hand_pose is None:
default_rhand_pose = torch.zeros([batch_size, hand_pose_dim],
dtype=dtype)
else:
default_rhand_pose = torch.tensor(right_hand_pose, dtype=dtype)
right_hand_pose_param = nn.Parameter(default_rhand_pose,
requires_grad=True)
self.register_parameter('right_hand_pose',
right_hand_pose_param)
# Create the buffer for the mean pose.
pose_mean_tensor = self.create_mean_pose(
data_struct, flat_hand_mean=flat_hand_mean)
if not torch.is_tensor(pose_mean_tensor):
pose_mean_tensor = torch.tensor(pose_mean_tensor, dtype=dtype)
self.register_buffer('pose_mean', pose_mean_tensor)
def create_mean_pose(self, data_struct, flat_hand_mean=False):
# Create the array for the mean pose. If flat_hand is false, then use
# the mean that is given by the data, rather than the flat open hand
global_orient_mean = torch.zeros([3], dtype=self.dtype)
body_pose_mean = torch.zeros([self.NUM_BODY_JOINTS * 3],
dtype=self.dtype)
pose_mean = torch.cat([global_orient_mean, body_pose_mean,
self.left_hand_mean,
self.right_hand_mean], dim=0)
return pose_mean
def name(self) -> str:
return 'SMPL+H'
def extra_repr(self):
msg = super(SMPLH, self).extra_repr()
msg = [msg]
if self.use_pca:
msg.append(f'Number of PCA components: {self.num_pca_comps}')
msg.append(f'Flat hand mean: {self.flat_hand_mean}')
return '\n'.join(msg)
def forward(
self,
betas: Optional[Tensor] = None,
global_orient: Optional[Tensor] = None,
body_pose: Optional[Tensor] = None,
left_hand_pose: Optional[Tensor] = None,
right_hand_pose: Optional[Tensor] = None,
transl: Optional[Tensor] = None,
return_verts: bool = True,
return_full_pose: bool = False,
pose2rot: bool = True
) -> SMPLHOutput:
'''
'''
# If no shape and pose parameters are passed along, then use the
# ones from the module
global_orient = (global_orient if global_orient is not None else
self.global_orient)
body_pose = body_pose if body_pose is not None else self.body_pose
betas = betas if betas is not None else self.betas
left_hand_pose = (left_hand_pose if left_hand_pose is not None else
self.left_hand_pose)
right_hand_pose = (right_hand_pose if right_hand_pose is not None else
self.right_hand_pose)
apply_trans = transl is not None or hasattr(self, 'transl')
if transl is None:
if hasattr(self, 'transl'):
transl = self.transl
if self.use_pca:
left_hand_pose = torch.einsum(
'bi,ij->bj', [left_hand_pose, self.left_hand_components])
right_hand_pose = torch.einsum(
'bi,ij->bj', [right_hand_pose, self.right_hand_components])
full_pose = torch.cat([global_orient, body_pose,
left_hand_pose,
right_hand_pose], dim=1)
full_pose += self.pose_mean
vertices, joints = lbs(betas, full_pose, self.v_template,
self.shapedirs, self.posedirs,
self.J_regressor, self.parents,
self.lbs_weights, pose2rot=pose2rot)
# Add any extra joints that might be needed
joints = self.vertex_joint_selector(vertices, joints)
if self.joint_mapper is not None:
joints = self.joint_mapper(joints)
if apply_trans:
joints += transl.unsqueeze(dim=1)
vertices += transl.unsqueeze(dim=1)
output = SMPLHOutput(vertices=vertices if return_verts else None,
faces=self.faces,
joints=joints,
betas=betas,
global_orient=global_orient,
body_pose=body_pose,
left_hand_pose=left_hand_pose,
right_hand_pose=right_hand_pose,
full_pose=full_pose if return_full_pose else None)
return output
class SMPLX(SMPLH):
'''
SMPL-X (SMPL eXpressive) is a unified body model, with shape parameters
trained jointly for the face, hands and body.
SMPL-X uses standard vertex based linear blend skinning with learned
corrective blend shapes, has N=10475 vertices and K=54 joints,
which includes joints for the neck, jaw, eyeballs and fingers.
'''
NUM_BODY_JOINTS = SMPLH.NUM_BODY_JOINTS
NUM_HAND_JOINTS = 15
NUM_FACE_JOINTS = 3
NUM_JOINTS = NUM_BODY_JOINTS + 2 * NUM_HAND_JOINTS + NUM_FACE_JOINTS
EXPRESSION_SPACE_DIM = 100
NECK_IDX = 12
def __init__(
self, model_path: str,
num_expression_coeffs: int = 10,
create_expression: bool = True,
expression: Optional[Tensor] = None,
create_jaw_pose: bool = True,
jaw_pose: Optional[Tensor] = None,
create_leye_pose: bool = True,
leye_pose: Optional[Tensor] = None,
create_reye_pose=True,
reye_pose: Optional[Tensor] = None,
use_face_contour: bool = False,
batch_size: int = 1,
gender: str = 'neutral',
dtype=torch.float32,
ext: str = 'npz'
) -> None:
''' SMPLX model constructor
Parameters
----------
model_path: str
The path to the folder or to the file where the model
parameters are stored
num_expression_coeffs: int, optional
Number of expression components to use
(default = 10).
create_expression: bool, optional
Flag for creating a member variable for the expression space
(default = True).
expression: torch.tensor, optional, Bx10
The default value for the expression member variable.
(default = None)
create_jaw_pose: bool, optional
Flag for creating a member variable for the jaw pose.
(default = False)
jaw_pose: torch.tensor, optional, Bx3
The default value for the jaw pose variable.
(default = None)
create_leye_pose: bool, optional
Flag for creating a member variable for the left eye pose.
(default = False)
leye_pose: torch.tensor, optional, Bx10
The default value for the left eye pose variable.
(default = None)
create_reye_pose: bool, optional
Flag for creating a member variable for the right eye pose.
(default = False)
reye_pose: torch.tensor, optional, Bx10
The default value for the right eye pose variable.
(default = None)
use_face_contour: bool, optional
Whether to compute the keypoints that form the facial contour
batch_size: int, optional
The batch size used for creating the member variables
gender: str, optional
Which gender to load
dtype: torch.dtype
The data type for the created variables
'''
# Load the model
if osp.isdir(model_path):
model_fn = 'SMPLX_{}.{ext}'.format(gender.upper(), ext=ext)
smplx_path = os.path.join(model_path, model_fn)
else:
smplx_path = model_path
assert osp.exists(smplx_path), 'Path {} does not exist!'.format(
smplx_path)
if ext == 'pkl':
with open(smplx_path, 'rb') as smplx_file:
model_data = pickle.load(smplx_file, encoding='latin1')
elif ext == 'npz':
model_data = np.load(smplx_path, allow_pickle=True)
else:
raise ValueError('Unknown extension: {}'.format(ext))
data_struct = Struct(**model_data)
super(SMPLX, self).__init__(
model_path=model_path,
data_struct=data_struct,
dtype=dtype,
batch_size=batch_size,
vertex_ids=VERTEX_IDS['smplx'],
gender=gender, ext=ext
)
lmk_faces_idx = data_struct.lmk_faces_idx
self.register_buffer('lmk_faces_idx',
torch.tensor(lmk_faces_idx, dtype=torch.long))
lmk_bary_coords = data_struct.lmk_bary_coords
self.register_buffer('lmk_bary_coords',
torch.tensor(lmk_bary_coords, dtype=dtype))
self.use_face_contour = use_face_contour
if self.use_face_contour:
dynamic_lmk_faces_idx = data_struct.dynamic_lmk_faces_idx
dynamic_lmk_faces_idx = torch.tensor(
dynamic_lmk_faces_idx,
dtype=torch.long)
self.register_buffer('dynamic_lmk_faces_idx',
dynamic_lmk_faces_idx)
dynamic_lmk_bary_coords = data_struct.dynamic_lmk_bary_coords
dynamic_lmk_bary_coords = torch.tensor(
dynamic_lmk_bary_coords, dtype=dtype)
self.register_buffer('dynamic_lmk_bary_coords',
dynamic_lmk_bary_coords)
neck_kin_chain = find_joint_kin_chain(self.NECK_IDX, self.parents)
self.register_buffer(
'neck_kin_chain',
torch.tensor(neck_kin_chain, dtype=torch.long))
if create_jaw_pose:
if jaw_pose is None:
default_jaw_pose = torch.zeros([batch_size, 3], dtype=dtype)
else:
default_jaw_pose = torch.tensor(jaw_pose, dtype=dtype)
jaw_pose_param = nn.Parameter(default_jaw_pose,
requires_grad=True)
self.register_parameter('jaw_pose', jaw_pose_param)
if create_leye_pose:
if leye_pose is None:
default_leye_pose = torch.zeros([batch_size, 3], dtype=dtype)
else:
default_leye_pose = torch.tensor(leye_pose, dtype=dtype)
leye_pose_param = nn.Parameter(default_leye_pose,
requires_grad=True)
self.register_parameter('leye_pose', leye_pose_param)
if create_reye_pose:
if reye_pose is None:
default_reye_pose = torch.zeros([batch_size, 3], dtype=dtype)
else:
default_reye_pose = torch.tensor(reye_pose, dtype=dtype)
reye_pose_param = nn.Parameter(default_reye_pose,
requires_grad=True)
self.register_parameter('reye_pose', reye_pose_param)
shapedirs = data_struct.shapedirs
if len(shapedirs.shape) < 3:
shapedirs = shapedirs[:, :, None]
if (shapedirs.shape[-1] < self.SHAPE_SPACE_DIM +
self.EXPRESSION_SPACE_DIM):
print(f'WARNING: You are using a {self.name()} model, with only'
' 10 shape and 10 expression coefficients.')
expr_start_idx = 10
expr_end_idx = 20
num_expression_coeffs = min(num_expression_coeffs, 10)
else:
expr_start_idx = self.SHAPE_SPACE_DIM
expr_end_idx = self.SHAPE_SPACE_DIM + num_expression_coeffs
num_expression_coeffs = min(
num_expression_coeffs, self.EXPRESSION_SPACE_DIM)
self._num_expression_coeffs = num_expression_coeffs
expr_dirs = shapedirs[:, :, expr_start_idx:expr_end_idx]
self.register_buffer(
'expr_dirs', to_tensor(to_np(expr_dirs), dtype=dtype))
if create_expression:
if expression is None:
default_expression = torch.zeros(
[batch_size, self.num_expression_coeffs], dtype=dtype)
else:
default_expression = torch.tensor(expression, dtype=dtype)
expression_param = nn.Parameter(default_expression,
requires_grad=True)
self.register_parameter('expression', expression_param)
def name(self) -> str:
return 'SMPL-X'
def num_expression_coeffs(self):
return self._num_expression_coeffs
def create_mean_pose(self, data_struct, flat_hand_mean=False):
# Create the array for the mean pose. If flat_hand is false, then use
# the mean that is given by the data, rather than the flat open hand
global_orient_mean = torch.zeros([3], dtype=self.dtype)
body_pose_mean = torch.zeros([self.NUM_BODY_JOINTS * 3],
dtype=self.dtype)
jaw_pose_mean = torch.zeros([3], dtype=self.dtype)
leye_pose_mean = torch.zeros([3], dtype=self.dtype)
reye_pose_mean = torch.zeros([3], dtype=self.dtype)
pose_mean = np.concatenate([global_orient_mean, body_pose_mean,
jaw_pose_mean,
leye_pose_mean, reye_pose_mean,
self.left_hand_mean, self.right_hand_mean],
axis=0)
return pose_mean
def extra_repr(self):
msg = super(SMPLX, self).extra_repr()
msg = [
msg,
f'Number of Expression Coefficients: {self.num_expression_coeffs}'
]
return '\n'.join(msg)
def forward(
self,
betas: Optional[Tensor] = None,
global_orient: Optional[Tensor] = None,
body_pose: Optional[Tensor] = None,
left_hand_pose: Optional[Tensor] = None,
right_hand_pose: Optional[Tensor] = None,
transl: Optional[Tensor] = None,
expression: Optional[Tensor] = None,
jaw_pose: Optional[Tensor] = None,
leye_pose: Optional[Tensor] = None,
reye_pose: Optional[Tensor] = None,
return_verts: bool = True,
return_full_pose: bool = False,
pose2rot: bool = True
) -> SMPLXOutput:
'''
Forward pass for the SMPLX model
Parameters
----------
global_orient: torch.tensor, optional, shape Bx3
If given, ignore the member variable and use it as the global
rotation of the body. Useful if someone wishes to predicts this
with an external model. (default=None)
betas: torch.tensor, optional, shape BxN_b
If given, ignore the member variable `betas` and use it
instead. For example, it can used if shape parameters
`betas` are predicted from some external model.
(default=None)
expression: torch.tensor, optional, shape BxN_e
If given, ignore the member variable `expression` and use it
instead. For example, it can used if expression parameters
`expression` are predicted from some external model.
body_pose: torch.tensor, optional, shape Bx(J*3)
If given, ignore the member variable `body_pose` and use it
instead. For example, it can used if someone predicts the
pose of the body joints are predicted from some external model.
It should be a tensor that contains joint rotations in
axis-angle format. (default=None)
left_hand_pose: torch.tensor, optional, shape BxP
If given, ignore the member variable `left_hand_pose` and
use this instead. It should either contain PCA coefficients or
joint rotations in axis-angle format.
right_hand_pose: torch.tensor, optional, shape BxP
If given, ignore the member variable `right_hand_pose` and
use this instead. It should either contain PCA coefficients or
joint rotations in axis-angle format.
jaw_pose: torch.tensor, optional, shape Bx3
If given, ignore the member variable `jaw_pose` and
use this instead. It should either joint rotations in
axis-angle format.
transl: torch.tensor, optional, shape Bx3
If given, ignore the member variable `transl` and use it
instead. For example, it can used if the translation
`transl` is predicted from some external model.
(default=None)
return_verts: bool, optional
Return the vertices. (default=True)
return_full_pose: bool, optional
Returns the full axis-angle pose vector (default=False)
Returns
-------
output: ModelOutput
A named tuple of type `ModelOutput`
'''
# If no shape and pose parameters are passed along, then use the
# ones from the module
global_orient = (global_orient if global_orient is not None else
self.global_orient)
body_pose = body_pose if body_pose is not None else self.body_pose
betas = betas if betas is not None else self.betas
left_hand_pose = (left_hand_pose if left_hand_pose is not None else
self.left_hand_pose)
right_hand_pose = (right_hand_pose if right_hand_pose is not None else
self.right_hand_pose)
jaw_pose = jaw_pose if jaw_pose is not None else self.jaw_pose
leye_pose = leye_pose if leye_pose is not None else self.leye_pose
reye_pose = reye_pose if reye_pose is not None else self.reye_pose
expression = expression if expression is not None else self.expression
apply_trans = transl is not None or hasattr(self, 'transl')
if transl is None:
if hasattr(self, 'transl'):
transl = self.transl
if self.use_pca:
left_hand_pose = torch.einsum(
'bi,ij->bj', [left_hand_pose, self.left_hand_components])
right_hand_pose = torch.einsum(
'bi,ij->bj', [right_hand_pose, self.right_hand_components])
full_pose = torch.cat([global_orient, body_pose,
jaw_pose, leye_pose, reye_pose,
left_hand_pose,
right_hand_pose], dim=1)
# Add the mean pose of the model. Does not affect the body, only the
# hands when flat_hand_mean == False
full_pose += self.pose_mean
batch_size = max(betas.shape[0], global_orient.shape[0],
body_pose.shape[0])
# Concatenate the shape and expression coefficients
scale = int(batch_size / betas.shape[0])
if scale > 1:
betas = betas.expand(scale, -1)
shape_components = torch.cat([betas, expression], dim=-1)
shapedirs = torch.cat([self.shapedirs, self.expr_dirs], dim=-1)
vertices, joints = lbs(shape_components, full_pose, self.v_template,
shapedirs, self.posedirs,
self.J_regressor, self.parents,
self.lbs_weights, pose2rot=pose2rot,
)
lmk_faces_idx = self.lmk_faces_idx.unsqueeze(
dim=0).expand(batch_size, -1).contiguous()
lmk_bary_coords = self.lmk_bary_coords.unsqueeze(dim=0).repeat(
self.batch_size, 1, 1)
if self.use_face_contour:
lmk_idx_and_bcoords = find_dynamic_lmk_idx_and_bcoords(
vertices, full_pose, self.dynamic_lmk_faces_idx,
self.dynamic_lmk_bary_coords,
self.neck_kin_chain,
pose2rot=True,
)
dyn_lmk_faces_idx, dyn_lmk_bary_coords = lmk_idx_and_bcoords
lmk_faces_idx = torch.cat([lmk_faces_idx,
dyn_lmk_faces_idx], 1)
lmk_bary_coords = torch.cat(
[lmk_bary_coords.expand(batch_size, -1, -1),
dyn_lmk_bary_coords], 1)
landmarks = vertices2landmarks(vertices, self.faces_tensor,
lmk_faces_idx,
lmk_bary_coords)
# Add any extra joints that might be needed
joints = self.vertex_joint_selector(vertices, joints)
# Add the landmarks to the joints
joints = torch.cat([joints, landmarks], dim=1)
# Map the joints to the current dataset
if self.joint_mapper is not None:
joints = self.joint_mapper(joints=joints, vertices=vertices)
if apply_trans:
joints += transl.unsqueeze(dim=1)
vertices += transl.unsqueeze(dim=1)
output = SMPLXOutput(vertices=vertices if return_verts else None,
faces=self.faces,
joints=joints,
betas=betas,
expression=expression,
global_orient=global_orient,
body_pose=body_pose,
left_hand_pose=left_hand_pose,
right_hand_pose=right_hand_pose,
jaw_pose=jaw_pose,
full_pose=full_pose if return_full_pose else None)
return output
class MANO(SMPL):
# The hand joints are replaced by MANO
NUM_BODY_JOINTS = 1
NUM_HAND_JOINTS = 15
NUM_JOINTS = NUM_BODY_JOINTS + NUM_HAND_JOINTS
def __init__(
self,
model_path: str,
is_rhand: bool = True,
data_struct: Optional[Struct] = None,
create_hand_pose: bool = True,
hand_pose: Optional[Tensor] = None,
use_pca: bool = True,
num_pca_comps: int = 6,
flat_hand_mean: bool = False,
batch_size: int = 1,
dtype=torch.float32,
vertex_ids=None,
use_compressed: bool = True,
ext: str = 'pkl'
) -> None:
''' MANO model constructor
Parameters
----------
model_path: str
The path to the folder or to the file where the model
parameters are stored
data_struct: Strct
A struct object. If given, then the parameters of the model are
read from the object. Otherwise, the model tries to read the
parameters from the given `model_path`. (default = None)
create_hand_pose: bool, optional
Flag for creating a member variable for the pose of the right
hand. (default = True)
hand_pose: torch.tensor, optional, BxP
The default value for the right hand pose member variable.
(default = None)
num_pca_comps: int, optional
The number of PCA components to use for each hand.
(default = 6)
flat_hand_mean: bool, optional
If False, then the pose of the hand is initialized to False.
batch_size: int, optional
The batch size used for creating the member variables
dtype: torch.dtype, optional
The data type for the created variables
vertex_ids: dict, optional
A dictionary containing the indices of the extra vertices that
will be selected
'''
self.num_pca_comps = num_pca_comps
self.is_rhand = is_rhand
# If no data structure is passed, then load the data from the given
# model folder
if data_struct is None:
# Load the model
if osp.isdir(model_path):
model_fn = 'MANO_{}.{ext}'.format(
'RIGHT' if is_rhand else 'LEFT', ext=ext)
mano_path = os.path.join(model_path, model_fn)
else:
mano_path = model_path
self.is_rhand = True if 'RIGHT' in os.path.basename(
model_path) else False
assert osp.exists(mano_path), 'Path {} does not exist!'.format(
mano_path)
if ext == 'pkl':
with open(mano_path, 'rb') as mano_file:
model_data = pickle.load(mano_file, encoding='latin1')
elif ext == 'npz':
model_data = np.load(mano_path, allow_pickle=True)
else:
raise ValueError('Unknown extension: {}'.format(ext))
data_struct = Struct(**model_data)
if vertex_ids is None:
vertex_ids = VERTEX_IDS['smplh']
super(MANO, self).__init__(
model_path=model_path, data_struct=data_struct,
batch_size=batch_size, vertex_ids=vertex_ids,
use_compressed=use_compressed, dtype=dtype, ext=ext)
# add only MANO tips to the extra joints
self.vertex_joint_selector.extra_joints_idxs = to_tensor(
list(VERTEX_IDS['mano'].values()), dtype=torch.long)
self.use_pca = use_pca
self.num_pca_comps = num_pca_comps
if self.num_pca_comps == 45:
self.use_pca = False
self.flat_hand_mean = flat_hand_mean
hand_components = data_struct.hands_components[:num_pca_comps]
self.np_hand_components = hand_components
if self.use_pca:
self.register_buffer(
'hand_components',
torch.tensor(hand_components, dtype=dtype))
if self.flat_hand_mean:
hand_mean = np.zeros_like(data_struct.hands_mean)
else:
hand_mean = data_struct.hands_mean
self.register_buffer('hand_mean',
to_tensor(hand_mean, dtype=self.dtype))
# Create the buffers for the pose of the left hand
hand_pose_dim = num_pca_comps if use_pca else 3 * self.NUM_HAND_JOINTS
if create_hand_pose:
if hand_pose is None:
default_hand_pose = torch.zeros([batch_size, hand_pose_dim],
dtype=dtype)
else:
default_hand_pose = torch.tensor(hand_pose, dtype=dtype)
hand_pose_param = nn.Parameter(default_hand_pose,
requires_grad=True)
self.register_parameter('hand_pose',
hand_pose_param)
# Create the buffer for the mean pose.
pose_mean = self.create_mean_pose(
data_struct, flat_hand_mean=flat_hand_mean)
pose_mean_tensor = pose_mean.clone().to(dtype)
# pose_mean_tensor = torch.tensor(pose_mean, dtype=dtype)
self.register_buffer('pose_mean', pose_mean_tensor)
def name(self) -> str:
return 'MANO'
def create_mean_pose(self, data_struct, flat_hand_mean=False):
# Create the array for the mean pose. If flat_hand is false, then use
# the mean that is given by the data, rather than the flat open hand
global_orient_mean = torch.zeros([3], dtype=self.dtype)
pose_mean = torch.cat([global_orient_mean, self.hand_mean], dim=0)
return pose_mean
def extra_repr(self):
msg = [super(MANO, self).extra_repr()]
if self.use_pca:
msg.append(f'Number of PCA components: {self.num_pca_comps}')
msg.append(f'Flat hand mean: {self.flat_hand_mean}')
return '\n'.join(msg)
def forward(
self,
betas: Optional[Tensor] = None,
global_orient: Optional[Tensor] = None,
hand_pose: Optional[Tensor] = None,
transl: Optional[Tensor] = None,
return_verts: bool = True,
return_full_pose: bool = False
) -> MANOOutput:
''' Forward pass for the MANO model
'''
# If no shape and pose parameters are passed along, then use the
# ones from the module
global_orient = (global_orient if global_orient is not None else
self.global_orient)
betas = betas if betas is not None else self.betas
hand_pose = (hand_pose if hand_pose is not None else
self.hand_pose)
apply_trans = transl is not None or hasattr(self, 'transl')
if transl is None:
if hasattr(self, 'transl'):
transl = self.transl
if self.use_pca:
hand_pose = torch.einsum(
'bi,ij->bj', [hand_pose, self.hand_components])
full_pose = torch.cat([global_orient, hand_pose], dim=1)
full_pose += self.pose_mean
vertices, joints = lbs(betas, full_pose, self.v_template,
self.shapedirs, self.posedirs,
self.J_regressor, self.parents,
self.lbs_weights, pose2rot=True,
)
# # Add pre-selected extra joints that might be needed
# joints = self.vertex_joint_selector(vertices, joints)
if self.joint_mapper is not None:
joints = self.joint_mapper(joints)
if apply_trans:
joints = joints + transl.unsqueeze(dim=1)
vertices = vertices + transl.unsqueeze(dim=1)
output = MANOOutput(vertices=vertices if return_verts else None,
joints=joints if return_verts else None,
betas=betas,
global_orient=global_orient,
hand_pose=hand_pose,
full_pose=full_pose if return_full_pose else None)
return output
class FLAME(SMPL):
NUM_JOINTS = 5
SHAPE_SPACE_DIM = 300
EXPRESSION_SPACE_DIM = 100
NECK_IDX = 0
def __init__(
self,
model_path: str,
data_struct=None,
num_expression_coeffs=10,
create_expression: bool = True,
expression: Optional[Tensor] = None,
create_neck_pose: bool = True,
neck_pose: Optional[Tensor] = None,
create_jaw_pose: bool = True,
jaw_pose: Optional[Tensor] = None,
create_leye_pose: bool = True,
leye_pose: Optional[Tensor] = None,
create_reye_pose=True,
reye_pose: Optional[Tensor] = None,
use_face_contour=False,
batch_size: int = 1,
gender: str = 'neutral',
dtype: torch.dtype = torch.float32,
ext='pkl'
) -> None:
''' FLAME model constructor
Parameters
----------
model_path: str
The path to the folder or to the file where the model
parameters are stored
num_expression_coeffs: int, optional
Number of expression components to use
(default = 10).
create_expression: bool, optional
Flag for creating a member variable for the expression space
(default = True).
expression: torch.tensor, optional, Bx10
The default value for the expression member variable.
(default = None)
create_neck_pose: bool, optional
Flag for creating a member variable for the neck pose.
(default = False)
neck_pose: torch.tensor, optional, Bx3
The default value for the neck pose variable.
(default = None)
create_jaw_pose: bool, optional
Flag for creating a member variable for the jaw pose.
(default = False)
jaw_pose: torch.tensor, optional, Bx3
The default value for the jaw pose variable.
(default = None)
create_leye_pose: bool, optional
Flag for creating a member variable for the left eye pose.
(default = False)
leye_pose: torch.tensor, optional, Bx10
The default value for the left eye pose variable.
(default = None)
create_reye_pose: bool, optional
Flag for creating a member variable for the right eye pose.
(default = False)
reye_pose: torch.tensor, optional, Bx10
The default value for the right eye pose variable.
(default = None)
use_face_contour: bool, optional
Whether to compute the keypoints that form the facial contour
batch_size: int, optional
The batch size used for creating the member variables
gender: str, optional
Which gender to load
dtype: torch.dtype
The data type for the created variables
'''
model_fn = f'FLAME_{gender.upper()}.{ext}'
flame_path = os.path.join(model_path, model_fn)
assert osp.exists(flame_path), 'Path {} does not exist!'.format(
flame_path)
if ext == 'npz':
file_data = np.load(flame_path, allow_pickle=True)
elif ext == 'pkl':
with open(flame_path, 'rb') as smpl_file:
file_data = pickle.load(smpl_file, encoding='latin1')
else:
raise ValueError('Unknown extension: {}'.format(ext))
data_struct = Struct(**file_data)
super(FLAME, self).__init__(
model_path=model_path,
data_struct=data_struct,
dtype=dtype,
batch_size=batch_size,
gender=gender,
ext=ext)
self.use_face_contour = use_face_contour
self.vertex_joint_selector.extra_joints_idxs = to_tensor(
[], dtype=torch.long)
if create_neck_pose:
if neck_pose is None:
default_neck_pose = torch.zeros([batch_size, 3], dtype=dtype)
else:
default_neck_pose = torch.tensor(neck_pose, dtype=dtype)
neck_pose_param = nn.Parameter(
default_neck_pose, requires_grad=True)
self.register_parameter('neck_pose', neck_pose_param)
if create_jaw_pose:
if jaw_pose is None:
default_jaw_pose = torch.zeros([batch_size, 3], dtype=dtype)
else:
default_jaw_pose = torch.tensor(jaw_pose, dtype=dtype)
jaw_pose_param = nn.Parameter(default_jaw_pose,
requires_grad=True)
self.register_parameter('jaw_pose', jaw_pose_param)
if create_leye_pose:
if leye_pose is None:
default_leye_pose = torch.zeros([batch_size, 3], dtype=dtype)
else:
default_leye_pose = torch.tensor(leye_pose, dtype=dtype)
leye_pose_param = nn.Parameter(default_leye_pose,
requires_grad=True)
self.register_parameter('leye_pose', leye_pose_param)
if create_reye_pose:
if reye_pose is None:
default_reye_pose = torch.zeros([batch_size, 3], dtype=dtype)
else:
default_reye_pose = torch.tensor(reye_pose, dtype=dtype)
reye_pose_param = nn.Parameter(default_reye_pose,
requires_grad=True)
self.register_parameter('reye_pose', reye_pose_param)
shapedirs = data_struct.shapedirs
if len(shapedirs.shape) < 3:
shapedirs = shapedirs[:, :, None]
if (shapedirs.shape[-1] < self.SHAPE_SPACE_DIM +
self.EXPRESSION_SPACE_DIM):
print(f'WARNING: You are using a {self.name()} model, with only'
' 10 shape and 10 expression coefficients.')
expr_start_idx = 10
expr_end_idx = 20
num_expression_coeffs = min(num_expression_coeffs, 10)
else:
expr_start_idx = self.SHAPE_SPACE_DIM
expr_end_idx = self.SHAPE_SPACE_DIM + num_expression_coeffs
num_expression_coeffs = min(
num_expression_coeffs, self.EXPRESSION_SPACE_DIM)
self._num_expression_coeffs = num_expression_coeffs
expr_dirs = shapedirs[:, :, expr_start_idx:expr_end_idx]
self.register_buffer(
'expr_dirs', to_tensor(to_np(expr_dirs), dtype=dtype))
if create_expression:
if expression is None:
default_expression = torch.zeros(
[batch_size, self.num_expression_coeffs], dtype=dtype)
else:
default_expression = torch.tensor(expression, dtype=dtype)
expression_param = nn.Parameter(default_expression,
requires_grad=True)
self.register_parameter('expression', expression_param)
# The pickle file that contains the barycentric coordinates for
# regressing the landmarks
landmark_bcoord_filename = osp.join(
model_path, 'flame_static_embedding.pkl')
with open(landmark_bcoord_filename, 'rb') as fp:
landmarks_data = pickle.load(fp, encoding='latin1')
lmk_faces_idx = landmarks_data['lmk_face_idx'].astype(np.int64)
self.register_buffer('lmk_faces_idx',
torch.tensor(lmk_faces_idx, dtype=torch.long))
lmk_bary_coords = landmarks_data['lmk_b_coords']
self.register_buffer('lmk_bary_coords',
torch.tensor(lmk_bary_coords, dtype=dtype))
if self.use_face_contour:
face_contour_path = os.path.join(
model_path, 'flame_dynamic_embedding.npy')
contour_embeddings = np.load(face_contour_path,
allow_pickle=True,
encoding='latin1')[()]
dynamic_lmk_faces_idx = np.array(
contour_embeddings['lmk_face_idx'], dtype=np.int64)
dynamic_lmk_faces_idx = torch.tensor(
dynamic_lmk_faces_idx,
dtype=torch.long)
self.register_buffer('dynamic_lmk_faces_idx',
dynamic_lmk_faces_idx)
dynamic_lmk_b_coords = torch.tensor(
contour_embeddings['lmk_b_coords'], dtype=dtype)
self.register_buffer(
'dynamic_lmk_bary_coords', dynamic_lmk_b_coords)
neck_kin_chain = find_joint_kin_chain(self.NECK_IDX, self.parents)
self.register_buffer(
'neck_kin_chain',
torch.tensor(neck_kin_chain, dtype=torch.long))
def num_expression_coeffs(self):
return self._num_expression_coeffs
def name(self) -> str:
return 'FLAME'
def extra_repr(self):
msg = [
super(FLAME, self).extra_repr(),
f'Number of Expression Coefficients: {self.num_expression_coeffs}',
f'Use face contour: {self.use_face_contour}',
]
return '\n'.join(msg)
def forward(
self,
betas: Optional[Tensor] = None,
global_orient: Optional[Tensor] = None,
neck_pose: Optional[Tensor] = None,
transl: Optional[Tensor] = None,
expression: Optional[Tensor] = None,
jaw_pose: Optional[Tensor] = None,
leye_pose: Optional[Tensor] = None,
reye_pose: Optional[Tensor] = None,
return_verts: bool = True,
return_full_pose: bool = False,
pose2rot: bool = True
) -> FLAMEOutput:
'''
Forward pass for the SMPLX model
Parameters
----------
global_orient: torch.tensor, optional, shape Bx3
If given, ignore the member variable and use it as the global
rotation of the body. Useful if someone wishes to predicts this
with an external model. (default=None)
betas: torch.tensor, optional, shape Bx10
If given, ignore the member variable `betas` and use it
instead. For example, it can used if shape parameters
`betas` are predicted from some external model.
(default=None)
expression: torch.tensor, optional, shape Bx10
If given, ignore the member variable `expression` and use it
instead. For example, it can used if expression parameters
`expression` are predicted from some external model.
jaw_pose: torch.tensor, optional, shape Bx3
If given, ignore the member variable `jaw_pose` and
use this instead. It should either joint rotations in
axis-angle format.
jaw_pose: torch.tensor, optional, shape Bx3
If given, ignore the member variable `jaw_pose` and
use this instead. It should either joint rotations in
axis-angle format.
transl: torch.tensor, optional, shape Bx3
If given, ignore the member variable `transl` and use it
instead. For example, it can used if the translation
`transl` is predicted from some external model.
(default=None)
return_verts: bool, optional
Return the vertices. (default=True)
return_full_pose: bool, optional
Returns the full axis-angle pose vector (default=False)
Returns
-------
output: ModelOutput
A named tuple of type `ModelOutput`
'''
# If no shape and pose parameters are passed along, then use the
# ones from the module
global_orient = (global_orient if global_orient is not None else
self.global_orient)
jaw_pose = jaw_pose if jaw_pose is not None else self.jaw_pose
neck_pose = neck_pose if neck_pose is not None else self.neck_pose
leye_pose = leye_pose if leye_pose is not None else self.leye_pose
reye_pose = reye_pose if reye_pose is not None else self.reye_pose
betas = betas if betas is not None else self.betas
expression = expression if expression is not None else self.expression
apply_trans = transl is not None or hasattr(self, 'transl')
if transl is None:
if hasattr(self, 'transl'):
transl = self.transl
full_pose = torch.cat(
[global_orient, neck_pose, jaw_pose, leye_pose, reye_pose], dim=1)
batch_size = max(betas.shape[0], global_orient.shape[0],
jaw_pose.shape[0])
# Concatenate the shape and expression coefficients
scale = int(batch_size / betas.shape[0])
if scale > 1:
betas = betas.expand(scale, -1)
shape_components = torch.cat([betas, expression], dim=-1)
shapedirs = torch.cat([self.shapedirs, self.expr_dirs], dim=-1)
vertices, joints = lbs(shape_components, full_pose, self.v_template,
shapedirs, self.posedirs,
self.J_regressor, self.parents,
self.lbs_weights, pose2rot=pose2rot,
)
lmk_faces_idx = self.lmk_faces_idx.unsqueeze(
dim=0).expand(batch_size, -1).contiguous()
lmk_bary_coords = self.lmk_bary_coords.unsqueeze(dim=0).repeat(
self.batch_size, 1, 1)
if self.use_face_contour:
lmk_idx_and_bcoords = find_dynamic_lmk_idx_and_bcoords(
vertices, full_pose, self.dynamic_lmk_faces_idx,
self.dynamic_lmk_bary_coords,
self.neck_kin_chain,
pose2rot=True,
)
dyn_lmk_faces_idx, dyn_lmk_bary_coords = lmk_idx_and_bcoords
lmk_faces_idx = torch.cat([lmk_faces_idx,
dyn_lmk_faces_idx], 1)
lmk_bary_coords = torch.cat(
[lmk_bary_coords.expand(batch_size, -1, -1),
dyn_lmk_bary_coords], 1)
landmarks = vertices2landmarks(vertices, self.faces_tensor,
lmk_faces_idx,
lmk_bary_coords)
# Add any extra joints that might be needed
joints = self.vertex_joint_selector(vertices, joints)
# Add the landmarks to the joints
joints = torch.cat([joints, landmarks], dim=1)
# Map the joints to the current dataset
if self.joint_mapper is not None:
joints = self.joint_mapper(joints=joints, vertices=vertices)
if apply_trans:
joints += transl.unsqueeze(dim=1)
vertices += transl.unsqueeze(dim=1)
output = FLAMEOutput(vertices=vertices if return_verts else None,
joints=joints,
betas=betas,
expression=expression,
global_orient=global_orient,
neck_pose=neck_pose,
jaw_pose=jaw_pose,
full_pose=full_pose if return_full_pose else None)
return output
The provided code snippet includes necessary dependencies for implementing the `create` function. Write a Python function `def create( model_path: str, model_type: str = 'smpl' ) -> Union[SMPL, SMPLH, SMPLX, MANO, FLAME]` to solve the following problem:
Method for creating a model from a path and a model type Parameters ---------- model_path: str Either the path to the model you wish to load or a folder, where each subfolder contains the differents types, i.e.: model_path: | |-- smpl |-- SMPL_FEMALE |-- SMPL_NEUTRAL |-- SMPL_MALE |-- smplh |-- SMPLH_FEMALE |-- SMPLH_MALE |-- smplx |-- SMPLX_FEMALE |-- SMPLX_NEUTRAL |-- SMPLX_MALE |-- mano |-- MANO RIGHT |-- MANO LEFT model_type: str, optional When model_path is a folder, then this parameter specifies the type of model to be loaded **kwargs: dict Keyword arguments Returns ------- body_model: nn.Module The PyTorch module that implements the corresponding body model Raises ------ ValueError: In case the model type is not one of SMPL, SMPLH, SMPLX, MANO or FLAME
Here is the function:
def create(
model_path: str,
model_type: str = 'smpl'
) -> Union[SMPL, SMPLH, SMPLX, MANO, FLAME]:
''' Method for creating a model from a path and a model type
Parameters
----------
model_path: str
Either the path to the model you wish to load or a folder,
where each subfolder contains the differents types, i.e.:
model_path:
|
|-- smpl
|-- SMPL_FEMALE
|-- SMPL_NEUTRAL
|-- SMPL_MALE
|-- smplh
|-- SMPLH_FEMALE
|-- SMPLH_MALE
|-- smplx
|-- SMPLX_FEMALE
|-- SMPLX_NEUTRAL
|-- SMPLX_MALE
|-- mano
|-- MANO RIGHT
|-- MANO LEFT
model_type: str, optional
When model_path is a folder, then this parameter specifies the
type of model to be loaded
**kwargs: dict
Keyword arguments
Returns
-------
body_model: nn.Module
The PyTorch module that implements the corresponding body model
Raises
------
ValueError: In case the model type is not one of SMPL, SMPLH,
SMPLX, MANO or FLAME
'''
# If it's a folder, assume
if osp.isdir(model_path):
model_path = os.path.join(model_path, model_type)
else:
model_type = osp.basename(model_path).split('_')[0].lower()
if model_type.lower() == 'smpl':
return SMPL(model_path)
elif model_type.lower() == 'smplh':
return SMPLH(model_path)
elif model_type.lower() == 'smplx':
return SMPLX(model_path)
elif 'mano' in model_type.lower():
return MANO(model_path)
elif 'flame' in model_type.lower():
return FLAME(model_path)
else:
raise ValueError(f'Unknown model type {model_type}, exiting!') | Method for creating a model from a path and a model type Parameters ---------- model_path: str Either the path to the model you wish to load or a folder, where each subfolder contains the differents types, i.e.: model_path: | |-- smpl |-- SMPL_FEMALE |-- SMPL_NEUTRAL |-- SMPL_MALE |-- smplh |-- SMPLH_FEMALE |-- SMPLH_MALE |-- smplx |-- SMPLX_FEMALE |-- SMPLX_NEUTRAL |-- SMPLX_MALE |-- mano |-- MANO RIGHT |-- MANO LEFT model_type: str, optional When model_path is a folder, then this parameter specifies the type of model to be loaded **kwargs: dict Keyword arguments Returns ------- body_model: nn.Module The PyTorch module that implements the corresponding body model Raises ------ ValueError: In case the model type is not one of SMPL, SMPLH, SMPLX, MANO or FLAME |
351 | from typing import NewType, Union, Optional
from dataclasses import dataclass, asdict, fields
import numpy as np
import torch
def find_joint_kin_chain(joint_id, kinematic_tree):
kin_chain = []
curr_idx = joint_id
while curr_idx != -1:
kin_chain.append(curr_idx)
curr_idx = kinematic_tree[curr_idx]
return kin_chain | null |
352 | from typing import NewType, Union, Optional
from dataclasses import dataclass, asdict, fields
import numpy as np
import torch
Tensor = NewType('Tensor', torch.Tensor)
Array = NewType('Array', np.ndarray)
def to_tensor(
array: Union[Array, Tensor], dtype=torch.float32
) -> Tensor:
if torch.is_tensor(array):
return array
else:
return torch.tensor(array, dtype=dtype) | null |
353 | from typing import NewType, Union, Optional
from dataclasses import dataclass, asdict, fields
import numpy as np
import torch
def to_np(array, dtype=np.float32):
if 'scipy.sparse' in str(type(array)):
array = array.todense()
return np.array(array, dtype=dtype) | null |
354 | from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
from typing import Tuple, List
import numpy as np
import torch
import torch.nn.functional as F
from .utils import rot_mat_to_euler, Tensor
def batch_rodrigues(
rot_vecs: Tensor,
epsilon: float = 1e-8,
) -> Tensor:
''' Calculates the rotation matrices for a batch of rotation vectors
Parameters
----------
rot_vecs: torch.tensor Nx3
array of N axis-angle vectors
Returns
-------
R: torch.tensor Nx3x3
The rotation matrices for the given axis-angle parameters
'''
batch_size = rot_vecs.shape[0]
device, dtype = rot_vecs.device, rot_vecs.dtype
angle = torch.norm(rot_vecs + 1e-8, dim=1, keepdim=True)
rot_dir = rot_vecs / angle
cos = torch.unsqueeze(torch.cos(angle), dim=1)
sin = torch.unsqueeze(torch.sin(angle), dim=1)
# Bx1 arrays
rx, ry, rz = torch.split(rot_dir, 1, dim=1)
K = torch.zeros((batch_size, 3, 3), dtype=dtype, device=device)
zeros = torch.zeros((batch_size, 1), dtype=dtype, device=device)
K = torch.cat([zeros, -rz, ry, rz, zeros, -rx, -ry, rx, zeros], dim=1) \
.view((batch_size, 3, 3))
ident = torch.eye(3, dtype=dtype, device=device).unsqueeze(dim=0)
rot_mat = ident + sin * K + (1 - cos) * torch.bmm(K, K)
return rot_mat
Tensor = NewType('Tensor', torch.Tensor)
def rot_mat_to_euler(rot_mats):
# Calculates rotation matrix to euler angles
# Careful for extreme cases of eular angles like [0.0, pi, 0.0]
sy = torch.sqrt(rot_mats[:, 0, 0] * rot_mats[:, 0, 0] +
rot_mats[:, 1, 0] * rot_mats[:, 1, 0])
return torch.atan2(-rot_mats[:, 2, 0], sy)
The provided code snippet includes necessary dependencies for implementing the `find_dynamic_lmk_idx_and_bcoords` function. Write a Python function `def find_dynamic_lmk_idx_and_bcoords( vertices: Tensor, pose: Tensor, dynamic_lmk_faces_idx: Tensor, dynamic_lmk_b_coords: Tensor, neck_kin_chain: List[int], pose2rot: bool = True, ) -> Tuple[Tensor, Tensor]` to solve the following problem:
Compute the faces, barycentric coordinates for the dynamic landmarks To do so, we first compute the rotation of the neck around the y-axis and then use a pre-computed look-up table to find the faces and the barycentric coordinates that will be used. Special thanks to Soubhik Sanyal ([email protected]) for providing the original TensorFlow implementation and for the LUT. Parameters ---------- vertices: torch.tensor BxVx3, dtype = torch.float32 The tensor of input vertices pose: torch.tensor Bx(Jx3), dtype = torch.float32 The current pose of the body model dynamic_lmk_faces_idx: torch.tensor L, dtype = torch.long The look-up table from neck rotation to faces dynamic_lmk_b_coords: torch.tensor Lx3, dtype = torch.float32 The look-up table from neck rotation to barycentric coordinates neck_kin_chain: list A python list that contains the indices of the joints that form the kinematic chain of the neck. dtype: torch.dtype, optional Returns ------- dyn_lmk_faces_idx: torch.tensor, dtype = torch.long A tensor of size BxL that contains the indices of the faces that will be used to compute the current dynamic landmarks. dyn_lmk_b_coords: torch.tensor, dtype = torch.float32 A tensor of size BxL that contains the indices of the faces that will be used to compute the current dynamic landmarks.
Here is the function:
def find_dynamic_lmk_idx_and_bcoords(
vertices: Tensor,
pose: Tensor,
dynamic_lmk_faces_idx: Tensor,
dynamic_lmk_b_coords: Tensor,
neck_kin_chain: List[int],
pose2rot: bool = True,
) -> Tuple[Tensor, Tensor]:
''' Compute the faces, barycentric coordinates for the dynamic landmarks
To do so, we first compute the rotation of the neck around the y-axis
and then use a pre-computed look-up table to find the faces and the
barycentric coordinates that will be used.
Special thanks to Soubhik Sanyal ([email protected])
for providing the original TensorFlow implementation and for the LUT.
Parameters
----------
vertices: torch.tensor BxVx3, dtype = torch.float32
The tensor of input vertices
pose: torch.tensor Bx(Jx3), dtype = torch.float32
The current pose of the body model
dynamic_lmk_faces_idx: torch.tensor L, dtype = torch.long
The look-up table from neck rotation to faces
dynamic_lmk_b_coords: torch.tensor Lx3, dtype = torch.float32
The look-up table from neck rotation to barycentric coordinates
neck_kin_chain: list
A python list that contains the indices of the joints that form the
kinematic chain of the neck.
dtype: torch.dtype, optional
Returns
-------
dyn_lmk_faces_idx: torch.tensor, dtype = torch.long
A tensor of size BxL that contains the indices of the faces that
will be used to compute the current dynamic landmarks.
dyn_lmk_b_coords: torch.tensor, dtype = torch.float32
A tensor of size BxL that contains the indices of the faces that
will be used to compute the current dynamic landmarks.
'''
dtype = vertices.dtype
batch_size = vertices.shape[0]
if pose2rot:
aa_pose = torch.index_select(pose.view(batch_size, -1, 3), 1,
neck_kin_chain)
rot_mats = batch_rodrigues(
aa_pose.view(-1, 3)).view(batch_size, -1, 3, 3)
else:
rot_mats = torch.index_select(
pose.view(batch_size, -1, 3, 3), 1, neck_kin_chain)
rel_rot_mat = torch.eye(
3, device=vertices.device, dtype=dtype).unsqueeze_(dim=0).repeat(
batch_size, 1, 1)
for idx in range(len(neck_kin_chain)):
rel_rot_mat = torch.bmm(rot_mats[:, idx], rel_rot_mat)
y_rot_angle = torch.round(
torch.clamp(-rot_mat_to_euler(rel_rot_mat) * 180.0 / np.pi,
max=39)).to(dtype=torch.long)
neg_mask = y_rot_angle.lt(0).to(dtype=torch.long)
mask = y_rot_angle.lt(-39).to(dtype=torch.long)
neg_vals = mask * 78 + (1 - mask) * (39 - y_rot_angle)
y_rot_angle = (neg_mask * neg_vals +
(1 - neg_mask) * y_rot_angle)
dyn_lmk_faces_idx = torch.index_select(dynamic_lmk_faces_idx,
0, y_rot_angle)
dyn_lmk_b_coords = torch.index_select(dynamic_lmk_b_coords,
0, y_rot_angle)
return dyn_lmk_faces_idx, dyn_lmk_b_coords | Compute the faces, barycentric coordinates for the dynamic landmarks To do so, we first compute the rotation of the neck around the y-axis and then use a pre-computed look-up table to find the faces and the barycentric coordinates that will be used. Special thanks to Soubhik Sanyal ([email protected]) for providing the original TensorFlow implementation and for the LUT. Parameters ---------- vertices: torch.tensor BxVx3, dtype = torch.float32 The tensor of input vertices pose: torch.tensor Bx(Jx3), dtype = torch.float32 The current pose of the body model dynamic_lmk_faces_idx: torch.tensor L, dtype = torch.long The look-up table from neck rotation to faces dynamic_lmk_b_coords: torch.tensor Lx3, dtype = torch.float32 The look-up table from neck rotation to barycentric coordinates neck_kin_chain: list A python list that contains the indices of the joints that form the kinematic chain of the neck. dtype: torch.dtype, optional Returns ------- dyn_lmk_faces_idx: torch.tensor, dtype = torch.long A tensor of size BxL that contains the indices of the faces that will be used to compute the current dynamic landmarks. dyn_lmk_b_coords: torch.tensor, dtype = torch.float32 A tensor of size BxL that contains the indices of the faces that will be used to compute the current dynamic landmarks. |
355 | from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
from typing import Tuple, List
import numpy as np
import torch
import torch.nn.functional as F
from .utils import rot_mat_to_euler, Tensor
Tensor = NewType('Tensor', torch.Tensor)
The provided code snippet includes necessary dependencies for implementing the `vertices2landmarks` function. Write a Python function `def vertices2landmarks( vertices: Tensor, faces: Tensor, lmk_faces_idx: Tensor, lmk_bary_coords: Tensor ) -> Tensor` to solve the following problem:
Calculates landmarks by barycentric interpolation Parameters ---------- vertices: torch.tensor BxVx3, dtype = torch.float32 The tensor of input vertices faces: torch.tensor Fx3, dtype = torch.long The faces of the mesh lmk_faces_idx: torch.tensor L, dtype = torch.long The tensor with the indices of the faces used to calculate the landmarks. lmk_bary_coords: torch.tensor Lx3, dtype = torch.float32 The tensor of barycentric coordinates that are used to interpolate the landmarks Returns ------- landmarks: torch.tensor BxLx3, dtype = torch.float32 The coordinates of the landmarks for each mesh in the batch
Here is the function:
def vertices2landmarks(
vertices: Tensor,
faces: Tensor,
lmk_faces_idx: Tensor,
lmk_bary_coords: Tensor
) -> Tensor:
''' Calculates landmarks by barycentric interpolation
Parameters
----------
vertices: torch.tensor BxVx3, dtype = torch.float32
The tensor of input vertices
faces: torch.tensor Fx3, dtype = torch.long
The faces of the mesh
lmk_faces_idx: torch.tensor L, dtype = torch.long
The tensor with the indices of the faces used to calculate the
landmarks.
lmk_bary_coords: torch.tensor Lx3, dtype = torch.float32
The tensor of barycentric coordinates that are used to interpolate
the landmarks
Returns
-------
landmarks: torch.tensor BxLx3, dtype = torch.float32
The coordinates of the landmarks for each mesh in the batch
'''
# Extract the indices of the vertices for each face
# BxLx3
batch_size, num_verts = vertices.shape[:2]
device = vertices.device
lmk_faces = torch.index_select(faces, 0, lmk_faces_idx.view(-1)).view(
batch_size, -1, 3)
lmk_faces += torch.arange(
batch_size, dtype=torch.long, device=device).view(-1, 1, 1) * num_verts
lmk_vertices = vertices.view(-1, 3)[lmk_faces].view(
batch_size, -1, 3, 3)
landmarks = torch.einsum('blfi,blf->bli', [lmk_vertices, lmk_bary_coords])
return landmarks | Calculates landmarks by barycentric interpolation Parameters ---------- vertices: torch.tensor BxVx3, dtype = torch.float32 The tensor of input vertices faces: torch.tensor Fx3, dtype = torch.long The faces of the mesh lmk_faces_idx: torch.tensor L, dtype = torch.long The tensor with the indices of the faces used to calculate the landmarks. lmk_bary_coords: torch.tensor Lx3, dtype = torch.float32 The tensor of barycentric coordinates that are used to interpolate the landmarks Returns ------- landmarks: torch.tensor BxLx3, dtype = torch.float32 The coordinates of the landmarks for each mesh in the batch |
356 | from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
from typing import Tuple, List
import numpy as np
import torch
import torch.nn.functional as F
from .utils import rot_mat_to_euler, Tensor
def vertices2joints(J_regressor: Tensor, vertices: Tensor) -> Tensor:
''' Calculates the 3D joint locations from the vertices
Parameters
----------
J_regressor : torch.tensor JxV
The regressor array that is used to calculate the joints from the
position of the vertices
vertices : torch.tensor BxVx3
The tensor of mesh vertices
Returns
-------
torch.tensor BxJx3
The location of the joints
'''
return torch.einsum('bik,ji->bjk', [vertices, J_regressor])
def blend_shapes(betas: Tensor, shape_disps: Tensor) -> Tensor:
''' Calculates the per vertex displacement due to the blend shapes
Parameters
----------
betas : torch.tensor Bx(num_betas)
Blend shape coefficients
shape_disps: torch.tensor Vx3x(num_betas)
Blend shapes
Returns
-------
torch.tensor BxVx3
The per-vertex displacement due to shape deformation
'''
# Displacement[b, m, k] = sum_{l} betas[b, l] * shape_disps[m, k, l]
# i.e. Multiply each shape displacement by its corresponding beta and
# then sum them.
blend_shape = torch.einsum('bl,mkl->bmk', [betas, shape_disps])
return blend_shape
def batch_rodrigues(
rot_vecs: Tensor,
epsilon: float = 1e-8,
) -> Tensor:
''' Calculates the rotation matrices for a batch of rotation vectors
Parameters
----------
rot_vecs: torch.tensor Nx3
array of N axis-angle vectors
Returns
-------
R: torch.tensor Nx3x3
The rotation matrices for the given axis-angle parameters
'''
batch_size = rot_vecs.shape[0]
device, dtype = rot_vecs.device, rot_vecs.dtype
angle = torch.norm(rot_vecs + 1e-8, dim=1, keepdim=True)
rot_dir = rot_vecs / angle
cos = torch.unsqueeze(torch.cos(angle), dim=1)
sin = torch.unsqueeze(torch.sin(angle), dim=1)
# Bx1 arrays
rx, ry, rz = torch.split(rot_dir, 1, dim=1)
K = torch.zeros((batch_size, 3, 3), dtype=dtype, device=device)
zeros = torch.zeros((batch_size, 1), dtype=dtype, device=device)
K = torch.cat([zeros, -rz, ry, rz, zeros, -rx, -ry, rx, zeros], dim=1) \
.view((batch_size, 3, 3))
ident = torch.eye(3, dtype=dtype, device=device).unsqueeze(dim=0)
rot_mat = ident + sin * K + (1 - cos) * torch.bmm(K, K)
return rot_mat
def batch_rigid_transform(
rot_mats: Tensor,
joints: Tensor,
parents: Tensor,
dtype=torch.float32
) -> Tensor:
"""
Applies a batch of rigid transformations to the joints
Parameters
----------
rot_mats : torch.tensor BxNx3x3
Tensor of rotation matrices
joints : torch.tensor BxNx3
Locations of joints
parents : torch.tensor BxN
The kinematic tree of each object
dtype : torch.dtype, optional:
The data type of the created tensors, the default is torch.float32
Returns
-------
posed_joints : torch.tensor BxNx3
The locations of the joints after applying the pose rotations
rel_transforms : torch.tensor BxNx4x4
The relative (with respect to the root joint) rigid transformations
for all the joints
"""
joints = torch.unsqueeze(joints, dim=-1)
rel_joints = joints.clone()
rel_joints[:, 1:] -= joints[:, parents[1:]]
transforms_mat = transform_mat(
rot_mats.reshape(-1, 3, 3),
rel_joints.reshape(-1, 3, 1)).reshape(-1, joints.shape[1], 4, 4)
transform_chain = [transforms_mat[:, 0]]
for i in range(1, parents.shape[0]):
# Subtract the joint location at the rest pose
# No need for rotation, since it's identity when at rest
curr_res = torch.matmul(transform_chain[parents[i]],
transforms_mat[:, i])
transform_chain.append(curr_res)
transforms = torch.stack(transform_chain, dim=1)
# The last column of the transformations contains the posed joints
posed_joints = transforms[:, :, :3, 3]
joints_homogen = F.pad(joints, [0, 0, 0, 1])
rel_transforms = transforms - F.pad(
torch.matmul(transforms, joints_homogen), [3, 0, 0, 0, 0, 0, 0, 0])
return posed_joints, rel_transforms
Tensor = NewType('Tensor', torch.Tensor)
The provided code snippet includes necessary dependencies for implementing the `lbs` function. Write a Python function `def lbs( betas: Tensor, pose: Tensor, v_template: Tensor, shapedirs: Tensor, posedirs: Tensor, J_regressor: Tensor, parents: Tensor, lbs_weights: Tensor, pose2rot: bool = True, ) -> Tuple[Tensor, Tensor]` to solve the following problem:
Performs Linear Blend Skinning with the given shape and pose parameters Parameters ---------- betas : torch.tensor BxNB The tensor of shape parameters pose : torch.tensor Bx(J + 1) * 3 The pose parameters in axis-angle format v_template torch.tensor BxVx3 The template mesh that will be deformed shapedirs : torch.tensor 1xNB The tensor of PCA shape displacements posedirs : torch.tensor Px(V * 3) The pose PCA coefficients J_regressor : torch.tensor JxV The regressor array that is used to calculate the joints from the position of the vertices parents: torch.tensor J The array that describes the kinematic tree for the model lbs_weights: torch.tensor N x V x (J + 1) The linear blend skinning weights that represent how much the rotation matrix of each part affects each vertex pose2rot: bool, optional Flag on whether to convert the input pose tensor to rotation matrices. The default value is True. If False, then the pose tensor should already contain rotation matrices and have a size of Bx(J + 1)x9 dtype: torch.dtype, optional Returns ------- verts: torch.tensor BxVx3 The vertices of the mesh after applying the shape and pose displacements. joints: torch.tensor BxJx3 The joints of the model
Here is the function:
def lbs(
betas: Tensor,
pose: Tensor,
v_template: Tensor,
shapedirs: Tensor,
posedirs: Tensor,
J_regressor: Tensor,
parents: Tensor,
lbs_weights: Tensor,
pose2rot: bool = True,
) -> Tuple[Tensor, Tensor]:
''' Performs Linear Blend Skinning with the given shape and pose parameters
Parameters
----------
betas : torch.tensor BxNB
The tensor of shape parameters
pose : torch.tensor Bx(J + 1) * 3
The pose parameters in axis-angle format
v_template torch.tensor BxVx3
The template mesh that will be deformed
shapedirs : torch.tensor 1xNB
The tensor of PCA shape displacements
posedirs : torch.tensor Px(V * 3)
The pose PCA coefficients
J_regressor : torch.tensor JxV
The regressor array that is used to calculate the joints from
the position of the vertices
parents: torch.tensor J
The array that describes the kinematic tree for the model
lbs_weights: torch.tensor N x V x (J + 1)
The linear blend skinning weights that represent how much the
rotation matrix of each part affects each vertex
pose2rot: bool, optional
Flag on whether to convert the input pose tensor to rotation
matrices. The default value is True. If False, then the pose tensor
should already contain rotation matrices and have a size of
Bx(J + 1)x9
dtype: torch.dtype, optional
Returns
-------
verts: torch.tensor BxVx3
The vertices of the mesh after applying the shape and pose
displacements.
joints: torch.tensor BxJx3
The joints of the model
'''
batch_size = max(betas.shape[0], pose.shape[0])
device, dtype = betas.device, betas.dtype
# Add shape contribution
v_shaped = v_template + blend_shapes(betas, shapedirs)
# Get the joints
# NxJx3 array
J = vertices2joints(J_regressor, v_shaped)
# 3. Add pose blend shapes
# N x J x 3 x 3
ident = torch.eye(3, dtype=dtype, device=device)
if pose2rot:
rot_mats = batch_rodrigues(pose.view(-1, 3)).view(
[batch_size, -1, 3, 3])
pose_feature = (rot_mats[:, 1:, :, :] - ident).view([batch_size, -1])
# (N x P) x (P, V * 3) -> N x V x 3
pose_offsets = torch.matmul(
pose_feature, posedirs).view(batch_size, -1, 3)
else:
pose_feature = pose[:, 1:].view(batch_size, -1, 3, 3) - ident
rot_mats = pose.view(batch_size, -1, 3, 3)
pose_offsets = torch.matmul(pose_feature.view(batch_size, -1),
posedirs).view(batch_size, -1, 3)
v_posed = pose_offsets + v_shaped
# 4. Get the global joint location
J_transformed, A = batch_rigid_transform(rot_mats, J, parents, dtype=dtype)
# 5. Do skinning:
# W is N x V x (J + 1)
W = lbs_weights.unsqueeze(dim=0).expand([batch_size, -1, -1])
# (N x V x (J + 1)) x (N x (J + 1) x 16)
num_joints = J_regressor.shape[0]
T = torch.matmul(W, A.view(batch_size, num_joints, 16)) \
.view(batch_size, -1, 4, 4)
homogen_coord = torch.ones([batch_size, v_posed.shape[1], 1],
dtype=dtype, device=device)
v_posed_homo = torch.cat([v_posed, homogen_coord], dim=2)
v_homo = torch.matmul(T, torch.unsqueeze(v_posed_homo, dim=-1))
verts = v_homo[:, :, :3, 0]
return verts, J_transformed | Performs Linear Blend Skinning with the given shape and pose parameters Parameters ---------- betas : torch.tensor BxNB The tensor of shape parameters pose : torch.tensor Bx(J + 1) * 3 The pose parameters in axis-angle format v_template torch.tensor BxVx3 The template mesh that will be deformed shapedirs : torch.tensor 1xNB The tensor of PCA shape displacements posedirs : torch.tensor Px(V * 3) The pose PCA coefficients J_regressor : torch.tensor JxV The regressor array that is used to calculate the joints from the position of the vertices parents: torch.tensor J The array that describes the kinematic tree for the model lbs_weights: torch.tensor N x V x (J + 1) The linear blend skinning weights that represent how much the rotation matrix of each part affects each vertex pose2rot: bool, optional Flag on whether to convert the input pose tensor to rotation matrices. The default value is True. If False, then the pose tensor should already contain rotation matrices and have a size of Bx(J + 1)x9 dtype: torch.dtype, optional Returns ------- verts: torch.tensor BxVx3 The vertices of the mesh after applying the shape and pose displacements. joints: torch.tensor BxJx3 The joints of the model |
357 | import os
import io
import ntpath
import hashlib
import fnmatch
import shlex
import speakeasy.winenv.defs.windows.windows as windefs
import speakeasy.winenv.arch as _arch
from speakeasy.errors import FileSystemEmuError
def normalize_response_path(path):
def _get_speakeasy_root():
return os.path.join(os.path.dirname(__file__), os.pardir)
root_var = '$ROOT$'
if root_var in path:
root = _get_speakeasy_root()
return path.replace(root_var, root)
return path | null |
358 | import collections
import speakeasy.winenv.arch as e_arch
def _lowercase_set(tt):
return set([bb.lower() for bb in tt]) | null |
359 | import io
import os
from urllib.parse import urlparse
from io import BytesIO
from speakeasy.errors import NetworkEmuError
def is_empty(bio):
if len(bio.getbuffer()) == bio.tell():
return True
return False | null |
360 | import io
import os
from urllib.parse import urlparse
from io import BytesIO
from speakeasy.errors import NetworkEmuError
def normalize_response_path(path):
def _get_speakeasy_root():
return os.path.join(os.path.dirname(__file__), os.pardir)
root_var = '$ROOT$'
if root_var in path:
root = _get_speakeasy_root()
return path.replace(root_var, root)
return path | null |
361 | import os
import ntpath
import hashlib
from collections import namedtuple
import pefile
import speakeasy.winenv.arch as _arch
import speakeasy.winenv.defs.nt.ddk as ddk
from speakeasy.struct import Enum
def normalize_dll_name(name):
ret = name
# Funnel CRTs into a single handler
if name.lower().startswith(('api-ms-win-crt', 'vcruntime', 'ucrtbased', 'ucrtbase', 'msvcr', 'msvcp')):
ret = 'msvcrt'
# Redirect windows sockets 1.0 to windows sockets 2.0
elif name.lower().startswith(('winsock', 'wsock32')):
ret = 'ws2_32'
elif name.lower().startswith('api-ms-win-core'):
ret = 'kernel32'
return ret | null |
362 | import os
import json
import time
import logging
import argparse
import multiprocessing as mp
import speakeasy
from speakeasy import Speakeasy
import speakeasy.winenv.arch as e_arch
def get_logger():
"""
Get the default logger for speakeasy
"""
logger = logging.getLogger('speakeasy')
if not logger.handlers:
sh = logging.StreamHandler()
logger.addHandler(sh)
logger.setLevel(logging.INFO)
return logger
The provided code snippet includes necessary dependencies for implementing the `emulate_binary` function. Write a Python function `def emulate_binary(q, exit_event, fpath, cfg, argv, do_raw, arch='', drop_path='', dump_path='', raw_offset=0x0, emulate_children=False)` to solve the following problem:
Setup the binary for emulation
Here is the function:
def emulate_binary(q, exit_event, fpath, cfg, argv, do_raw, arch='',
drop_path='', dump_path='', raw_offset=0x0, emulate_children=False):
"""
Setup the binary for emulation
"""
logger = get_logger()
try:
report = None
se = Speakeasy(config=cfg, logger=logger, argv=argv, exit_event=exit_event)
if do_raw:
arch = arch.lower()
if arch == 'x86':
arch = e_arch.ARCH_X86
elif arch in ('x64', 'amd64'):
arch = e_arch.ARCH_AMD64
else:
raise Exception('Unsupported architecture: %s' % arch)
sc_addr = se.load_shellcode(fpath, arch)
se.run_shellcode(sc_addr, offset=raw_offset or 0)
else:
module = se.load_module(fpath)
se.run_module(module, all_entrypoints=True,
emulate_children=emulate_children)
finally:
report = se.get_json_report()
q.put(report)
# If a memory dump was requested, do it now
if dump_path:
data = se.create_memdump_archive()
logger.info('* Saving memory dump archive to %s' % (dump_path))
with open(dump_path, 'wb') as f:
f.write(data)
if drop_path:
data = se.create_file_archive()
if data:
logger.info('* Saving dropped files archive to %s' % (drop_path))
with open(drop_path, 'wb') as f:
f.write(data)
else:
logger.info('* No dropped files found') | Setup the binary for emulation |
363 | import os
import json
import ntpath
import hashlib
import zipfile
from io import BytesIO
from typing import Callable
from pefile import MACHINE_TYPE
import jsonschema
import jsonschema.exceptions
import speakeasy
import speakeasy.winenv.arch as _arch
from speakeasy import PeFile
from speakeasy import Win32Emulator
from speakeasy import WinKernelEmulator
from speakeasy.errors import SpeakeasyError, ConfigError, NotSupportedError
import speakeasy
import speakeasy.winenv.arch as _arch
from speakeasy import PeFile
from speakeasy import Win32Emulator
from speakeasy import WinKernelEmulator
from speakeasy.errors import SpeakeasyError, ConfigError, NotSupportedError
The provided code snippet includes necessary dependencies for implementing the `validate_config` function. Write a Python function `def validate_config(config) -> None` to solve the following problem:
Validates the given configuration objects against the built-in schemas. Raises jsonschema.exceptions.ValidationError on invalid configuration. Expose the underlying jsonschema exception due to it having lots of information about failures. On success, returns without exception.
Here is the function:
def validate_config(config) -> None:
"""
Validates the given configuration objects against the built-in schemas.
Raises jsonschema.exceptions.ValidationError on invalid configuration.
Expose the underlying jsonschema exception due to it having lots of information
about failures.
On success, returns without exception.
"""
schema_path = os.path.join(os.path.dirname(speakeasy.__file__), 'config_schema.json')
with open(schema_path, 'r') as ff:
schema = json.load(ff)
validator = jsonschema.Draft7Validator(schema)
validator.validate(config) | Validates the given configuration objects against the built-in schemas. Raises jsonschema.exceptions.ValidationError on invalid configuration. Expose the underlying jsonschema exception due to it having lots of information about failures. On success, returns without exception. |
364 | import platform
import ctypes as ct
import unicorn as uc
import unicorn.unicorn
import unicorn.x86_const as u
import speakeasy.winenv.arch as arch
import speakeasy.common as common
from speakeasy.errors import EmuEngineError
def is_platform_intel():
mach = platform.machine()
if mach in ('x86_64', 'i386', 'x86'):
return True
return False | null |
365 | import os
The provided code snippet includes necessary dependencies for implementing the `normalize_package_path` function. Write a Python function `def normalize_package_path(path)` to solve the following problem:
Get the supplied path in relation to the package root
Here is the function:
def normalize_package_path(path):
"""
Get the supplied path in relation to the package root
"""
def _get_speakeasy_root():
return os.path.join(os.path.dirname(__file__))
root_var = '$ROOT$'
if root_var in path:
root = _get_speakeasy_root()
return path.replace(root_var, root)
return path | Get the supplied path in relation to the package root |
366 | from socket import inet_aton
from urllib.parse import urlparse
import speakeasy.winenv.arch as _arch
import speakeasy.windows.netman as netman
import speakeasy.winenv.defs.wininet as windefs
from .. import api
def is_ip_address(ip):
try:
inet_aton(ip)
return True
except Exception:
return False | null |
368 | import sys
import inspect
import speakeasy.winenv.arch as _arch
from speakeasy.errors import ApiEmuError
from speakeasy.winenv.api import api
from speakeasy.winenv.api.kernelmode import *
from speakeasy.winenv.api.usermode import *
def autoload_api_handlers():
api_handlers = []
for modname, modobj in sys.modules.items():
if not modname.startswith(('speakeasy.winenv.api.kernelmode.',
'speakeasy.winenv.api.usermode.')):
continue
for clsname, clsobj in inspect.getmembers(modobj, inspect.isclass):
if clsobj is not api.ApiHandler and issubclass(clsobj, api.ApiHandler):
api_handlers.append((clsobj.name, clsobj))
return tuple(api_handlers) | null |
369 |
def get_define_int(define, prefix=''):
for k, v in globals().items():
if not isinstance(v, int) or v != define:
continue
if prefix:
if k.startswith(prefix):
return k
else:
return k | null |
370 | from speakeasy.struct import EmuStruct, Ptr
import ctypes as ct
def get_create_disposition(flags):
disp = None
dispostions = ('CREATE_ALWAYS', 'CREATE_NEW', 'OPEN_ALWAYS',
'OPEN_EXISTING', 'TRUNCATE_EXISTING')
for k, v in [(k, v) for k, v in globals().items() if k in dispostions]:
if isinstance(v, int):
if v == flags:
disp = k
break
return disp | null |
371 | from speakeasy.struct import EmuStruct, Ptr
import ctypes as ct
def get_define(define, prefix=''):
for k, v in globals().items():
if not isinstance(v, int) or v != define:
continue
if prefix:
if k.startswith(prefix):
return k
else:
return k | null |
372 | from speakeasy.struct import EmuStruct, Ptr
import ctypes as ct
def get_flag_defines(flags, prefix=''):
def get_page_rights(define):
return get_flag_defines(define, prefix='PAGE_') | null |
373 | from speakeasy.struct import EmuStruct, Ptr
import ctypes as ct
def get_flag_defines(flags, prefix=''):
def get_creation_flags(flags):
return get_flag_defines(flags, prefix='CREATE_') | null |
374 | from speakeasy.struct import EmuStruct, Ptr
import ctypes as ct
class SID(EmuStruct):
def __init__(self, ptr_size, sub_authority_count):
super().__init__(ptr_size)
self.Revision = ct.c_uint8
self.SubAuthorityCount = ct.c_uint8
self.IdentifierAuthority = ct.c_uint8 * 6
self.SubAuthority = ct.c_uint32 * sub_authority_count
def convert_sid_str_to_struct(ptr_size, sid_str):
sid_elements = sid_str.split('-')
sid_elements.remove('S')
sub_authority_count = len(sid_elements) - 2
sid_struct = SID(ptr_size, sub_authority_count)
sid_struct.Revision = int(sid_elements[0])
sid_struct.SubAuthorityCount = sub_authority_count
sid_struct.IdentifierAuthority = int(sid_elements[1]).to_bytes(6, 'big')
sub_authorities = sid_elements[2:]
for i in range(len(sub_authorities)):
sid_struct.SubAuthority[i] = int(sub_authorities[i])
return sid_struct | null |
376 | from speakeasy.struct import EmuStruct, Ptr
import ctypes as ct
def get_define_value(define, prefix=''):
for k, v in globals().items():
if not isinstance(v, int) or k != define:
continue
if prefix:
if k.startswith(prefix):
return v
else:
return v | null |
377 | from speakeasy.struct import EmuStruct, Ptr
import ctypes as ct
def get_flag_defines(flags, prefix=''):
defs = []
for k, v in globals().items():
if not isinstance(v, int):
continue
if v & flags:
if prefix and k.startswith(prefix):
defs.append(k)
return defs | null |
378 | from speakeasy.struct import EmuStruct, Ptr
import ctypes as ct
def get_define_int(define, prefix=''):
for k, v in globals().items():
if not isinstance(v, int) or v != define:
continue
if prefix:
if k.startswith(prefix):
return k
else:
return k | null |
379 | from speakeasy.struct import EmuStruct, Ptr
import ctypes as ct
def get_flag_defines(flags, prefix=''):
defs = []
for k, v in globals().items():
if not isinstance(v, int):
continue
if v == flags:
if prefix and k.startswith(prefix):
defs.append(k)
return defs
def get_windowhook_flags(flags):
return get_flag_defines(flags, prefix='WH_') | null |
380 | import uuid
from speakeasy.struct import EmuStruct, Ptr
def get_define_str(define, prefix=''):
for k, v in globals().items():
if not isinstance(v, str) or v != define:
continue
if prefix:
if k.startswith(prefix):
return k
else:
return k
def get_clsid(define):
return get_define_str(define, prefix='CLSID_') | null |
381 | import uuid
from speakeasy.struct import EmuStruct, Ptr
def get_define_str(define, prefix=''):
for k, v in globals().items():
if not isinstance(v, str) or v != define:
continue
if prefix:
if k.startswith(prefix):
return k
else:
return k
def get_iid(define):
return get_define_str(define, prefix='IID_') | null |
382 | import uuid
from speakeasy.struct import EmuStruct, Ptr
def get_define_int(define, prefix=''):
for k, v in globals().items():
if not isinstance(v, int) or v != define:
continue
if prefix:
if k.startswith(prefix):
return k
else:
return k
def get_rpc_authlevel(define):
return get_define_int(define, prefix='RPC_C_AUTHN_LEVEL_') | null |
383 | import uuid
from speakeasy.struct import EmuStruct, Ptr
def get_define_int(define, prefix=''):
for k, v in globals().items():
if not isinstance(v, int) or v != define:
continue
if prefix:
if k.startswith(prefix):
return k
else:
return k
def get_rcp_implevel(define):
return get_define_int(define, prefix='RPC_C_IMP_LEVEL_') | null |
384 | import uuid
from speakeasy.struct import EmuStruct, Ptr
def convert_guid_bytes_to_str(guid_bytes):
u = uuid.UUID(bytes_le=guid_bytes)
return ('{%s}' % u).upper() | null |
385 |
def get_define(define, prefix=''):
for k, v in globals().items():
if not isinstance(v, int) or v != define:
continue
if prefix:
if k.startswith(prefix):
return k
else:
return k | null |
386 | from speakeasy.struct import EmuStruct, Ptr
import ctypes as ct
MIB_IF_TYPE_ETHERNET = 6
def get_adapter_type(type_str):
if type_str == 'ethernet':
return MIB_IF_TYPE_ETHERNET | null |
387 | from speakeasy.struct import Enum
def get_access_defines(flags):
defs = []
accesses = ('DELETE', 'READ_CONTROL', 'WRITE_DAC',
'WRITE_OWNER', 'SYNCHRONIZE', 'GENERIC_READ',
'GENERIC_WRITE', 'GENERIC_EXECUTE', 'GENERIC_ALL')
for k, v in [(k, v) for k, v in globals().items() if k in accesses]:
if isinstance(v, int):
if v & flags:
defs.append(k)
return defs | null |
388 | from speakeasy.struct import Enum
def get_flag_defines(flags, prefix=''):
defs = []
for k, v in globals().items():
if isinstance(v, int):
if v & flags:
if prefix:
if k.startswith(prefix):
defs.append(k)
else:
defs.append(k)
return defs
def get_file_access_defines(flags):
defs = get_flag_defines(flags, 'FILE_')
defs = [d for d in defs if d.startswith(('FILE_READ', 'FILE_WRITE',
'FILE_DELETE', 'FILE_APPEND', 'FILE_EXECUTE'))]
return defs | null |
389 | from speakeasy.struct import Enum
def get_const_defines(const, prefix=''):
defs = []
for k, v in globals().items():
if isinstance(v, int):
if v == const:
if prefix:
if k.startswith(prefix):
defs.append(k)
else:
defs.append(k)
return defs
def get_create_disposition(disp):
defs = get_const_defines(disp, 'FILE_')
defs = [d for d in defs if not d.startswith('FILE_SHARE')]
ret = 0
if len(defs):
ret = defs[0]
return ret | null |
390 | import ctypes as ct
from speakeasy.struct import EmuStruct, Ptr
def get_const_defines(flags, prefix=''):
def get_flag_defines(flags):
return get_const_defines(flags, prefix='INTERNET_FLAG') | null |
391 | import ctypes as ct
from speakeasy.struct import EmuStruct, Ptr
def get_option_define(opt):
for k, v in globals().items():
if k.startswith('INTERNET_OPTION_') and v == opt:
return k | null |
392 | import ctypes as ct
from speakeasy.struct import EmuStruct, Ptr
def get_const_defines(flags, prefix=''):
defs = []
for k, v in globals().items():
if isinstance(v, int):
if v & flags:
if prefix:
if k.startswith(prefix):
defs.append(k)
else:
defs.append(k)
return defs
def get_header_info_winhttp(flags):
return get_const_defines(flags, prefix='WINHTTP_ADDREQ_') | null |
393 | import ctypes as ct
from speakeasy.struct import EmuStruct, Ptr
def get_header_query(opt):
for k, v in globals().items():
if k.startswith('WINHTTP_QUERY_') and v == opt:
return k | null |
394 | from speakeasy.struct import EmuStruct, Enum
import ctypes as ct
def get_flag_value(flag):
return globals().get(flag) | null |
395 | from speakeasy.struct import EmuStruct, Enum
import ctypes as ct
def get_defines(define, prefix=''):
for k, v in globals().items():
if not isinstance(v, int) or v != define:
continue
if prefix:
if k.startswith(prefix):
return k
else:
return k
def get_value_type(define):
return get_defines(define, prefix='REG_') | null |
396 | from speakeasy.struct import EmuStruct, Enum
import ctypes as ct
def get_defines(define, prefix=''):
for k, v in globals().items():
if not isinstance(v, int) or v != define:
continue
if prefix:
if k.startswith(prefix):
return k
else:
return k
def get_hkey_type(define):
return get_defines(define, prefix='HKEY_') | null |
397 |
def get_flag_defines(flags, prefix=''):
defs = []
for k, v in globals().items():
if not isinstance(v, int):
continue
if v & flags:
if prefix and k.startswith(prefix):
defs.append(k)
return defs | null |
398 | def get_define(define, prefix=''):
def get_addr_family(define):
return get_define(define, prefix='AF_') | null |
399 | def get_define(define, prefix=''):
for k, v in globals().items():
if not isinstance(v, int) or v != define:
continue
if prefix:
if k.startswith(prefix):
return k
else:
return k
def get_sock_type(define):
return get_define(define, prefix='SOCK_') | null |
400 | def get_define(define, prefix=''):
for k, v in globals().items():
if not isinstance(v, int) or v != define:
continue
if prefix:
if k.startswith(prefix):
return k
else:
return k
def get_proto_type(define):
return get_define(define, prefix='IPPROTO_') | null |
401 | import os
import sys
import cmd
import shlex
import fnmatch
import logging
import binascii
import argparse
import traceback
import hexdump
import speakeasy
import speakeasy.winenv.arch as e_arch
from speakeasy.errors import SpeakeasyError
The provided code snippet includes necessary dependencies for implementing the `get_logger` function. Write a Python function `def get_logger()` to solve the following problem:
Get the default logger for speakeasy
Here is the function:
def get_logger():
"""
Get the default logger for speakeasy
"""
logger = logging.getLogger('sedbg')
if not logger.handlers:
sh = logging.StreamHandler()
logger.addHandler(sh)
logger.setLevel(logging.INFO)
return logger | Get the default logger for speakeasy |