dataset_info:
features:
- name: archived
dtype: string
- name: author
dtype: string
- name: author_fullname
dtype: string
- name: body
dtype: string
- name: comment_type
dtype: string
- name: controversiality
dtype: string
- name: created_utc
dtype: string
- name: edited
dtype: string
- name: gilded
dtype: string
- name: id
dtype: string
- name: link_id
dtype: string
- name: locked
dtype: string
- name: name
dtype: string
- name: parent_id
dtype: string
- name: permalink
dtype: string
- name: retrieved_on
dtype: string
- name: score
dtype: string
- name: subreddit_id
dtype: string
- name: subreddit_name_prefixed
dtype: string
- name: subreddit_type
dtype: string
- name: total_awards_received
dtype: string
splits:
- name: programming
num_bytes: 3466623746
num_examples: 7503347
- name: tifu
num_bytes: 4761338653
num_examples: 12738669
- name: explainlikeimfive
num_bytes: 8451732573
num_examples: 16392814
- name: WritingPrompts
num_bytes: 4651591771
num_examples: 4436210
- name: changemyview
num_bytes: 8603031915
num_examples: 11600073
- name: LifeProTips
num_bytes: 5272994396
num_examples: 12829459
- name: todayilearned
num_bytes: 22655655241
num_examples: 60199778
- name: science
num_bytes: 7069809765
num_examples: 18112884
- name: askscience
num_bytes: 3144754665
num_examples: 6286702
- name: ifyoulikeblank
num_bytes: 547200329
num_examples: 1332211
- name: Foodforthought
num_bytes: 308377128
num_examples: 567900
- name: IWantToLearn
num_bytes: 408331672
num_examples: 745543
- name: bestof
num_bytes: 2003718831
num_examples: 4347522
- name: IAmA
num_bytes: 9380094090
num_examples: 25778822
- name: socialskills
num_bytes: 1000014402
num_examples: 1842733
- name: relationship_advice
num_bytes: 22298879735
num_examples: 38937398
- name: philosophy
num_bytes: 1494947876
num_examples: 2391695
- name: YouShouldKnow
num_bytes: 1165617658
num_examples: 2639265
- name: history
num_bytes: 1457852402
num_examples: 2962043
- name: books
num_bytes: 4562689426
num_examples: 10187495
- name: Showerthoughts
num_bytes: 13259109532
num_examples: 34123213
- name: personalfinance
num_bytes: 9484869588
num_examples: 18361314
- name: buildapc
num_bytes: 9801044390
num_examples: 21761801
- name: EatCheapAndHealthy
num_bytes: 853462012
num_examples: 1821897
- name: boardgames
num_bytes: 3131627378
num_examples: 6328926
- name: malefashionadvice
num_bytes: 2928017882
num_examples: 7712258
- name: femalefashionadvice
num_bytes: 1619784736
num_examples: 3262969
- name: scifi
num_bytes: 888152056
num_examples: 2193741
- name: Fantasy
num_bytes: 2285934538
num_examples: 4566639
- name: Games
num_bytes: 10396813188
num_examples: 23373965
- name: bodyweightfitness
num_bytes: 794549854
num_examples: 1613634
- name: SkincareAddiction
num_bytes: 3421122597
num_examples: 5660550
- name: podcasts
num_bytes: 464773126
num_examples: 943266
- name: suggestmeabook
num_bytes: 1842944304
num_examples: 3492937
- name: AskHistorians
num_bytes: 2244587909
num_examples: 2714353
- name: gaming
num_bytes: 28374513722
num_examples: 85729253
- name: DIY
num_bytes: 2113533684
num_examples: 4489265
- name: sports
num_bytes: 2230129132
num_examples: 6470079
- name: space
num_bytes: 3081499208
num_examples: 7896182
- name: gadgets
num_bytes: 1683252868
num_examples: 4104833
- name: Documentaries
num_bytes: 1852644771
num_examples: 4051474
- name: GetMotivated
num_bytes: 1211761267
num_examples: 3221980
- name: UpliftingNews
num_bytes: 2003149025
num_examples: 4741948
- name: technology
num_bytes: 10826871436
num_examples: 25404699
- name: Fitness
num_bytes: 6191132755
num_examples: 14319856
- name: travel
num_bytes: 1740556350
num_examples: 3806755
- name: lifehacks
num_bytes: 626791812
num_examples: 1799437
- name: Damnthatsinteresting
num_bytes: 6376694618
num_examples: 15643554
- name: gardening
num_bytes: 1825313940
num_examples: 4568468
- name: mildlyinteresting
num_bytes: 9079894206
num_examples: 26436769
download_size: 109177016105
dataset_size: 255339788158
annotations_creators:
- no-annotation
language:
- en
language_creators:
- found
license: []
multilinguality:
- monolingual
pretty_name: Reddit comments
size_categories:
- 10B<n<100B
source_datasets: []
tags:
- reddit
- social-media
task_categories:
- text-generation
task_ids:
- dialogue-modeling
- language-modeling
Dataset Card for "REDDIT_comments"
Dataset Description
- Homepage:
- Paper: https://arxiv.org/abs/2001.08435
Dataset Summary
Comments of 50 high-quality subreddits, extracted from the REDDIT PushShift data dumps (from 2006 to Jan 2023).
Supported Tasks
These comments can be used for text generation and language modeling, as well as dialogue modeling.
Dataset Structure
Data Splits
Each split corresponds to a specific subreddit in the following list: "tifu", "explainlikeimfive", "WritingPrompts", "changemyview", "LifeProTips", "todayilearned", "science", "askscience", "ifyoulikeblank", "Foodforthought", "IWantToLearn", "bestof", "IAmA", "socialskills", "relationship_advice", "philosophy", "YouShouldKnow", "history", "books", "Showerthoughts", "personalfinance", "buildapc", "EatCheapAndHealthy", "boardgames", "malefashionadvice", "femalefashionadvice", "scifi", "Fantasy", "Games", "bodyweightfitness", "SkincareAddiction", "podcasts", "suggestmeabook", "AskHistorians", "gaming", "DIY", "mildlyinteresting", "sports", "space", "gadgets", "Documentaries", "GetMotivated", "UpliftingNews", "technology", "Fitness", "travel", "lifehacks", "Damnthatsinteresting", "gardening", "programming"
Dataset Creation
Curation Rationale
All the information fields have been cast to string, as their format change through time from one dump to the following. A reduced number of keys have been kept: "archived", "author", "author_fullname", "body", "comment_type", "controversiality", "created_utc", "edited", "gilded", "id", "link_id", "locked", "name", "parent_id", "permalink", "retrieved_on", "score", "subreddit", "subreddit_id", "subreddit_name_prefixed", "subreddit_type", "total_awards_received".
Source Data
The Reddit PushShift data dumps are part of a data collection effort which crawls Reddit at regular intervals, to extract and keep all its data.
Initial Data Collection and Normalization
See the paper.
Who are the source language producers?
Redditors are mostly young (65% below 30), male (70%), and American (50% of the site).
Personal and Sensitive Information
The data contains Redditor's usernames associated to their content.
Considerations for Using the Data
This dataset should be anonymized before any processing. Though the subreddits selected are considered as being of higher quality, they can still reflect what you can find on the internet in terms of expressions of biases and toxicity.
Contributions
Thanks to @clefourrier for adding this dataset.