Dataset Viewer
Auto-converted to Parquet
Search is not available for this dataset
image
imagewidth (px)
332
6.02k
label
class label
3 classes
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
0far-ood
End of preview. Expand in Data Studio

M-Hood Dataset: Out-of-Distribution Evaluation Collection

This dataset collection contains out-of-distribution (OOD) image datasets specifically curated for evaluating the robustness of object detection models, particularly those trained to mitigate hallucination on out-of-distribution data.

🎯 Purpose

These datasets are designed to test how well object detection models perform when encountering images that differ from their training distribution. They are particularly useful for:

  • Evaluating model robustness on out-of-distribution data
  • Testing hallucination mitigation techniques
  • Benchmarking domain adaptation capabilities
  • Research on robust object detection

πŸ“Š Dataset Overview

Dataset Images Size Description Domain
far-ood 1,000 278MB Far out-of-distribution images significantly different from training domains General OOD
near-ood-bdd 1,010 337MB Near OOD images related to BDD 100K driving domain Autonomous Driving
near-ood-voc 1,020 318MB Near OOD images related to Pascal VOC object classes General Objects

πŸ“ Dataset Structure

m-hood-dataset/
β”œβ”€β”€ far-ood/
β”‚   β”œβ”€β”€ 8a2b026a6c3d5ee2.jpg
β”‚   β”œβ”€β”€ 5ec941c27b5a6c2f.jpg
β”‚   └── ... (1,000 images)
β”œβ”€β”€ near-ood-bdd/
β”‚   β”œβ”€β”€ [image files]
β”‚   └── ... (1,010 images)
└── near-ood-voc/
    β”œβ”€β”€ [image files]
    └── ... (1,020 images)

πŸ” Dataset Details

Far-OOD Dataset

  • Images: 1,000 high-quality images
  • Size: 278MB
  • Characteristics: Images significantly different from typical object detection training domains
  • Use Case: Testing extreme out-of-distribution robustness

Near-OOD-BDD Dataset

  • Images: 1,010 high-quality images
  • Size: 337MB
  • Domain: Related to autonomous driving (BDD 100K-adjacent)
  • Characteristics: Images similar to but distinct from BDD 100K training distribution
  • Use Case: Testing domain shift robustness in autonomous driving scenarios

Near-OOD-VOC Dataset

  • Images: 1,020 high-quality images
  • Size: 318MB
  • Domain: Related to Pascal VOC object classes
  • Characteristics: Images similar to but distinct from Pascal VOC training distribution
  • Use Case: Testing domain shift robustness for general object detection

πŸš€ Usage

Loading with Hugging Face Datasets

from datasets import load_dataset

# Load the entire dataset collection
dataset = load_dataset("HugoHE/m-hood-dataset")

# Access individual subsets
far_ood = dataset["far-ood"]
near_ood_bdd = dataset["near-ood-bdd"] 
near_ood_voc = dataset["near-ood-voc"]

Direct Download

You can also download specific subsets directly:

from huggingface_hub import snapshot_download

# Download specific dataset
snapshot_download(
    repo_id="HugoHE/m-hood-dataset",
    repo_type="dataset",
    local_dir="./datasets",
    allow_patterns="far-ood/*"  # or "near-ood-bdd/*" or "near-ood-voc/*"
)

Evaluation Example

from ultralytics import YOLO
import os
from PIL import Image

# Load your trained model
model = YOLO('path/to/your/model.pt')

# Evaluate on far-ood dataset
far_ood_dir = "path/to/far-ood"
results = []

for img_file in os.listdir(far_ood_dir):
    if img_file.endswith('.jpg'):
        img_path = os.path.join(far_ood_dir, img_file)
        result = model(img_path)
        results.append(result)

# Analyze results for hallucination/false positives

πŸ”¬ Research Applications

This dataset collection is particularly valuable for research in:

  • Out-of-distribution detection
  • Hallucination mitigation in object detection
  • Domain adaptation and transfer learning
  • Robust computer vision systems
  • Autonomous driving perception robustness
  • General object detection robustness

πŸ“ˆ Evaluation Metrics

When using these datasets for evaluation, consider these metrics:

  • False Positive Rate (FPR): Rate of hallucinated detections
  • Confidence Calibration: How well confidence scores reflect actual accuracy
  • Detection Consistency: Consistency of detections across similar OOD images
  • Domain Shift Sensitivity: Performance degradation compared to in-distribution data

🎯 Related Models

This dataset collection is designed to work with the M-Hood model collection available at:

  • Repository: HugoHE/m-hood
  • Models: YOLOv10 and Faster R-CNN variants trained on BDD 100K, Pascal VOC, and KITTI
  • Fine-tuned variants: Specifically trained to mitigate hallucination on OOD data

πŸ“„ Citation

If you use this dataset collection in your research, please cite:

@dataset{mhood_ood_dataset,
  title={M-Hood Dataset: Out-of-Distribution Evaluation Collection for Object Detection},
  author={[Your Name]},
  year={2025},
  howpublished={\url{https://huggingface.co/datasets/HugoHE/m-hood-dataset}}
}

πŸ“œ License

This dataset collection is released under the MIT License.

🏷️ Keywords

Out-of-Distribution, OOD, Object Detection, Computer Vision, Robustness Evaluation, Hallucination Mitigation, BDD 100K, Pascal VOC, Domain Adaptation, Model Evaluation.

Downloads last month
827