SwathiManikya commited on
Commit
feae76c
·
verified ·
1 Parent(s): bef06a1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +21 -0
README.md CHANGED
@@ -128,6 +128,27 @@ rmse = mean_squared_error(y_test, preds, squared=False)
128
  print(f"RMSE: {rmse}")
129
  ```
130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
131
  ---
132
 
133
  ### Loading HLO Graph Features
 
128
  print(f"RMSE: {rmse}")
129
  ```
130
 
131
+
132
+ ---
133
+
134
+ ## Example Notebooks
135
+ ### 🚀 Interactive Baseline: XGBoost for Resource Estimation
136
+
137
+ We provide a sample baseline implementation using **XGBoost** to demonstrate how to perform resource estimation (e.g., predicting `fit_time`) using the dataset's metadata.
138
+
139
+ You can interactively explore and run this notebook on Google Colab:
140
+
141
+ [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://huggingface.co/datasets/ICICLE-AI/ResourceEstimation_HLOGenCNN/blob/main/Baseline_XGBoost_Resource_Estimation.ipynb)
142
+ **Baseline_XGBoost_Resource_Estimation.ipynb**
143
+
144
+ This notebook covers:
145
+ - Loading and preprocessing metadata from `dataset-new.csv`
146
+ - Training an XGBoost regressor to predict training time
147
+ - Evaluating model performance (e.g., RMSE)
148
+ - Guidance for extending to advanced models (e.g., incorporating HLO graph features)
149
+
150
+ > ⚡ **Note:** Make sure to adjust paths if cloning the dataset locally or integrating with Hugging Face `datasets` API.
151
+
152
  ---
153
 
154
  ### Loading HLO Graph Features