Datasets:
IIC
/

Modalities:
Text
Formats:
parquet
Languages:
Spanish
Size:
< 1K
DOI:
Libraries:
Datasets
pandas
License:
RagQuAS / README.md
gonzalo-santamaria-iic's picture
Upload dataset
cf03c70 verified
metadata
language:
  - es
license:
  - cc-by-nc-sa-4.0
multilinguality:
  - monolingual
task_categories:
  - question-answering
  - text-retrieval
task_ids:
  - document-retrieval
  - extractive-qa
pretty_name: RAGMiscContextual
tags:
  - spanish
configs:
  - config_name: default
    data_files:
      - split: test
        path: data/test-*
dataset_info:
  features:
    - name: topic
      dtype: string
    - name: answer
      dtype: string
    - name: question
      dtype: string
    - name: variant
      dtype: string
    - name: context_1
      dtype: string
    - name: context_2
      dtype: string
    - name: context_3
      dtype: string
    - name: context_4
      dtype: string
    - name: context_5
      dtype: string
    - name: link_1
      dtype: string
    - name: link_2
      dtype: string
    - name: link_3
      dtype: string
    - name: link_4
      dtype: string
    - name: link_5
      dtype: string
    - name: text_1
      dtype: string
    - name: text_2
      dtype: string
    - name: text_3
      dtype: string
    - name: text_4
      dtype: string
    - name: text_5
      dtype: string
  splits:
    - name: test
      num_bytes: 6905998
      num_examples: 201
  download_size: 1015578
  dataset_size: 6905998

Retrieval-Augmented-Generation and Queston-Answering in Spanish (RagQuAS) Dataset

Table of Contents

Dataset Description

Dataset Summary

RagQuAS es un dataset de alta calidad con ejemplos en una gran cantidad de dominios: Hobbies, Lingüística, Mascotas, Salud, astronomía, atención al cliente, coches, cotidiano, documentación, energía, esquí, estafas, gastronomía, hobbies, idiomas, juegos, lenguaje, manicura, música, patinaje, primeros auxilios, receta, reciclaje, reclamaciones, seguros, tenis, transporte, turismo, veterinaria, viajes, yoga.

Supported Tasks and Leaderboards

Está diseñado para evaluar un sistema de RAG al completo.

Languages

Castellano (BCP-47 es).

Dataset Structure

Data Instances

Las instancias de este dataset tienen la siguiente estructura:

topic answer question variant context_1 context_2 context_3 context_4 context_5 link_1 link_2 link_3 link_4 link_5 text_1 text_3 text_4 text_5
reclamaciones La opción más fácil y eficaz para reclamar una indemnización por retraso de vuelo en Europa es... ¿Cuál es la forma más fácil de reclamar cuando un vuelo que sale de España se ha retrasado? question_1 #1. Airhelp. La empresa... En AirHelp hemos ayudado a más de... MYFLYRIGHT, expertos en derechos de los viajero... https://www.businessinsider.es/mejores-paginas-reclamar-vuelo-cancelado-retrasado-804901 https://www.airhelp.com/es/retrasos-de-vuelos/ https://myflyright.com/es/servicios/vuelo-retrasado/ 5 páginas donde poder reclamar... Indemnización retraso vuelo. Navegación...

Data Fields

  • topic: el dominio sobre el que trata el ejemplo.

  • question: pregunta sobre los documentos.

  • variant: un indicador de la variante de la pregunta. Cuando dos respuestas "answer" son iguales, quiere decir que ambas filas en el corpus representan la misma consulta, pero formulada con una naturaleza diferente.

  • answer: respuesta del sistema a cualquiera de las variantes.

  • context_i: contexto del documento i que se ha utilizado para responder a la pregunta en cualquiera de las variantes.

  • text_i: texto completo del documento i.

  • link_i: enlace del documento i.

Data Splits

El dataset no está dividido en train, validation y test porque está diseñado para evaluar.

train
Input Sentences 201

Dataset Creation

Curation Rationale

Los sistemas de RAG son una estructura compleja que involucran la colaboración de varios modelos de inteligencia artificial. Contar con datasets que evaluan dichos sistemas en conjunto es muy valioso a la hora de medir la eficacia en su conjunto.

Source Data

Los datos se crearon a partir de texto simple extraído de la web, con información de los distintos dominios.

Initial Data Collection and Normalization

Para la recolección de los datos se hizo una selección de los textos a partir los dominios elegidos, a los que posteriormente se diseñaron una serie de preguntas, con diferentes variantes, y se seleccionaron los contextos con la información relevante para responder a cada pregunta.

Who are the source language producers?

Todo el corpus ha sido generado y revisado por humanos.

Annotations

La guía de anotación consistió en generar pares de pregunta-respuesta dado un documento y encontrar la información relevante dentro de ellos para obtener los contextos.

Annotation process

La metodología de corpus ha consistido en el acuerdo y diseño de las preguntas a realizar sobre los datos y la resolución de dudas.

Who are the annotators?

Corpus realizados de forma manual por dos lingüistas computacionales. Las respuestas han sido escritas por cada anotador.

Personal and Sensitive Information

El dataset está libre de información personal y sensible.

Considerations for Using the Data

Social Impact of Dataset

Crear corpus de calidad en castellano es de vital importancia si queremos que la inteligencia artificial de dicho idioma esté a la altura del inglés. La donación de corpus de alta calidad con tareas y dominios variados es lo más relevante a la hora de lograr este objetivo.

Discussion of Biases

No se ha hecho un análisis de sesgo, por lo que pueden existir algunos sesgos a causa del origen del que provienen los contextos seleccionados.

Other Known Limitations

[N/A]

Additional Information

Dataset Curators

Instituto de Ingeniería del Conocimiento (IIC).

Licensing Information

Este dataset está bajo la licencia de uso no comercial CC BY-NC-SA 4.0.

Citation Information

@misc {Instituto de Ingeniería del Conocimiento (IIC),
    author       = { {Instituto de Ingeniería del Conocimiento} },
    title        = { Retrieval-Augmented-Generation and Queston-Answering in Spanish (RagQuAS) Dataset },
    year         = 2024,
    url          = { https://huggingface.co/datasets/IIC/RagQuAS },
    doi          = { 10.57967/hf/2044 },
    publisher    = { Hugging Face }
}

Contributions

Gracias a @mariagrandury por darnos la oportunidad de participar en la creación de un corpus de instrucciones en castellano y lenguas cooficiales para potenciar los modelos de inteligencia artificial en estos idiomas tan ricos, variados y de tanta relevancia.