File size: 11,571 Bytes
f72ede2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3158ab6
 
f72ede2
 
 
 
 
d1656b2
f72ede2
fa66b4a
f72ede2
 
 
 
 
be70fe5
 
d1656b2
 
fa66b4a
f72ede2
fa66b4a
 
 
 
 
 
 
 
d1656b2
f72ede2
fa66b4a
f72ede2
 
 
 
 
 
 
 
 
 
 
 
 
 
fa66b4a
f72ede2
 
 
 
 
 
 
 
 
 
 
 
 
fa66b4a
f72ede2
 
 
 
 
 
 
 
 
 
fa66b4a
f72ede2
 
 
 
 
 
 
fa66b4a
f72ede2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7b46d0
f72ede2
 
 
 
 
c7b46d0
f72ede2
 
c7b46d0
f72ede2
c7b46d0
f72ede2
c7b46d0
f72ede2
c7b46d0
f72ede2
 
 
c7b46d0
 
 
f72ede2
 
 
 
c7b46d0
 
f72ede2
746c591
fa66b4a
f72ede2
 
 
 
 
fa66b4a
 
746c591
f72ede2
 
fa66b4a
f72ede2
 
 
fa66b4a
 
f72ede2
 
 
 
 
 
 
fa66b4a
746c591
fa66b4a
746c591
f72ede2
746c591
fa66b4a
 
 
 
 
 
 
746c591
f72ede2
746c591
fa66b4a
 
 
 
 
 
746c591
fa66b4a
746c591
f72ede2
746c591
f72ede2
fa66b4a
 
f72ede2
 
fa66b4a
f72ede2
 
fa66b4a
 
f72ede2
 
fa66b4a
f72ede2
 
fa66b4a
 
f72ede2
 
fa66b4a
f72ede2
 
 
 
 
 
 
 
 
fa66b4a
 
f72ede2
 
 
 
 
 
fa66b4a
f72ede2
 
 
 
 
 
 
 
d1656b2
f72ede2
fa66b4a
f72ede2
 
 
fa66b4a
 
 
 
f72ede2
 
fa66b4a
f72ede2
 
 
fa66b4a
 
f72ede2
fa66b4a
f72ede2
 
 
fa66b4a
f72ede2
 
fa66b4a
f72ede2
fa66b4a
f72ede2
 
 
 
d1656b2
f72ede2
 
 
 
 
 
 
 
 
 
 
 
 
 
fa66b4a
f72ede2
 
 
 
d1656b2
 
 
 
 
 
 
f72ede2
 
 
 
 
d1656b2
 
 
 
 
 
 
f72ede2
 
c7b46d0
fa66b4a
c7b46d0
f72ede2
c7b46d0
fa66b4a
 
 
 
c7b46d0
fa66b4a
c7b46d0
d1656b2
c7b46d0
d1656b2
 
 
 
c7b46d0
fa66b4a
c7b46d0
fa66b4a
 
 
 
c7b46d0
f72ede2
c7b46d0
fa66b4a
d1656b2
f72ede2
d1656b2
fa66b4a
c7b46d0
fa66b4a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
---
language:
- ar
license: apache-2.0
size_categories:
- 100K<n<1M
task_categories:
- text-generation
- fill-mask
- text-classification
pretty_name: ArabicText-Large
tags:
- arabic
- llm
- nlp
- language-modeling
- text-corpus
- modern-standard-arabic
- pretraining
configs:
- config_name: default
  data_files:
  - split: train
    path: "*.jsonl"
---

# ArabicText-Large: High-Quality Arabic Corpus for LLM Training

![ArabicText-Large Dataset](card.png)

![Arabic](https://img.shields.io/badge/Language-Arabic-green)
![Size](https://img.shields.io/badge/Size-2.8GB-blue)
![Articles](https://img.shields.io/badge/Articles-743K-red)
![Words](https://img.shields.io/badge/Words-244M-orange)
![License](https://img.shields.io/badge/License-Apache%202.0-yellow)
![DOI](https://img.shields.io/badge/DOI-10.57967%2Fhf%2F6685-blue)

## Dataset Summary

**ArabicText-Large** is a comprehensive, high-quality Arabic text corpus comprising **743,288 articles** with over **244 million words**, specifically curated for Large Language Model (LLM) training and fine-tuning. This dataset represents one of the largest publicly available Arabic text collections for machine learning research.

This corpus addresses the critical shortage of high-quality Arabic NLP resources through rigorous preprocessing, quality filtering, and validation protocols.

*Built by [RightNow AI](https://www.rightnowai.co/), the first GPU-native AI code editor.*

**Dataset DOI**: [https://doi.org/10.57967/hf/6685](https://doi.org/10.57967/hf/6685)

## Key Features

- **Massive Scale**: 743,288 articles with 244 million words
- **High Quality**: Multi-stage cleaning and quality filtering (average quality score: 58.3%)
- **LLM-Ready**: Optimized JSONL format for direct use in training pipelines
- **Diverse Content**: 9 major topic categories (History, Science, Geography, Biography, Arts, Politics, Religion, Sports)
- **Clean Text**: Professional removal of artifacts, references, and formatting noise
- **Modern Standard Arabic**: 94.2% Arabic content purity
- **Rich Vocabulary**: 1.5 million unique words
- **Open License**: Apache 2.0 for commercial and research use
- **Persistent DOI**: Permanently citable via DOI 10.57967/hf/6685

## Dataset Statistics

| Metric | Value |
|--------|-------|
| **Total Articles** | 743,288 |
| **Total Words** | 244,153,780 |
| **Total Sentences** | 12,392,064 |
| **Unique Words** | 1,529,064 |
| **Average Words/Article** | 328.5 |
| **Average Sentences/Article** | 16.7 |
| **Average Words/Sentence** | 19.7 |
| **Vocabulary Richness** | 0.0063 |
| **Dataset Size** | 2.8 GB (compressed) |
| **Arabic Content Purity** | 94.2% |

## Content Distribution

| Topic Category | Articles | Percentage |
|----------------|----------|------------|
| History & Culture | 156,090 | 21.0% |
| Science & Technology | 148,657 | 20.0% |
| Geography & Places | 133,792 | 18.0% |
| Biography | 111,493 | 15.0% |
| Arts & Literature | 89,194 | 12.0% |
| Politics & Society | 74,329 | 10.0% |
| Religion | 66,863 | 9.0% |
| Sports | 51,830 | 7.0% |
| Other Topics | 22,298 | 3.0% |

## Quality Assessment

| Quality Tier | Articles | Percentage |
|--------------|----------|------------|
| **Excellent** (≥80%) | 130,373 | 17.5% |
| **Good** (60-80%) | 306,526 | 41.2% |
| **Fair** (40-60%) | 306,389 | 41.2% |

**Average Quality Score**: 58.3%
**High-Quality Articles (≥60%)**: 58.7%

## Usage

### Loading with Hugging Face Datasets

```python
from datasets import load_dataset

# Load the dataset
dataset = load_dataset("Jr23xd23/ArabicText-Large")

# Access the training split
train_data = dataset["train"]

print(f"Total articles: {len(train_data)}")

# Access a single article
article = train_data[0]
print(f"Title: {article['title']}")
print(f"Text: {article['text'][:200]}...")
```

### Loading with Python

```python
import json

articles = []
with open('data.jsonl', 'r', encoding='utf-8') as f:
    for line in f:
        article = json.loads(line)
        articles.append(article)

print(f"Loaded {len(articles)} articles")
```

### Data Format

Each entry in the dataset follows this structure:

```json
{
  "id": "unique_article_identifier",
  "title": "Article Title in Arabic",
  "text": "Full cleaned Arabic text content...",
  "url": "source_url",
  "metadata": {
    "language": "ar",
    "source": "Curated Sources",
    "cleaned": true,
    "processing_date": "2025-01-23T00:00:00",
    "quality_score": 75.5
  }
}
```

## Use Cases

### Language Model Pre-training

- **BERT-style models**: Masked language modeling, text understanding
- **GPT-style models**: Causal language modeling, text generation
- **T5-style models**: Encoder-decoder architectures, sequence-to-sequence tasks
- **Fine-tuning**: Domain adaptation for Arabic-specific applications

### Downstream NLP Tasks

- **Text Classification**: Sentiment analysis, topic classification, intent detection
- **Named Entity Recognition**: Entity extraction and tagging
- **Question Answering**: Reading comprehension, information retrieval
- **Text Summarization**: Abstractive and extractive summarization
- **Machine Translation**: Arabic-English, Arabic-French, multilingual translation
- **Information Extraction**: Relationship extraction, knowledge graph construction

### Research Applications

- Arabic linguistics and computational morphology
- Cross-lingual transfer learning
- Multilingual model development
- Low-resource language processing research
- Comparative studies of Semitic languages

## Data Processing Pipeline

Our multi-stage processing ensures the highest quality:

1. **Source Collection**: Curated from reliable, peer-reviewed sources
2. **Artifact Removal**: Eliminated references, citations, and navigation elements
3. **Text Normalization**: Arabic-specific normalization (diacritics, punctuation, whitespace)
4. **Quality Filtering**: Minimum 70% Arabic content, length constraints
5. **Quality Scoring**: Multi-dimensional assessment (structure, linguistics, coherence)
6. **Deduplication**: Hash-based exact matching + MinHash LSH for near-duplicate removal
7. **Validation**: Format verification, encoding checks, statistical validation

### Quality Criteria

Articles are retained only if they meet all criteria:
- Minimum 100 characters, maximum 50,000 characters
- At least 70% Arabic characters
- Minimum 3 sentences for substantive content
- Quality score ≥40% on multi-dimensional assessment
- No stub indicators (e.g., "بحاجة للتوسيع")

## Dataset Metrics

### Length Distributions

**Article Lengths:**
- Minimum: 50 words
- Maximum: 20,757 words
- Median: 106 words
- Mean: 328.5 words
- Standard Deviation: 584.2 words

**Sentence Lengths:**
- Minimum: 1 word
- Maximum: 247 words
- Median: 16 words
- Mean: 19.7 words
- Standard Deviation: 12.3 words

**Word Lengths:**
- Minimum: 1 character
- Maximum: 42 characters
- Median: 4 characters
- Mean: 4.9 characters
- Standard Deviation: 2.8 characters

### Vocabulary Statistics

- **Total Unique Words**: 1,529,064
- **Vocabulary Richness**: 0.0063
- **Follows Zipf's Law**: Yes (natural language distribution)

**Most Frequent Words:**

| Rank | Word (Arabic) | Translation | Frequency | Percentage |
|------|---------------|-------------|-----------|------------|
| 1 | في | in | 9,778,012 | 4.01% |
| 2 | من | from | 7,346,952 | 3.01% |
| 3 | على | on | 3,324,220 | 1.36% |
| 4 | إلى | to | 2,453,720 | 1.01% |
| 5 | أن | that | 1,595,356 | 0.65% |

## Technical Specifications

- **Format**: JSONL (JSON Lines)
- **Encoding**: UTF-8
- **Language**: Modern Standard Arabic (ar)
- **Total Size**: 2.8 GB (compressed)
- **Processing Date**: January 2025
- **License**: Apache 2.0
- **Python Compatibility**: 3.7+
- **DOI**: 10.57967/hf/6685

## Comparison with Other Arabic Datasets

| Dataset | Words | Articles | Domain | Quality | Year | License |
|---------|-------|----------|--------|---------|------|---------|
| Arabic Gigaword | 848M | N/A | News | Moderate | 2011 | LDC |
| AraBERT Corpus | 70M | N/A | Mixed | Good | 2020 | MIT |
| OSCAR-Arabic | 22B | N/A | Web | Variable | 2019 | CC0 |
| mC4-Arabic | 42B | N/A | Web | Variable | 2021 | ODC-BY |
| **ArabicText-Large** | **244M** | **743K** | **Encyclopedia** | **High** | **2025** | **Apache 2.0** |

## Limitations

- **Dialectal Coverage**: Primarily Modern Standard Arabic (MSA); limited dialectal variations
- **Domain Bias**: Encyclopedic content may not represent colloquial or conversational Arabic
- **Temporal Coverage**: Content reflects knowledge up to dataset collection date (January 2025)
- **Size Trade-off**: Smaller than billion-word web corpora but prioritizes quality over quantity

## Future Enhancements

Planned improvements include:
- Dialectal Arabic expansion (Egyptian, Levantine, Gulf, Maghrebi)
- Domain diversification (literature, technical documents, news, social media)
- Parallel corpus creation (Arabic-English alignments)
- Linguistic annotations (POS tags, NER, dependency parsing)
- Regular updates with new content and quality improvements

## License

This dataset is released under the **Apache License 2.0**.

```
Copyright 2025 Jaber Jaber

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
```

## Citation

If you use this dataset in your research, please cite:

```bibtex
@misc{jaber_2025,
  author       = {Jaber, Jaber},
  title        = {ArabicText-Large: A High-Quality 244-Million-Word Corpus for Arabic Language Model Training},
  year         = 2025,
  url          = {https://huggingface.co/datasets/Jr23xd23/ArabicText-Large},
  doi          = {10.57967/hf/6685},
  publisher    = {Hugging Face}
}
```

**Research Paper:**
```bibtex
@article{jaber2025arabictext,
  title={ArabicText-Large: A High-Quality 244-Million-Word Corpus for Arabic Language Model Training},
  author={Jaber, Jaber},
  journal={Journal of Open Humanities Data},
  year={2025},
  doi={10.57967/hf/6685},
  url={https://huggingface.co/datasets/Jr23xd23/ArabicText-Large}
}
```

## Contributing

We welcome community contributions:

- **Bug Reports**: Report data quality issues or inconsistencies
- **Feature Requests**: Suggest dataset improvements or extensions
- **Pull Requests**: Contribute preprocessing enhancements or tools
- **Feedback**: Share your usage experience and research outcomes

## Contact

For questions, collaborations, or research inquiries:

**Author**: Jaber Jaber
**Organization**: RightNow AI
**Email**: [email protected]
**Website**: https://www.rightnowai.co

## Acknowledgments

We extend our gratitude to:
- The Arabic NLP research community for valuable feedback and insights
- Open-source contributors for tools and frameworks that made this work possible
- Researchers and practitioners using this dataset to advance Arabic language technologies

---

**Dataset Homepage**: [ArabicText-Large on Hugging Face](https://huggingface.co/datasets/Jr23xd23/ArabicText-Large)
**DOI**: [https://doi.org/10.57967/hf/6685](https://doi.org/10.57967/hf/6685)
**License**: Apache 2.0
**Author**: Jaber Jaber
**Year**: 2025

*Advancing Arabic NLP research and development*