|
--- |
|
annotations_creators: |
|
- expert-generated |
|
language_creators: |
|
- expert-generated |
|
language: |
|
- en |
|
license: mit |
|
multilinguality: |
|
- monolingual |
|
size_categories: |
|
- 10K<n<100K |
|
source_datasets: |
|
- original |
|
task_categories: |
|
- text-classification |
|
- text-generation |
|
task_ids: |
|
- sentiment-classification |
|
paperswithcode_id: imdb-movie-reviews |
|
pretty_name: IMDB |
|
dataset_info: |
|
config_name: plain_text |
|
features: |
|
- name: text |
|
dtype: string |
|
- name: label |
|
dtype: |
|
class_label: |
|
names: |
|
'0': neg |
|
'1': pos |
|
splits: |
|
- name: train |
|
num_bytes: 33432823 |
|
num_examples: 25000 |
|
- name: test |
|
num_bytes: 32650685 |
|
num_examples: 25000 |
|
- name: unsupervised |
|
num_bytes: 67106794 |
|
num_examples: 50000 |
|
download_size: 83446840 |
|
dataset_size: 133190302 |
|
configs: |
|
- config_name: plain_text |
|
data_files: |
|
- split: train |
|
path: plain_text/train-* |
|
- split: test |
|
path: plain_text/test-* |
|
- split: unsupervised |
|
path: plain_text/unsupervised-* |
|
default: true |
|
train-eval-index: |
|
- config: plain_text |
|
task: text-classification |
|
task_id: binary_classification |
|
splits: |
|
train_split: train |
|
eval_split: test |
|
col_mapping: |
|
text: text |
|
label: target |
|
metrics: |
|
- type: accuracy |
|
- name: Accuracy |
|
- type: f1 |
|
name: F1 macro |
|
args: |
|
average: macro |
|
- type: f1 |
|
name: F1 micro |
|
args: |
|
average: micro |
|
- type: f1 |
|
name: F1 weighted |
|
args: |
|
average: weighted |
|
- type: precision |
|
name: Precision macro |
|
args: |
|
average: macro |
|
- type: precision |
|
name: Precision micro |
|
args: |
|
average: micro |
|
- type: precision |
|
name: Precision weighted |
|
args: |
|
average: weighted |
|
- type: recall |
|
name: Recall macro |
|
args: |
|
average: macro |
|
- type: recall |
|
name: Recall micro |
|
args: |
|
average: micro |
|
- type: recall |
|
name: Recall weighted |
|
args: |
|
average: weighted |
|
--- |
|
|
|
# Dataset Card for "imdb" |
|
|
|
## Table of Contents |
|
- [Dataset Description](#dataset-description) |
|
- [Dataset Summary](#dataset-summary) |
|
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) |
|
- [Languages](#languages) |
|
- [Dataset Structure](#dataset-structure) |
|
- [Data Instances](#data-instances) |
|
- [Data Fields](#data-fields) |
|
- [Data Splits](#data-splits) |
|
- [Dataset Creation](#dataset-creation) |
|
- [Curation Rationale](#curation-rationale) |
|
- [Source Data](#source-data) |
|
- [Annotations](#annotations) |
|
- [Personal and Sensitive Information](#personal-and-sensitive-information) |
|
- [Considerations for Using the Data](#considerations-for-using-the-data) |
|
- [Social Impact of Dataset](#social-impact-of-dataset) |
|
- [Discussion of Biases](#discussion-of-biases) |
|
- [Other Known Limitations](#other-known-limitations) |
|
- [Additional Information](#additional-information) |
|
- [Dataset Curators](#dataset-curators) |
|
- [Licensing Information](#licensing-information) |
|
- [Citation Information](#citation-information) |
|
- [Contributions](#contributions) |
|
|
|
## Dataset Description |
|
|
|
- **Homepage:** [http://ai.stanford.edu/~amaas/data/sentiment/](http://ai.stanford.edu/~amaas/data/sentiment/) |
|
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) |
|
- **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) |
|
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) |
|
- **Size of downloaded dataset files:** 84.13 MB |
|
- **Size of the generated dataset:** 133.23 MB |
|
- **Total amount of disk used:** 217.35 MB |
|
|
|
### Dataset Summary |
|
|
|
Large Movie Review Dataset. |
|
This is a dataset for binary sentiment classification containing substantially more data than previous benchmark datasets. We provide a set of 25,000 highly polar movie reviews for training, and 25,000 for testing. There is additional unlabeled data for use as well. |
|
|
|
## Dataset Structure |
|
|
|
### Data Instances |
|
|
|
#### plain_text |
|
|
|
- **Size of downloaded dataset files:** 84.13 MB |
|
- **Size of the generated dataset:** 133.23 MB |
|
- **Total amount of disk used:** 217.35 MB |
|
|
|
An example of 'train' looks as follows. |
|
``` |
|
{ |
|
"label": 0, |
|
"text": "Goodbye world2\n" |
|
} |
|
``` |
|
|
|
### Data Fields |
|
|
|
The data fields are the same among all splits. |
|
|
|
#### plain_text |
|
- `text`: a `string` feature. |
|
- `label`: a classification label, with possible values including `neg` (0), `pos` (1). |
|
|
|
### Data Splits |
|
|
|
| name |train|unsupervised|test | |
|
|----------|----:|-----------:|----:| |
|
|plain_text|25000| 50000|25000| |