Dataset Viewer
Auto-converted to Parquet
video_id
stringlengths
7
23
frame_stamp
int64
8
90
xmin
float64
0
0.88
ymin
float64
0
0.73
xmax
float64
0.14
1
ymax
float64
0.35
1
action_id
int64
1
80
person_id
int64
1
7
SE4HsMi3KoU_116
40
0.268
0.054
0.642
0.977
12
1
SE4HsMi3KoU_116
40
0.268
0.054
0.642
0.977
17
1
SE4HsMi3KoU_116
40
0.268
0.054
0.642
0.977
79
1
SE4HsMi3KoU_116
40
0.268
0.054
0.642
0.977
36
1
SE4HsMi3KoU_032
52
0.286
0.102
0.724
0.988
12
1
SE4HsMi3KoU_032
52
0.286
0.102
0.724
0.988
17
1
SE4HsMi3KoU_032
52
0.286
0.102
0.724
0.988
79
1
SE4HsMi3KoU_453
52
0.228
0.002
0.808
0.944
12
1
SE4HsMi3KoU_453
52
0.228
0.002
0.808
0.944
17
1
SE4HsMi3KoU_325
52
0.337
0.06
0.669
0.983
12
1
SE4HsMi3KoU_325
52
0.337
0.06
0.669
0.983
17
1
SE4HsMi3KoU_325
52
0.337
0.06
0.669
0.983
29
1
SE4HsMi3KoU_035
52
0.294
0.104
0.715
0.988
12
1
SE4HsMi3KoU_035
52
0.294
0.104
0.715
0.988
17
1
SE4HsMi3KoU_035
52
0.294
0.104
0.715
0.988
79
1
SE4HsMi3KoU_454
52
0.198
0.004
0.774
0.723
12
1
SE4HsMi3KoU_454
52
0.198
0.004
0.774
0.723
17
1
SE4HsMi3KoU_454
52
0.198
0.004
0.774
0.723
79
1
SE4HsMi3KoU_049
52
0.281
0.127
0.684
0.988
12
1
SE4HsMi3KoU_049
52
0.281
0.127
0.684
0.988
17
1
SE4HsMi3KoU_049
52
0.281
0.127
0.684
0.988
79
1
SE4HsMi3KoU_098
52
0.307
0.15
0.683
0.992
17
1
SE4HsMi3KoU_098
52
0.307
0.15
0.683
0.992
12
1
SE4HsMi3KoU_111
52
0.227
0.008
0.802
0.988
12
1
SE4HsMi3KoU_111
52
0.227
0.008
0.802
0.988
17
1
SE4HsMi3KoU_111
52
0.227
0.008
0.802
0.988
79
1
SE4HsMi3KoU_163
52
0.251
0.092
0.678
0.99
12
1
SE4HsMi3KoU_163
52
0.251
0.092
0.678
0.99
17
1
SE4HsMi3KoU_163
52
0.251
0.092
0.678
0.99
79
1
SE4HsMi3KoU_047
52
0.239
0.121
0.602
0.99
12
1
SE4HsMi3KoU_047
52
0.239
0.121
0.602
0.99
17
1
SE4HsMi3KoU_047
52
0.239
0.121
0.602
0.99
79
1
SE4HsMi3KoU_426
52
0.311
0.162
0.732
0.99
12
1
SE4HsMi3KoU_426
52
0.311
0.162
0.732
0.99
17
1
SE4HsMi3KoU_426
52
0.311
0.162
0.732
0.99
79
1
SE4HsMi3KoU_381
52
0.149
0.277
0.536
0.96
12
1
SE4HsMi3KoU_381
52
0.149
0.277
0.536
0.96
17
1
SE4HsMi3KoU_381
52
0.149
0.277
0.536
0.96
47
1
SE4HsMi3KoU_350
52
0.323
0.115
0.719
0.99
12
1
SE4HsMi3KoU_350
52
0.323
0.115
0.719
0.99
17
1
SE4HsMi3KoU_350
52
0.323
0.115
0.719
0.99
29
1
SE4HsMi3KoU_350
52
0.323
0.115
0.719
0.99
36
1
SE4HsMi3KoU_096
52
0.313
0.173
0.696
0.988
12
1
SE4HsMi3KoU_096
52
0.313
0.173
0.696
0.988
17
1
SE4HsMi3KoU_421
52
0.331
0.115
0.684
0.99
12
1
SE4HsMi3KoU_421
52
0.331
0.115
0.684
0.99
17
1
SE4HsMi3KoU_421
52
0.331
0.115
0.684
0.99
79
1
SE4HsMi3KoU_091
52
0.316
0.115
0.713
0.988
12
1
SE4HsMi3KoU_091
52
0.316
0.115
0.713
0.988
17
1
SE4HsMi3KoU_091
52
0.316
0.115
0.713
0.988
79
1
SE4HsMi3KoU_118
47
0.235
0.021
0.858
0.979
12
1
SE4HsMi3KoU_118
47
0.235
0.021
0.858
0.979
17
1
SE4HsMi3KoU_118
47
0.235
0.021
0.858
0.979
79
1
SE4HsMi3KoU_273
52
0.169
0.096
0.659
0.981
12
1
SE4HsMi3KoU_273
52
0.169
0.096
0.659
0.981
17
1
SE4HsMi3KoU_273
52
0.169
0.096
0.659
0.981
79
1
SE4HsMi3KoU_362
52
0.268
0.123
0.701
0.99
12
1
SE4HsMi3KoU_362
52
0.268
0.123
0.701
0.99
17
1
SE4HsMi3KoU_362
52
0.268
0.123
0.701
0.99
79
1
SE4HsMi3KoU_414
52
0.297
0.131
0.655
0.988
79
1
SE4HsMi3KoU_414
52
0.297
0.131
0.655
0.988
12
1
SE4HsMi3KoU_414
52
0.297
0.131
0.655
0.988
17
1
SE4HsMi3KoU_414
52
0.297
0.131
0.655
0.988
79
1
SE4HsMi3KoU_009
50
0.191
0.038
0.765
0.994
12
1
SE4HsMi3KoU_009
50
0.191
0.038
0.765
0.994
17
1
SE4HsMi3KoU_009
50
0.191
0.038
0.765
0.994
79
1
SE4HsMi3KoU_151
52
0.326
0.108
0.712
0.988
12
1
SE4HsMi3KoU_151
52
0.326
0.108
0.712
0.988
17
1
SE4HsMi3KoU_151
52
0.326
0.108
0.712
0.988
79
1
SE4HsMi3KoU_319
52
0.288
0.094
0.718
0.992
12
1
SE4HsMi3KoU_319
52
0.288
0.094
0.718
0.992
17
1
SE4HsMi3KoU_319
52
0.288
0.094
0.718
0.992
79
1
SE4HsMi3KoU_290
52
0.314
0.14
0.701
0.99
12
1
SE4HsMi3KoU_290
52
0.314
0.14
0.701
0.99
17
1
SE4HsMi3KoU_187
52
0.295
0.085
0.696
0.981
12
1
SE4HsMi3KoU_187
52
0.295
0.085
0.696
0.981
17
1
SE4HsMi3KoU_187
52
0.295
0.085
0.696
0.981
79
1
SE4HsMi3KoU_241
52
0.18
0.177
0.691
0.99
12
1
SE4HsMi3KoU_241
52
0.18
0.177
0.691
0.99
17
1
SE4HsMi3KoU_241
52
0.18
0.177
0.691
0.99
79
1
SE4HsMi3KoU_365
52
0.283
0.104
0.699
0.99
12
1
SE4HsMi3KoU_365
52
0.283
0.104
0.699
0.99
17
1
SE4HsMi3KoU_365
52
0.283
0.104
0.699
0.99
79
1
SE4HsMi3KoU_413
52
0.302
0.108
0.697
0.99
12
1
SE4HsMi3KoU_413
52
0.302
0.108
0.697
0.99
17
1
SE4HsMi3KoU_072
52
0.323
0.15
0.67
0.99
12
1
SE4HsMi3KoU_072
52
0.323
0.15
0.67
0.99
17
1
SE4HsMi3KoU_317
52
0.183
0.1
0.71
0.985
12
1
SE4HsMi3KoU_317
52
0.183
0.1
0.71
0.985
17
1
SE4HsMi3KoU_317
52
0.183
0.1
0.71
0.985
79
1
SE4HsMi3KoU_461
42
0.119
0.102
0.614
0.988
12
1
SE4HsMi3KoU_461
42
0.119
0.102
0.614
0.988
17
1
SE4HsMi3KoU_461
42
0.119
0.102
0.614
0.988
79
1
SE4HsMi3KoU_461
42
0.119
0.102
0.614
0.988
69
1
SE4HsMi3KoU_158
52
0.304
0.108
0.677
0.981
12
1
SE4HsMi3KoU_158
52
0.304
0.108
0.677
0.981
17
1
SE4HsMi3KoU_189
52
0.315
0.11
0.697
0.99
12
1
SE4HsMi3KoU_189
52
0.315
0.11
0.697
0.99
17
1
SE4HsMi3KoU_189
52
0.315
0.11
0.697
0.99
79
1
SE4HsMi3KoU_124
52
0.228
0.029
0.706
0.99
12
1
End of preview. Expand in Data Studio

MicroG-HAR-train-ready dataset.

This dataset is converted from the MicroG-4M dataset.

For more information please visit our GitHub.

Datasets formatted in this way can be used directly as input data directories for the PySlowFast_for_HAR framework without additional preprocessing, enabling seamless model training and evaluation.

This dataset follows the organizational format of the AVA dataset. The only difference is that the original CSV header middle_frame_timestamp (the timestamp in seconds from the start of the video) has been replaced with key_frame_stamp, which stores the index of the key frame. The key frame index is defined as the index of the middle frame among all annotated bounding‐box frames for the same person_id within any continuous three‐second (90‐frame) segment.

Folders and Files in Repository

ava Folder:

contains all data files for fine-tuning on PySlowFast_for_HAR.

NOTE: Please unzip the frames.zip file before using.

ava_with_head Folder:

contains same ava files with header.

configs Folder:

contains configuration files for fine-tuning on PySlowFast_for_HAR.

How to use it

Please see DATASET.md.

Downloads last month
124

Models trained or fine-tuned on LEI-QI-233/MicroG-HAR-train-ready