File size: 12,074 Bytes
8540ffd
 
603407f
 
 
 
3817c5e
08abeb7
 
 
c356bec
 
 
 
 
 
 
 
 
 
 
c346ea9
c356bec
c346ea9
 
c356bec
 
 
 
 
 
 
 
 
 
bd2cb53
c356bec
bd2cb53
 
c356bec
 
 
 
 
 
 
 
 
 
83ae88a
c356bec
83ae88a
 
c356bec
 
 
 
 
 
 
 
 
 
71a7b19
c356bec
71a7b19
 
c356bec
 
 
 
 
 
 
 
 
 
5de1acc
c356bec
5de1acc
 
c356bec
 
 
 
 
 
 
 
 
 
00f3006
c356bec
00f3006
 
c356bec
 
 
 
 
 
 
 
 
 
7dc6015
c356bec
7dc6015
 
c356bec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d7980b
c356bec
6d7980b
 
c356bec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d7980b
c346ea9
 
 
 
bd2cb53
 
 
 
83ae88a
 
 
 
71a7b19
 
 
 
5de1acc
 
 
 
00f3006
 
 
 
7dc6015
 
 
 
6d7980b
 
 
 
 
8540ffd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
012cb68
8540ffd
712ba7d
012cb68
9a24dca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
012cb68
8540ffd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
012cb68
 
8540ffd
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
---
license: cc-by-4.0
language:
- en
size_categories:
- 100K<n<1M
pretty_name: Causal3D
tags:
- Causality
- Computer_Vision
dataset_info:
- config_name: hypothetical_scenes_Hypothetic_v2_linear
  features:
  - name: image
    dtype: image
  - name: file_name
    dtype: string
  - name: metadata
    dtype: string
  splits:
  - name: train
    num_bytes: 2137802.16
    num_examples: 14368
  download_size: 1216402
  dataset_size: 2137802.16
- config_name: hypothetical_scenes_Hypothetic_v2_nonlinear
  features:
  - name: image
    dtype: image
  - name: file_name
    dtype: string
  - name: metadata
    dtype: string
  splits:
  - name: train
    num_bytes: 1768656.0
    num_examples: 10000
  download_size: 939321
  dataset_size: 1768656.0
- config_name: hypothetical_scenes_Hypothetic_v3_fully_connected_linear
  features:
  - name: image
    dtype: image
  - name: file_name
    dtype: string
  - name: metadata
    dtype: string
  splits:
  - name: train
    num_bytes: 1355793.0
    num_examples: 10000
  download_size: 617191
  dataset_size: 1355793.0
- config_name: hypothetical_scenes_Hypothetic_v4_linear_full_connected
  features:
  - name: image
    dtype: image
  - name: file_name
    dtype: string
  - name: metadata
    dtype: string
  splits:
  - name: train
    num_bytes: 1658091.5
    num_examples: 10050
  download_size: 915357
  dataset_size: 1658091.5
- config_name: hypothetical_scenes_Hypothetic_v4_linear_v
  features:
  - name: image
    dtype: image
  - name: file_name
    dtype: string
  - name: metadata
    dtype: string
  splits:
  - name: train
    num_bytes: 2012079.0
    num_examples: 10000
  download_size: 907646
  dataset_size: 2012079.0
- config_name: hypothetical_scenes_Hypothetic_v4_nonlinear_v
  features:
  - name: image
    dtype: image
  - name: file_name
    dtype: string
  - name: metadata
    dtype: string
  splits:
  - name: train
    num_bytes: 2786917.0
    num_examples: 10000
  download_size: 1262319
  dataset_size: 2786917.0
- config_name: hypothetical_scenes_Hypothetic_v5_linear
  features:
  - name: image
    dtype: image
  - name: file_name
    dtype: string
  - name: metadata
    dtype: string
  splits:
  - name: train
    num_bytes: 1915161.0
    num_examples: 10000
  download_size: 1048013
  dataset_size: 1915161.0
- config_name: hypothetical_scenes_Hypothetic_v5_linear_full_connected
  features:
  - name: image
    dtype: image
  - name: file_name
    dtype: string
  - name: metadata
    dtype: string
  splits:
  - name: train
    num_bytes: 1955921
    num_examples: 10000
  download_size: 0
  dataset_size: 1955921
- config_name: hypothetical_scenes_rendered_h3_linear_128P
  features:
  - name: image
    dtype: image
  - name: file_name
    dtype: string
  - name: metadata
    dtype: string
  splits:
  - name: train
    num_bytes: 5425498
    num_examples: 15000
  download_size: 0
  dataset_size: 5425498
- config_name: hypothetical_scenes_rendered_h3_nonlinear_128P
  features:
  - name: image
    dtype: image
  - name: file_name
    dtype: string
  - name: metadata
    dtype: string
  splits:
  - name: train
    num_bytes: 3852500
    num_examples: 10223
  download_size: 0
  dataset_size: 3852500
- config_name: hypothetical_scenes_rendered_h5_nonlinear
  features:
  - name: image
    dtype: image
  - name: file_name
    dtype: string
  - name: metadata
    dtype: string
  splits:
  - name: train
    num_bytes: 5459126
    num_examples: 10360
  download_size: 0
  dataset_size: 5459126
- config_name: real_scenes_Real_Parabola
  features:
  - name: image
    dtype: image
  - name: file_name
    dtype: string
  - name: metadata
    dtype: string
  splits:
  - name: train
    num_bytes: 1323548
    num_examples: 10000
  download_size: 0
  dataset_size: 1323548
- config_name: real_scenes_Real_magnet_v3
  features:
  - name: image
    dtype: image
  - name: file_name
    dtype: string
  - name: metadata
    dtype: string
  splits:
  - name: train
    num_bytes: 72702.0
    num_examples: 481
  download_size: 48333
  dataset_size: 72702.0
- config_name: real_scenes_Real_magnet_v3_5
  features:
  - name: image
    dtype: image
  - name: file_name
    dtype: string
  - name: metadata
    dtype: string
  splits:
  - name: train
    num_bytes: 93977
    num_examples: 1503
  download_size: 0
  dataset_size: 93977
- config_name: real_scenes_Real_parabola_multi_view
  features:
  - name: image
    dtype: image
  - name: file_name
    dtype: string
  - name: metadata
    dtype: string
  splits:
  - name: train
    num_bytes: 0
    num_examples: 0
  download_size: 0
  dataset_size: 0
- config_name: real_scenes_Real_spring_v3_256P
  features:
  - name: image
    dtype: image
  - name: file_name
    dtype: string
  - name: metadata
    dtype: string
  splits:
  - name: train
    num_bytes: 136325
    num_examples: 450
  download_size: 0
  dataset_size: 136325
- config_name: real_scenes_Water_flow_scene_render
  features:
  - name: image
    dtype: image
  - name: file_name
    dtype: string
  - name: metadata
    dtype: string
  splits:
  - name: train
    num_bytes: 2792618
    num_examples: 10000
  download_size: 0
  dataset_size: 2792618
- config_name: real_scenes_convex_len_render_images
  features:
  - name: image
    dtype: image
  - name: file_name
    dtype: string
  - name: metadata
    dtype: string
  splits:
  - name: train
    num_bytes: 72448
    num_examples: 1078
  download_size: 0
  dataset_size: 72448
- config_name: real_scenes_real_pendulum
  features:
  - name: image
    dtype: image
  - name: file_name
    dtype: string
  - name: metadata
    dtype: string
  splits:
  - name: train
    num_bytes: 2925963
    num_examples: 9999
  download_size: 0
  dataset_size: 2925963
- config_name: real_scenes_rendered_magnetic_128
  features:
  - name: image
    dtype: image
  - name: file_name
    dtype: string
  - name: metadata
    dtype: string
  splits:
  - name: train
    num_bytes: 2324526
    num_examples: 8350
  download_size: 0
  dataset_size: 2324526
- config_name: real_scenes_rendered_reflection_128P
  features:
  - name: image
    dtype: image
  - name: file_name
    dtype: string
  - name: metadata
    dtype: string
  splits:
  - name: train
    num_bytes: 2765222
    num_examples: 9995
  download_size: 0
  dataset_size: 2765222
- config_name: real_scenes_seesaw_scene_128P
  features:
  - name: image
    dtype: image
  - name: file_name
    dtype: string
  - name: metadata
    dtype: string
  splits:
  - name: train
    num_bytes: 2275814
    num_examples: 10000
  download_size: 0
  dataset_size: 2275814
- config_name: real_scenes_spring_scene_128P
  features:
  - name: image
    dtype: image
  - name: file_name
    dtype: string
  - name: metadata
    dtype: string
  splits:
  - name: train
    num_bytes: 2547386
    num_examples: 10000
  download_size: 0
  dataset_size: 2547386
configs:
- config_name: hypothetical_scenes_Hypothetic_v2_linear
  data_files:
  - split: train
    path: hypothetical_scenes_Hypothetic_v2_linear/train-*
- config_name: hypothetical_scenes_Hypothetic_v2_nonlinear
  data_files:
  - split: train
    path: hypothetical_scenes_Hypothetic_v2_nonlinear/train-*
- config_name: hypothetical_scenes_Hypothetic_v3_fully_connected_linear
  data_files:
  - split: train
    path: hypothetical_scenes_Hypothetic_v3_fully_connected_linear/train-*
- config_name: hypothetical_scenes_Hypothetic_v4_linear_full_connected
  data_files:
  - split: train
    path: hypothetical_scenes_Hypothetic_v4_linear_full_connected/train-*
- config_name: hypothetical_scenes_Hypothetic_v4_linear_v
  data_files:
  - split: train
    path: hypothetical_scenes_Hypothetic_v4_linear_v/train-*
- config_name: hypothetical_scenes_Hypothetic_v4_nonlinear_v
  data_files:
  - split: train
    path: hypothetical_scenes_Hypothetic_v4_nonlinear_v/train-*
- config_name: hypothetical_scenes_Hypothetic_v5_linear
  data_files:
  - split: train
    path: hypothetical_scenes_Hypothetic_v5_linear/train-*
- config_name: real_scenes_Real_magnet_v3
  data_files:
  - split: train
    path: real_scenes_Real_magnet_v3/train-*
  default: true
---
# 🧠 Causal3D: A Benchmark for Visual Causal Reasoning

**Causal3D** is a comprehensive benchmark designed to evaluate models’ abilities to uncover *latent causal relations* from structured and visual data. This dataset integrates **3D-rendered scenes** with **tabular causal annotations**, providing a unified testbed for advancing *causal discovery*, *causal representation learning*, and *causal reasoning* with **vision-language models (VLMs)** and **large language models (LLMs)**.

---

## 📌 Overview

While recent progress in AI and computer vision has been remarkable, there remains a major gap in evaluating causal reasoning over complex visual inputs. **Causal3D** bridges this gap by providing:

- **19 curated 3D-scene datasets** simulating diverse real-world causal phenomena.
- Paired **tabular causal graphs** and **image observations** across multiple views and backgrounds.
- Benchmarks for evaluating models in both **structured** (tabular) and **unstructured** (image) modalities.

---

## 🧩 Dataset Structure

Each sub-dataset (scene) contains:


- `images/`: Rendered images under different camera views and backgrounds.
- `tabular.csv`: Instance-level annotations including object attributes in causal graph.


## 🖼️ Visual Previews

Below are example images from different Causal3D scenes:

<table>
  <tr>
    <td align="center">
      <img src="https://huggingface.co/datasets/LLDDSS/Causal3D/resolve/main/preview/parabola.png" width="250"/><br/>parabola
    </td>
    <td align="center">
      <img src="https://huggingface.co/datasets/LLDDSS/Causal3D/resolve/main/preview/convex.png" width="250"/><br/>convex
    </td>
  </tr>
  <tr>
    <td align="center">
      <img src="https://huggingface.co/datasets/LLDDSS/Causal3D/resolve/main/preview/magnetic.png" width="200"/><br/>magnetic
    </td>
    <td align="center">
      <img src="https://huggingface.co/datasets/LLDDSS/Causal3D/resolve/main/preview/pendulum.png" width="200"/><br/>pendulum
    </td>
    <td align="center">
      <img src="https://huggingface.co/datasets/LLDDSS/Causal3D/resolve/main/preview/reflection.png" width="200"/><br/>reflection
    </td>
  </tr>
  <tr>
    <td align="center">
      <img src="https://huggingface.co/datasets/LLDDSS/Causal3D/resolve/main/preview/seesaw.png" width="200"/><br/>seesaw
    </td>
    <td align="center">
      <img src="https://huggingface.co/datasets/LLDDSS/Causal3D/resolve/main/preview/spring.png" width="200"/><br/>spring
    </td>
    <td align="center">
      <img src="https://huggingface.co/datasets/LLDDSS/Causal3D/resolve/main/preview/water_flow.png" width="200"/><br/>water_flow
    </td>
  </tr>
</table>

<!-- - `causal_graph.json`: Ground-truth causal structure (as adjacency matrix or graph).
- `view_info.json`: Camera/viewpoint metadata.
- `split.json`: Recommended train/val/test splits for benchmarking. -->

---

## 🎯 Evaluation Tasks

Causal3D supports a range of causal reasoning tasks, including:

- **Causal discovery** from image sequences or tables
- **Intervention prediction** under modified object states or backgrounds
- **Counterfactual reasoning** across views
- **VLM-based causal inference** given multimodal prompts

---

## 📊 Benchmark Results

We evaluate a diverse set of methods:

- **Classical causal discovery**: PC, GES, NOTEARS
- **Causal representation learning**: CausalVAE, ICM-based encoders
- **Vision-Language and Large Language Models**: GPT-4V, Claude-3.5, Gemini-1.5

**Key Findings**:

- As causal structures grow more complex, **model performance drops significantly** without strong prior assumptions.
- A noticeable performance gap exists between models trained on structured data and those applied directly to visual inputs.

---



<!-- ## 🔍 Example Use Case

```python
from causal3d import load_scene_data

scene = "SpringPendulum"
data = load_scene_data(scene, split="train")
images = data["images"]
metadata = data["table"]
graph = data["causal_graph"] -->