File size: 9,277 Bytes
c781e59
 
e914239
 
 
 
a7e0827
e914239
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9e54b2
e914239
 
c781e59
e914239
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c356bec
e914239
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c356bec
e914239
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c356bec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e914239
 
c356bec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e914239
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import datasets
import pandas as pd
import os
from pathlib import Path
from tqdm import tqdm

print("✅ Custom Causal3D loaded: outside Causal3D.py")
_CITATION = """\
@article{liu2025causal3d,
  title={CAUSAL3D: A Comprehensive Benchmark for Causal Learning from Visual Data},
  author={Liu, Disheng and Qiao, Yiran and Liu, Wuche and Lu, Yiren and Zhou, Yunlai and Liang, Tuo and Yin, Yu and Ma, Jing},
  journal={arXiv preprint arXiv:2503.04852},
  year={2025}
}
"""

_DESCRIPTION = """\
Causal3D is a benchmark for evaluating causal reasoning in physical and hypothetical visual scenes. 
It includes both real-world recordings and rendered synthetic scenes demonstrating causal interactions.
"""

_HOMEPAGE = "https://huggingface.co/datasets/LLDDSS/Causal3D"
_LICENSE = "CC-BY-4.0"

class Causal3D(datasets.GeneratorBasedBuilder):
    DEFAULT_CONFIG_NAME = "real_scenes_Water_flow_scene_render"
    BUILDER_CONFIGS = [
        # hypothetical_scenes
        datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v2_linear", version=datasets.Version("1.0.0"), description="Hypothetic_v2_linear scene"),
        datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v2_nonlinear", version=datasets.Version("1.0.0"), description="Hypothetic_v2_nonlinear scene"),
        datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v3_fully_connected_linear", version=datasets.Version("1.0.0"), description="Hypothetic_v3_fully_connected_linear scene"),
        datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v4_linear_full_connected", version=datasets.Version("1.0.0"), description="Hypothetic_v4_linear_full_connected scene"),
        datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v4_linear_v", version=datasets.Version("1.0.0"), description="Hypothetic_v4_linear_v scene"),
        datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v4_nonlinear_v", version=datasets.Version("1.0.0"), description="Hypothetic_v4_nonlinear_v scene"),
        datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v5_linear", version=datasets.Version("1.0.0"), description="Hypothetic_v5_linear scene"),
        datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v5_linear_full_connected", version=datasets.Version("1.0.0"), description="Hypothetic_v5_linear_full_connected scene"),
        datasets.BuilderConfig(name="hypothetical_scenes_rendered_h3_linear_128P", version=datasets.Version("1.0.0"), description="rendered_h3_linear_128P scene"),
        datasets.BuilderConfig(name="hypothetical_scenes_rendered_h3_nonlinear_128P", version=datasets.Version("1.0.0"), description="rendered_h3_nonlinear_128P scene"),
        datasets.BuilderConfig(name="hypothetical_scenes_rendered_h5_nonlinear", version=datasets.Version("1.0.0"), description="rendered_h5_nonlinear scene"),

        # real_scenes
        datasets.BuilderConfig(name="real_scenes_Real_Parabola", version=datasets.Version("1.0.0"), description="Real_Parabola scene"),
        datasets.BuilderConfig(name="real_scenes_Real_magnet_v3", version=datasets.Version("1.0.0"), description="Real_magnet_v3 scene"),
        datasets.BuilderConfig(name="real_scenes_Real_magnet_v3_5", version=datasets.Version("1.0.0"), description="Real_magnet_v3_5 scene"),
        # datasets.BuilderConfig(name="real_scenes_Real_Parabola_multi_view", version=datasets.Version("1.0.0"), description="Real_parabola_multi_view scene"),
        datasets.BuilderConfig(name="real_scenes_Real_spring_v3_256P", version=datasets.Version("1.0.0"), description="Real_spring_v3_256P scene"),
        datasets.BuilderConfig(name="real_scenes_Water_flow_scene_render", version=datasets.Version("1.0.0"), description="Water_flow_scene_render scene"),
        datasets.BuilderConfig(name="real_scenes_convex_len_render_images", version=datasets.Version("1.0.0"), description="convex_len_render_images scene"),
        datasets.BuilderConfig(name="real_scenes_real_pendulum", version=datasets.Version("1.0.0"), description="real_pendulum scene"),
        datasets.BuilderConfig(name="real_scenes_rendered_magnetic_128", version=datasets.Version("1.0.0"), description="rendered_magnetic_128 scene"),
        datasets.BuilderConfig(name="real_scenes_rendered_reflection_128P", version=datasets.Version("1.0.0"), description="rendered_reflection_128P scene"),
        datasets.BuilderConfig(name="real_scenes_seesaw_scene_128P", version=datasets.Version("1.0.0"), description="seesaw_scene_128P scene"),
        datasets.BuilderConfig(name="real_scenes_spring_scene_128P", version=datasets.Version("1.0.0"), description="spring_scene_128P scene"),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features({
                "image": datasets.Image(),
                "file_name": datasets.Value("string"),
                "metadata": datasets.Value("string"),  # optionally replace with structured fields
            }),
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )
    
    def _split_generators(self, dl_manager):
        parts = self.config.name.split("_", 2)
        category = parts[0] + "_" + parts[1]  # real_scenes or hypothetical_scenes

        if category not in ["real_scenes", "hypothetical_scenes"]:
            raise ValueError(f"Invalid category '{category}'. Must be one of ['real_scenes', 'hypothetical_scenes']")

        scene = parts[2]
        data_dir = os.path.join(category, scene)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"data_dir": data_dir},
            )
        ]

    def _generate_examples(self, data_dir):
        def color(text, code):
            return f"\033[{code}m{text}\033[0m"
        
        # Load image paths
        try:
            image_files = {}
            for ext in ("*.png", "*.jpg", "*.jpeg"):
                for img_path in Path(data_dir).rglob(ext):
                    relative_path = str(img_path.relative_to(data_dir))
                    image_files[relative_path] = str(img_path)
            parts = [i.split('/')[0] for i in list(image_files.keys())]
            parts = set(parts)
            if "part_000" not in parts:
               parts= ['']


        except Exception as e:
            print(color(f"Error loading images: {e}", "31"))  # Red
            return
    
        # Find the .csv file
        csv_files = list(Path(data_dir).rglob("*.csv"))
        csv_files = [f for f in Path(data_dir).rglob("*.csv") if not f.name.startswith("._")]
        if not csv_files:
            # print(f"\033[33m[SKIP] No CSV found in {data_dir}, skipping this config.\033[0m")
            pass
        # print(f"\033[33m[INFO] Found CSV: {csv_files}\033[0m")
        csv_path = csv_files[0] if csv_files else None
        df = pd.read_csv(csv_path) if csv_path else None
        image_col_exists = True
        if df is not None and "image" not in df.columns:
            image_col_exists = False
                
        images = df["image"].tolist() if image_col_exists and df is not None else []
        images = [i.split('/')[-1].split('.')[0] for i in images if i.endswith(('.png', '.jpg', '.jpeg'))]

        try:
            # Match CSV rows with image paths
            if df is None:
                for i, j in tqdm(image_files.items(), desc="Processing images", unit="image"):
                    yield i, {
                        "image": j,
                        "file_name": i,
                        "metadata": None,
                    }

            else:
                for idx, row in tqdm(df.iterrows(), total=len(df), desc="Processing rows", unit="row"):
                    fname = row["ID"]
                    raw_record_img_path = images[idx] if images else "" #row["image"] 
                    record_img_name = raw_record_img_path.split('/')[-1]
                    for part in parts:
                        if part == '':
                            record_img_path = record_img_name
                        else:
                            record_img_path = "/".join([part, record_img_name.strip()])
                            if "Water_flow_scene_render" in data_dir:
                                record_img_path = "/".join([part, str(int(record_img_name.strip().split('.')[0]))+".png"])
                        if record_img_path in image_files:
                            # print(color(f"record_img_path: { image_files[record_img_path]}", "34"))  # Blue
                            yield idx, {
                                "image": image_files[record_img_path],
                                "file_name": fname,
                                "metadata": row.to_json(),
                            }
                            break
                            
                        else:
                            yield idx, {
                                # "image": "",
                                "file_name": fname,
                                "metadata": row.to_json(),
                            }
                            break


        except Exception as e:
            print(color(f"Error processing CSV rows: {e}", "31"))