File size: 14,131 Bytes
8540ffd 603407f 3817c5e 08abeb7 c356bec 96e9bf7 c356bec 96e9bf7 c356bec b1d6e49 c356bec b1d6e49 c356bec 9f5d33e c356bec 9f5d33e c356bec 801088e c356bec 801088e c356bec 625eb31 c356bec 625eb31 c356bec b024408 c356bec b024408 c356bec f249cc4 c356bec f249cc4 c356bec b7cb416 c356bec b7cb416 c356bec 0019300 c356bec 0019300 c356bec 9668a7a c356bec 9668a7a c356bec fa3252e c356bec fa3252e c356bec 15113ea c356bec 15113ea c356bec e315d68 c356bec e315d68 c356bec aa7aa7a c356bec aa7aa7a c356bec 57fd864 c356bec 57fd864 c356bec fcdbb6c c356bec fcdbb6c c356bec 1d8a1d6 c356bec 1d8a1d6 c356bec 2793813 c356bec 2793813 c356bec 4e59408 c356bec 4e59408 c356bec 38d7fd1 c356bec 38d7fd1 c356bec 4212eeb c356bec 4212eeb c356bec e30c01c c356bec e30c01c e315d68 96e9bf7 b1d6e49 9f5d33e 801088e 625eb31 b024408 f249cc4 b7cb416 0019300 9668a7a fa3252e 15113ea e315d68 aa7aa7a 57fd864 fcdbb6c 1d8a1d6 2793813 4e59408 38d7fd1 4212eeb e30c01c 8540ffd 012cb68 8540ffd 712ba7d 012cb68 9a24dca 012cb68 8540ffd 012cb68 8540ffd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 |
---
license: cc-by-4.0
language:
- en
size_categories:
- 100K<n<1M
pretty_name: Causal3D
tags:
- Causality
- Computer_Vision
dataset_info:
- config_name: hypothetical_scenes_Hypothetic_v2_linear
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 2137802.16
num_examples: 14368
download_size: 1216402
dataset_size: 2137802.16
- config_name: hypothetical_scenes_Hypothetic_v2_nonlinear
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 1768656.0
num_examples: 10000
download_size: 939321
dataset_size: 1768656.0
- config_name: hypothetical_scenes_Hypothetic_v3_fully_connected_linear
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 1355793.0
num_examples: 10000
download_size: 617191
dataset_size: 1355793.0
- config_name: hypothetical_scenes_Hypothetic_v4_linear_full_connected
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 1658091.5
num_examples: 10050
download_size: 915357
dataset_size: 1658091.5
- config_name: hypothetical_scenes_Hypothetic_v4_linear_v
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 2012079.0
num_examples: 10000
download_size: 907646
dataset_size: 2012079.0
- config_name: hypothetical_scenes_Hypothetic_v4_nonlinear_v
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 2786917.0
num_examples: 10000
download_size: 1262319
dataset_size: 2786917.0
- config_name: hypothetical_scenes_Hypothetic_v5_linear
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 1915161.0
num_examples: 10000
download_size: 1048013
dataset_size: 1915161.0
- config_name: hypothetical_scenes_Hypothetic_v5_linear_full_connected
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 1914621.0
num_examples: 10000
download_size: 1051232
dataset_size: 1914621.0
- config_name: hypothetical_scenes_rendered_h3_linear_128P
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 5363548.0
num_examples: 15000
download_size: 2476630
dataset_size: 5363548.0
- config_name: hypothetical_scenes_rendered_h3_nonlinear_128P
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 3810279.01
num_examples: 10223
download_size: 1726102
dataset_size: 3810279.01
- config_name: hypothetical_scenes_rendered_h5_nonlinear
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 5416339.2
num_examples: 10360
download_size: 2056220
dataset_size: 5416339.2
- config_name: real_scenes_Real_Parabola
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 1282248.0
num_examples: 10000
download_size: 768322
dataset_size: 1282248.0
- config_name: real_scenes_Real_magnet_v3
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 72702.0
num_examples: 481
download_size: 48333
dataset_size: 72702.0
- config_name: real_scenes_Real_magnet_v3_5
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 228301.613
num_examples: 1503
download_size: 152240
dataset_size: 228301.613
- config_name: real_scenes_Real_parabola_multi_view
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 0
num_examples: 0
download_size: 0
dataset_size: 0
- config_name: real_scenes_Real_spring_v3_256P
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 134466.0
num_examples: 450
download_size: 24433
dataset_size: 134466.0
- config_name: real_scenes_Water_flow_scene_render
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 3533718.0
num_examples: 10000
download_size: 1813070
dataset_size: 3533718.0
- config_name: real_scenes_convex_len_render_images
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 161948.95
num_examples: 1078
download_size: 106436
dataset_size: 161948.95
- config_name: real_scenes_real_pendulum
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 2884667.13
num_examples: 9999
download_size: 1558722
dataset_size: 2884667.13
- config_name: real_scenes_rendered_magnetic_128
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 2290040.5
num_examples: 8350
download_size: 933644
dataset_size: 2290040.5
- config_name: real_scenes_rendered_reflection_128P
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 2723942.65
num_examples: 9995
download_size: 1665779
dataset_size: 2723942.65
- config_name: real_scenes_seesaw_scene_128P
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 2234514.0
num_examples: 10000
download_size: 1257167
dataset_size: 2234514.0
- config_name: real_scenes_spring_scene_128P
features:
- name: image
dtype: image
- name: file_name
dtype: string
- name: metadata
dtype: string
splits:
- name: train
num_bytes: 2506086.0
num_examples: 10000
download_size: 951360
dataset_size: 2506086.0
configs:
- config_name: hypothetical_scenes_Hypothetic_v2_linear
data_files:
- split: train
path: hypothetical_scenes_Hypothetic_v2_linear/train-*
- config_name: hypothetical_scenes_Hypothetic_v2_nonlinear
data_files:
- split: train
path: hypothetical_scenes_Hypothetic_v2_nonlinear/train-*
- config_name: hypothetical_scenes_Hypothetic_v3_fully_connected_linear
data_files:
- split: train
path: hypothetical_scenes_Hypothetic_v3_fully_connected_linear/train-*
- config_name: hypothetical_scenes_Hypothetic_v4_linear_full_connected
data_files:
- split: train
path: hypothetical_scenes_Hypothetic_v4_linear_full_connected/train-*
- config_name: hypothetical_scenes_Hypothetic_v4_linear_v
data_files:
- split: train
path: hypothetical_scenes_Hypothetic_v4_linear_v/train-*
- config_name: hypothetical_scenes_Hypothetic_v4_nonlinear_v
data_files:
- split: train
path: hypothetical_scenes_Hypothetic_v4_nonlinear_v/train-*
- config_name: hypothetical_scenes_Hypothetic_v5_linear
data_files:
- split: train
path: hypothetical_scenes_Hypothetic_v5_linear/train-*
- config_name: hypothetical_scenes_Hypothetic_v5_linear_full_connected
data_files:
- split: train
path: hypothetical_scenes_Hypothetic_v5_linear_full_connected/train-*
- config_name: hypothetical_scenes_rendered_h3_linear_128P
data_files:
- split: train
path: hypothetical_scenes_rendered_h3_linear_128P/train-*
- config_name: hypothetical_scenes_rendered_h3_nonlinear_128P
data_files:
- split: train
path: hypothetical_scenes_rendered_h3_nonlinear_128P/train-*
- config_name: hypothetical_scenes_rendered_h5_nonlinear
data_files:
- split: train
path: hypothetical_scenes_rendered_h5_nonlinear/train-*
- config_name: real_scenes_Real_Parabola
data_files:
- split: train
path: real_scenes_Real_Parabola/train-*
- config_name: real_scenes_Real_magnet_v3
data_files:
- split: train
path: real_scenes_Real_magnet_v3/train-*
default: true
- config_name: real_scenes_Real_magnet_v3_5
data_files:
- split: train
path: real_scenes_Real_magnet_v3_5/train-*
- config_name: real_scenes_Real_spring_v3_256P
data_files:
- split: train
path: real_scenes_Real_spring_v3_256P/train-*
- config_name: real_scenes_Water_flow_scene_render
data_files:
- split: train
path: real_scenes_Water_flow_scene_render/train-*
- config_name: real_scenes_convex_len_render_images
data_files:
- split: train
path: real_scenes_convex_len_render_images/train-*
- config_name: real_scenes_real_pendulum
data_files:
- split: train
path: real_scenes_real_pendulum/train-*
- config_name: real_scenes_rendered_magnetic_128
data_files:
- split: train
path: real_scenes_rendered_magnetic_128/train-*
- config_name: real_scenes_rendered_reflection_128P
data_files:
- split: train
path: real_scenes_rendered_reflection_128P/train-*
- config_name: real_scenes_seesaw_scene_128P
data_files:
- split: train
path: real_scenes_seesaw_scene_128P/train-*
- config_name: real_scenes_spring_scene_128P
data_files:
- split: train
path: real_scenes_spring_scene_128P/train-*
---
# 🧠 Causal3D: A Benchmark for Visual Causal Reasoning
**Causal3D** is a comprehensive benchmark designed to evaluate models’ abilities to uncover *latent causal relations* from structured and visual data. This dataset integrates **3D-rendered scenes** with **tabular causal annotations**, providing a unified testbed for advancing *causal discovery*, *causal representation learning*, and *causal reasoning* with **vision-language models (VLMs)** and **large language models (LLMs)**.
---
## 📌 Overview
While recent progress in AI and computer vision has been remarkable, there remains a major gap in evaluating causal reasoning over complex visual inputs. **Causal3D** bridges this gap by providing:
- **19 curated 3D-scene datasets** simulating diverse real-world causal phenomena.
- Paired **tabular causal graphs** and **image observations** across multiple views and backgrounds.
- Benchmarks for evaluating models in both **structured** (tabular) and **unstructured** (image) modalities.
---
## 🧩 Dataset Structure
Each sub-dataset (scene) contains:
- `images/`: Rendered images under different camera views and backgrounds.
- `tabular.csv`: Instance-level annotations including object attributes in causal graph.
## 🖼️ Visual Previews
Below are example images from different Causal3D scenes:
<table>
<tr>
<td align="center">
<img src="https://huggingface.co/datasets/LLDDSS/Causal3D/resolve/main/preview/parabola.png" width="250"/><br/>parabola
</td>
<td align="center">
<img src="https://huggingface.co/datasets/LLDDSS/Causal3D/resolve/main/preview/convex.png" width="250"/><br/>convex
</td>
</tr>
<tr>
<td align="center">
<img src="https://huggingface.co/datasets/LLDDSS/Causal3D/resolve/main/preview/magnetic.png" width="200"/><br/>magnetic
</td>
<td align="center">
<img src="https://huggingface.co/datasets/LLDDSS/Causal3D/resolve/main/preview/pendulum.png" width="200"/><br/>pendulum
</td>
<td align="center">
<img src="https://huggingface.co/datasets/LLDDSS/Causal3D/resolve/main/preview/reflection.png" width="200"/><br/>reflection
</td>
</tr>
<tr>
<td align="center">
<img src="https://huggingface.co/datasets/LLDDSS/Causal3D/resolve/main/preview/seesaw.png" width="200"/><br/>seesaw
</td>
<td align="center">
<img src="https://huggingface.co/datasets/LLDDSS/Causal3D/resolve/main/preview/spring.png" width="200"/><br/>spring
</td>
<td align="center">
<img src="https://huggingface.co/datasets/LLDDSS/Causal3D/resolve/main/preview/water_flow.png" width="200"/><br/>water_flow
</td>
</tr>
</table>
<!-- - `causal_graph.json`: Ground-truth causal structure (as adjacency matrix or graph).
- `view_info.json`: Camera/viewpoint metadata.
- `split.json`: Recommended train/val/test splits for benchmarking. -->
---
## 🎯 Evaluation Tasks
Causal3D supports a range of causal reasoning tasks, including:
- **Causal discovery** from image sequences or tables
- **Intervention prediction** under modified object states or backgrounds
- **Counterfactual reasoning** across views
- **VLM-based causal inference** given multimodal prompts
---
## 📊 Benchmark Results
We evaluate a diverse set of methods:
- **Classical causal discovery**: PC, GES, NOTEARS
- **Causal representation learning**: CausalVAE, ICM-based encoders
- **Vision-Language and Large Language Models**: GPT-4V, Claude-3.5, Gemini-1.5
**Key Findings**:
- As causal structures grow more complex, **model performance drops significantly** without strong prior assumptions.
- A noticeable performance gap exists between models trained on structured data and those applied directly to visual inputs.
---
<!-- ## 🔍 Example Use Case
```python
from causal3d import load_scene_data
scene = "SpringPendulum"
data = load_scene_data(scene, split="train")
images = data["images"]
metadata = data["table"]
graph = data["causal_graph"] --> |