Convert dataset to Parquet

#7
This view is limited to 50 files because it contains too many changes.  See the raw diff here.
Files changed (50) hide show
  1. Causal3D.py +0 -165
  2. README.md +156 -66
  3. __init__.py +0 -1
  4. dataset.py +0 -175
  5. dataset_infos.json +0 -899
  6. hypothetical_scenes/Hypothetic_v2_linear/part_000/00005.png +0 -3
  7. hypothetical_scenes/Hypothetic_v2_linear/part_000/00006.png +0 -3
  8. hypothetical_scenes/Hypothetic_v2_linear/part_000/00007.png +0 -3
  9. hypothetical_scenes/Hypothetic_v2_linear/part_000/00008.png +0 -3
  10. hypothetical_scenes/Hypothetic_v2_linear/part_000/00009.png +0 -3
  11. hypothetical_scenes/Hypothetic_v2_linear/part_000/00010.png +0 -3
  12. hypothetical_scenes/Hypothetic_v2_linear/part_000/00011.png +0 -3
  13. hypothetical_scenes/Hypothetic_v2_linear/part_000/00012.png +0 -3
  14. hypothetical_scenes/Hypothetic_v2_linear/part_000/00013.png +0 -3
  15. hypothetical_scenes/Hypothetic_v2_linear/part_000/00014.png +0 -3
  16. hypothetical_scenes/Hypothetic_v2_linear/part_000/00015.png +0 -3
  17. hypothetical_scenes/Hypothetic_v2_linear/part_000/00016.png +0 -3
  18. hypothetical_scenes/Hypothetic_v2_linear/part_000/00017.png +0 -3
  19. hypothetical_scenes/Hypothetic_v2_linear/part_000/00018.png +0 -3
  20. hypothetical_scenes/Hypothetic_v2_linear/part_000/00019.png +0 -3
  21. hypothetical_scenes/Hypothetic_v2_linear/part_000/00020.png +0 -3
  22. hypothetical_scenes/Hypothetic_v2_linear/part_000/00021.png +0 -3
  23. hypothetical_scenes/Hypothetic_v2_linear/part_000/00022.png +0 -3
  24. hypothetical_scenes/Hypothetic_v2_linear/part_000/00023.png +0 -3
  25. hypothetical_scenes/Hypothetic_v2_linear/part_000/00024.png +0 -3
  26. hypothetical_scenes/Hypothetic_v2_linear/part_000/00025.png +0 -3
  27. hypothetical_scenes/Hypothetic_v2_linear/part_000/00026.png +0 -3
  28. hypothetical_scenes/Hypothetic_v2_linear/part_000/00027.png +0 -3
  29. hypothetical_scenes/Hypothetic_v2_linear/part_000/00028.png +0 -3
  30. hypothetical_scenes/Hypothetic_v2_linear/part_000/00029.png +0 -3
  31. hypothetical_scenes/Hypothetic_v2_linear/part_000/00030.png +0 -3
  32. hypothetical_scenes/Hypothetic_v2_linear/part_000/00031.png +0 -3
  33. hypothetical_scenes/Hypothetic_v2_linear/part_000/00032.png +0 -3
  34. hypothetical_scenes/Hypothetic_v2_linear/part_000/00033.png +0 -3
  35. hypothetical_scenes/Hypothetic_v2_linear/part_000/00034.png +0 -3
  36. hypothetical_scenes/Hypothetic_v2_linear/part_000/00035.png +0 -3
  37. hypothetical_scenes/Hypothetic_v2_linear/part_000/00036.png +0 -3
  38. hypothetical_scenes/Hypothetic_v2_linear/part_000/00037.png +0 -3
  39. hypothetical_scenes/Hypothetic_v2_linear/part_000/00038.png +0 -3
  40. hypothetical_scenes/Hypothetic_v2_linear/part_000/00039.png +0 -3
  41. hypothetical_scenes/Hypothetic_v2_linear/part_000/00040.png +0 -3
  42. hypothetical_scenes/Hypothetic_v2_linear/part_000/00041.png +0 -3
  43. hypothetical_scenes/Hypothetic_v2_linear/part_000/00042.png +0 -3
  44. hypothetical_scenes/Hypothetic_v2_linear/part_000/00043.png +0 -3
  45. hypothetical_scenes/Hypothetic_v2_linear/part_000/00044.png +0 -3
  46. hypothetical_scenes/Hypothetic_v2_linear/part_000/00045.png +0 -3
  47. hypothetical_scenes/Hypothetic_v2_linear/part_000/00046.png +0 -3
  48. hypothetical_scenes/Hypothetic_v2_linear/part_000/00047.png +0 -3
  49. hypothetical_scenes/Hypothetic_v2_linear/part_000/00048.png +0 -3
  50. hypothetical_scenes/Hypothetic_v2_linear/part_000/00049.png +0 -3
Causal3D.py DELETED
@@ -1,165 +0,0 @@
1
- import datasets
2
- import pandas as pd
3
- import os
4
- from pathlib import Path
5
- from tqdm import tqdm
6
-
7
- print("✅ Custom Causal3D loaded: outside Causal3D.py")
8
- _CITATION = """\
9
- @article{liu2025causal3d,
10
- title={CAUSAL3D: A Comprehensive Benchmark for Causal Learning from Visual Data},
11
- author={Liu, Disheng and Qiao, Yiran and Liu, Wuche and Lu, Yiren and Zhou, Yunlai and Liang, Tuo and Yin, Yu and Ma, Jing},
12
- journal={arXiv preprint arXiv:2503.04852},
13
- year={2025}
14
- }
15
- """
16
-
17
- _DESCRIPTION = """\
18
- Causal3D is a benchmark for evaluating causal reasoning in physical and hypothetical visual scenes.
19
- It includes both real-world recordings and rendered synthetic scenes demonstrating causal interactions.
20
- """
21
-
22
- _HOMEPAGE = "https://huggingface.co/datasets/LLDDSS/Causal3D"
23
- _LICENSE = "CC-BY-4.0"
24
-
25
- class Causal3D(datasets.GeneratorBasedBuilder):
26
- DEFAULT_CONFIG_NAME = "real_scenes_Water_flow_scene_render"
27
- BUILDER_CONFIGS = [
28
- # hypothetical_scenes
29
- datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v2_linear", version=datasets.Version("1.0.0"), description="Hypothetic_v2_linear scene"),
30
- datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v2_nonlinear", version=datasets.Version("1.0.0"), description="Hypothetic_v2_nonlinear scene"),
31
- datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v3_fully_connected_linear", version=datasets.Version("1.0.0"), description="Hypothetic_v3_fully_connected_linear scene"),
32
- datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v4_linear_full_connected", version=datasets.Version("1.0.0"), description="Hypothetic_v4_linear_full_connected scene"),
33
- datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v4_linear_v", version=datasets.Version("1.0.0"), description="Hypothetic_v4_linear_v scene"),
34
- datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v4_nonlinear_v", version=datasets.Version("1.0.0"), description="Hypothetic_v4_nonlinear_v scene"),
35
- datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v5_linear", version=datasets.Version("1.0.0"), description="Hypothetic_v5_linear scene"),
36
- datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v5_linear_full_connected", version=datasets.Version("1.0.0"), description="Hypothetic_v5_linear_full_connected scene"),
37
- datasets.BuilderConfig(name="hypothetical_scenes_rendered_h3_linear_128P", version=datasets.Version("1.0.0"), description="rendered_h3_linear_128P scene"),
38
- datasets.BuilderConfig(name="hypothetical_scenes_rendered_h3_nonlinear_128P", version=datasets.Version("1.0.0"), description="rendered_h3_nonlinear_128P scene"),
39
- datasets.BuilderConfig(name="hypothetical_scenes_rendered_h5_nonlinear", version=datasets.Version("1.0.0"), description="rendered_h5_nonlinear scene"),
40
-
41
- # real_scenes
42
- datasets.BuilderConfig(name="real_scenes_Real_Parabola", version=datasets.Version("1.0.0"), description="Real_Parabola scene"),
43
- datasets.BuilderConfig(name="real_scenes_Real_magnet_v3", version=datasets.Version("1.0.0"), description="Real_magnet_v3 scene"),
44
- datasets.BuilderConfig(name="real_scenes_Real_magnet_v3_5", version=datasets.Version("1.0.0"), description="Real_magnet_v3_5 scene"),
45
- # datasets.BuilderConfig(name="real_scenes_Real_Parabola_multi_view", version=datasets.Version("1.0.0"), description="Real_parabola_multi_view scene"),
46
- datasets.BuilderConfig(name="real_scenes_Real_spring_v3_256P", version=datasets.Version("1.0.0"), description="Real_spring_v3_256P scene"),
47
- datasets.BuilderConfig(name="real_scenes_Water_flow_scene_render", version=datasets.Version("1.0.0"), description="Water_flow_scene_render scene"),
48
- datasets.BuilderConfig(name="real_scenes_convex_len_render_images", version=datasets.Version("1.0.0"), description="convex_len_render_images scene"),
49
- datasets.BuilderConfig(name="real_scenes_real_pendulum", version=datasets.Version("1.0.0"), description="real_pendulum scene"),
50
- datasets.BuilderConfig(name="real_scenes_rendered_magnetic_128", version=datasets.Version("1.0.0"), description="rendered_magnetic_128 scene"),
51
- datasets.BuilderConfig(name="real_scenes_rendered_reflection_128P", version=datasets.Version("1.0.0"), description="rendered_reflection_128P scene"),
52
- datasets.BuilderConfig(name="real_scenes_seesaw_scene_128P", version=datasets.Version("1.0.0"), description="seesaw_scene_128P scene"),
53
- datasets.BuilderConfig(name="real_scenes_spring_scene_128P", version=datasets.Version("1.0.0"), description="spring_scene_128P scene"),
54
- ]
55
-
56
- def _info(self):
57
- return datasets.DatasetInfo(
58
- description=_DESCRIPTION,
59
- features=datasets.Features({
60
- "image": datasets.Image(),
61
- "file_name": datasets.Value("string"),
62
- "metadata": datasets.Value("string"), # optionally replace with structured fields
63
- }),
64
- homepage=_HOMEPAGE,
65
- license=_LICENSE,
66
- citation=_CITATION,
67
- )
68
-
69
- def _split_generators(self, dl_manager):
70
- parts = self.config.name.split("_", 2)
71
- category = parts[0] + "_" + parts[1] # real_scenes or hypothetical_scenes
72
-
73
- if category not in ["real_scenes", "hypothetical_scenes"]:
74
- raise ValueError(f"Invalid category '{category}'. Must be one of ['real_scenes', 'hypothetical_scenes']")
75
-
76
- scene = parts[2]
77
- data_dir = os.path.join(category, scene)
78
-
79
- return [
80
- datasets.SplitGenerator(
81
- name=datasets.Split.TRAIN,
82
- gen_kwargs={"data_dir": data_dir},
83
- )
84
- ]
85
-
86
- def _generate_examples(self, data_dir):
87
- def color(text, code):
88
- return f"\033[{code}m{text}\033[0m"
89
-
90
- # Load image paths
91
- try:
92
- image_files = {}
93
- for ext in ("*.png", "*.jpg", "*.jpeg"):
94
- for img_path in Path(data_dir).rglob(ext):
95
- relative_path = str(img_path.relative_to(data_dir))
96
- image_files[relative_path] = str(img_path)
97
- parts = [i.split('/')[0] for i in list(image_files.keys())]
98
- parts = set(parts)
99
- if "part_000" not in parts:
100
- parts= ['']
101
-
102
-
103
- except Exception as e:
104
- print(color(f"Error loading images: {e}", "31")) # Red
105
- return
106
-
107
- # Find the .csv file
108
- csv_files = list(Path(data_dir).rglob("*.csv"))
109
- csv_files = [f for f in Path(data_dir).rglob("*.csv") if not f.name.startswith("._")]
110
- if not csv_files:
111
- # print(f"\033[33m[SKIP] No CSV found in {data_dir}, skipping this config.\033[0m")
112
- pass
113
- # print(f"\033[33m[INFO] Found CSV: {csv_files}\033[0m")
114
- csv_path = csv_files[0] if csv_files else None
115
- df = pd.read_csv(csv_path) if csv_path else None
116
- image_col_exists = True
117
- if df is not None and "image" not in df.columns:
118
- image_col_exists = False
119
-
120
- images = df["image"].tolist() if image_col_exists and df is not None else []
121
- images = [i.split('/')[-1].split('.')[0] for i in images if i.endswith(('.png', '.jpg', '.jpeg'))]
122
-
123
- try:
124
- # Match CSV rows with image paths
125
- if df is None:
126
- for i, j in tqdm(image_files.items(), desc="Processing images", unit="image"):
127
- yield i, {
128
- "image": j,
129
- "file_name": i,
130
- "metadata": None,
131
- }
132
-
133
- else:
134
- for idx, row in tqdm(df.iterrows(), total=len(df), desc="Processing rows", unit="row"):
135
- fname = row["ID"]
136
- raw_record_img_path = images[idx] if images else "" #row["image"]
137
- record_img_name = raw_record_img_path.split('/')[-1]
138
- for part in parts:
139
- if part == '':
140
- record_img_path = record_img_name
141
- else:
142
- record_img_path = "/".join([part, record_img_name.strip()])
143
- if "Water_flow_scene_render" in data_dir:
144
- record_img_path = "/".join([part, str(int(record_img_name.strip().split('.')[0]))+".png"])
145
- if record_img_path in image_files:
146
- # print(color(f"record_img_path: { image_files[record_img_path]}", "34")) # Blue
147
- yield idx, {
148
- "image": image_files[record_img_path],
149
- "file_name": fname,
150
- "metadata": row.to_json(),
151
- }
152
- break
153
-
154
- else:
155
- yield idx, {
156
- # "image": "",
157
- "file_name": fname,
158
- "metadata": row.to_json(),
159
- }
160
- break
161
-
162
-
163
- except Exception as e:
164
- print(color(f"Error processing CSV rows: {e}", "31"))
165
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md CHANGED
@@ -19,10 +19,10 @@ dataset_info:
19
  dtype: string
20
  splits:
21
  - name: train
22
- num_bytes: 2197142
23
  num_examples: 14368
24
- download_size: 0
25
- dataset_size: 2197142
26
  - config_name: hypothetical_scenes_Hypothetic_v2_nonlinear
27
  features:
28
  - name: image
@@ -33,10 +33,10 @@ dataset_info:
33
  dtype: string
34
  splits:
35
  - name: train
36
- num_bytes: 1809956
37
  num_examples: 10000
38
- download_size: 0
39
- dataset_size: 1809956
40
  - config_name: hypothetical_scenes_Hypothetic_v3_fully_connected_linear
41
  features:
42
  - name: image
@@ -47,10 +47,10 @@ dataset_info:
47
  dtype: string
48
  splits:
49
  - name: train
50
- num_bytes: 1397093
51
  num_examples: 10000
52
- download_size: 0
53
- dataset_size: 1397093
54
  - config_name: hypothetical_scenes_Hypothetic_v4_linear_full_connected
55
  features:
56
  - name: image
@@ -61,10 +61,10 @@ dataset_info:
61
  dtype: string
62
  splits:
63
  - name: train
64
- num_bytes: 1699598
65
  num_examples: 10050
66
- download_size: 0
67
- dataset_size: 1699598
68
  - config_name: hypothetical_scenes_Hypothetic_v4_linear_v
69
  features:
70
  - name: image
@@ -75,10 +75,10 @@ dataset_info:
75
  dtype: string
76
  splits:
77
  - name: train
78
- num_bytes: 2053379
79
  num_examples: 10000
80
- download_size: 0
81
- dataset_size: 2053379
82
  - config_name: hypothetical_scenes_Hypothetic_v4_nonlinear_v
83
  features:
84
  - name: image
@@ -89,10 +89,10 @@ dataset_info:
89
  dtype: string
90
  splits:
91
  - name: train
92
- num_bytes: 2828217
93
  num_examples: 10000
94
- download_size: 0
95
- dataset_size: 2828217
96
  - config_name: hypothetical_scenes_Hypothetic_v5_linear
97
  features:
98
  - name: image
@@ -103,10 +103,10 @@ dataset_info:
103
  dtype: string
104
  splits:
105
  - name: train
106
- num_bytes: 1956461
107
  num_examples: 10000
108
- download_size: 0
109
- dataset_size: 1956461
110
  - config_name: hypothetical_scenes_Hypothetic_v5_linear_full_connected
111
  features:
112
  - name: image
@@ -117,10 +117,10 @@ dataset_info:
117
  dtype: string
118
  splits:
119
  - name: train
120
- num_bytes: 1955921
121
  num_examples: 10000
122
- download_size: 0
123
- dataset_size: 1955921
124
  - config_name: hypothetical_scenes_rendered_h3_linear_128P
125
  features:
126
  - name: image
@@ -131,10 +131,10 @@ dataset_info:
131
  dtype: string
132
  splits:
133
  - name: train
134
- num_bytes: 5425498
135
  num_examples: 15000
136
- download_size: 0
137
- dataset_size: 5425498
138
  - config_name: hypothetical_scenes_rendered_h3_nonlinear_128P
139
  features:
140
  - name: image
@@ -145,10 +145,10 @@ dataset_info:
145
  dtype: string
146
  splits:
147
  - name: train
148
- num_bytes: 3852500
149
  num_examples: 10223
150
- download_size: 0
151
- dataset_size: 3852500
152
  - config_name: hypothetical_scenes_rendered_h5_nonlinear
153
  features:
154
  - name: image
@@ -159,10 +159,10 @@ dataset_info:
159
  dtype: string
160
  splits:
161
  - name: train
162
- num_bytes: 5459126
163
  num_examples: 10360
164
- download_size: 0
165
- dataset_size: 5459126
166
  - config_name: real_scenes_Real_Parabola
167
  features:
168
  - name: image
@@ -173,10 +173,10 @@ dataset_info:
173
  dtype: string
174
  splits:
175
  - name: train
176
- num_bytes: 1323548
177
  num_examples: 10000
178
- download_size: 0
179
- dataset_size: 1323548
180
  - config_name: real_scenes_Real_magnet_v3
181
  features:
182
  - name: image
@@ -187,10 +187,10 @@ dataset_info:
187
  dtype: string
188
  splits:
189
  - name: train
190
- num_bytes: 28397
191
  num_examples: 481
192
- download_size: 0
193
- dataset_size: 28397
194
  - config_name: real_scenes_Real_magnet_v3_5
195
  features:
196
  - name: image
@@ -201,10 +201,10 @@ dataset_info:
201
  dtype: string
202
  splits:
203
  - name: train
204
- num_bytes: 93977
205
  num_examples: 1503
206
- download_size: 0
207
- dataset_size: 93977
208
  - config_name: real_scenes_Real_parabola_multi_view
209
  features:
210
  - name: image
@@ -229,10 +229,10 @@ dataset_info:
229
  dtype: string
230
  splits:
231
  - name: train
232
- num_bytes: 136325
233
  num_examples: 450
234
- download_size: 0
235
- dataset_size: 136325
236
  - config_name: real_scenes_Water_flow_scene_render
237
  features:
238
  - name: image
@@ -243,10 +243,10 @@ dataset_info:
243
  dtype: string
244
  splits:
245
  - name: train
246
- num_bytes: 2792618
247
  num_examples: 10000
248
- download_size: 0
249
- dataset_size: 2792618
250
  - config_name: real_scenes_convex_len_render_images
251
  features:
252
  - name: image
@@ -257,10 +257,10 @@ dataset_info:
257
  dtype: string
258
  splits:
259
  - name: train
260
- num_bytes: 72448
261
  num_examples: 1078
262
- download_size: 0
263
- dataset_size: 72448
264
  - config_name: real_scenes_real_pendulum
265
  features:
266
  - name: image
@@ -271,10 +271,10 @@ dataset_info:
271
  dtype: string
272
  splits:
273
  - name: train
274
- num_bytes: 2925963
275
  num_examples: 9999
276
- download_size: 0
277
- dataset_size: 2925963
278
  - config_name: real_scenes_rendered_magnetic_128
279
  features:
280
  - name: image
@@ -285,10 +285,10 @@ dataset_info:
285
  dtype: string
286
  splits:
287
  - name: train
288
- num_bytes: 2324526
289
  num_examples: 8350
290
- download_size: 0
291
- dataset_size: 2324526
292
  - config_name: real_scenes_rendered_reflection_128P
293
  features:
294
  - name: image
@@ -299,10 +299,10 @@ dataset_info:
299
  dtype: string
300
  splits:
301
  - name: train
302
- num_bytes: 2765222
303
  num_examples: 9995
304
- download_size: 0
305
- dataset_size: 2765222
306
  - config_name: real_scenes_seesaw_scene_128P
307
  features:
308
  - name: image
@@ -313,10 +313,10 @@ dataset_info:
313
  dtype: string
314
  splits:
315
  - name: train
316
- num_bytes: 2275814
317
  num_examples: 10000
318
- download_size: 0
319
- dataset_size: 2275814
320
  - config_name: real_scenes_spring_scene_128P
321
  features:
322
  - name: image
@@ -327,10 +327,100 @@ dataset_info:
327
  dtype: string
328
  splits:
329
  - name: train
330
- num_bytes: 2547386
331
  num_examples: 10000
332
- download_size: 0
333
- dataset_size: 2547386
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
334
  ---
335
  # 🧠 Causal3D: A Benchmark for Visual Causal Reasoning
336
 
 
19
  dtype: string
20
  splits:
21
  - name: train
22
+ num_bytes: 2137802.16
23
  num_examples: 14368
24
+ download_size: 1216402
25
+ dataset_size: 2137802.16
26
  - config_name: hypothetical_scenes_Hypothetic_v2_nonlinear
27
  features:
28
  - name: image
 
33
  dtype: string
34
  splits:
35
  - name: train
36
+ num_bytes: 1768656.0
37
  num_examples: 10000
38
+ download_size: 939321
39
+ dataset_size: 1768656.0
40
  - config_name: hypothetical_scenes_Hypothetic_v3_fully_connected_linear
41
  features:
42
  - name: image
 
47
  dtype: string
48
  splits:
49
  - name: train
50
+ num_bytes: 1355793.0
51
  num_examples: 10000
52
+ download_size: 617191
53
+ dataset_size: 1355793.0
54
  - config_name: hypothetical_scenes_Hypothetic_v4_linear_full_connected
55
  features:
56
  - name: image
 
61
  dtype: string
62
  splits:
63
  - name: train
64
+ num_bytes: 1658091.5
65
  num_examples: 10050
66
+ download_size: 915357
67
+ dataset_size: 1658091.5
68
  - config_name: hypothetical_scenes_Hypothetic_v4_linear_v
69
  features:
70
  - name: image
 
75
  dtype: string
76
  splits:
77
  - name: train
78
+ num_bytes: 2012079.0
79
  num_examples: 10000
80
+ download_size: 907646
81
+ dataset_size: 2012079.0
82
  - config_name: hypothetical_scenes_Hypothetic_v4_nonlinear_v
83
  features:
84
  - name: image
 
89
  dtype: string
90
  splits:
91
  - name: train
92
+ num_bytes: 2786917.0
93
  num_examples: 10000
94
+ download_size: 1262319
95
+ dataset_size: 2786917.0
96
  - config_name: hypothetical_scenes_Hypothetic_v5_linear
97
  features:
98
  - name: image
 
103
  dtype: string
104
  splits:
105
  - name: train
106
+ num_bytes: 1915161.0
107
  num_examples: 10000
108
+ download_size: 1048013
109
+ dataset_size: 1915161.0
110
  - config_name: hypothetical_scenes_Hypothetic_v5_linear_full_connected
111
  features:
112
  - name: image
 
117
  dtype: string
118
  splits:
119
  - name: train
120
+ num_bytes: 1914621.0
121
  num_examples: 10000
122
+ download_size: 1051232
123
+ dataset_size: 1914621.0
124
  - config_name: hypothetical_scenes_rendered_h3_linear_128P
125
  features:
126
  - name: image
 
131
  dtype: string
132
  splits:
133
  - name: train
134
+ num_bytes: 5363548.0
135
  num_examples: 15000
136
+ download_size: 2476630
137
+ dataset_size: 5363548.0
138
  - config_name: hypothetical_scenes_rendered_h3_nonlinear_128P
139
  features:
140
  - name: image
 
145
  dtype: string
146
  splits:
147
  - name: train
148
+ num_bytes: 3810279.01
149
  num_examples: 10223
150
+ download_size: 1726102
151
+ dataset_size: 3810279.01
152
  - config_name: hypothetical_scenes_rendered_h5_nonlinear
153
  features:
154
  - name: image
 
159
  dtype: string
160
  splits:
161
  - name: train
162
+ num_bytes: 5416339.2
163
  num_examples: 10360
164
+ download_size: 2056220
165
+ dataset_size: 5416339.2
166
  - config_name: real_scenes_Real_Parabola
167
  features:
168
  - name: image
 
173
  dtype: string
174
  splits:
175
  - name: train
176
+ num_bytes: 1282248.0
177
  num_examples: 10000
178
+ download_size: 768322
179
+ dataset_size: 1282248.0
180
  - config_name: real_scenes_Real_magnet_v3
181
  features:
182
  - name: image
 
187
  dtype: string
188
  splits:
189
  - name: train
190
+ num_bytes: 72702.0
191
  num_examples: 481
192
+ download_size: 48333
193
+ dataset_size: 72702.0
194
  - config_name: real_scenes_Real_magnet_v3_5
195
  features:
196
  - name: image
 
201
  dtype: string
202
  splits:
203
  - name: train
204
+ num_bytes: 228301.613
205
  num_examples: 1503
206
+ download_size: 152240
207
+ dataset_size: 228301.613
208
  - config_name: real_scenes_Real_parabola_multi_view
209
  features:
210
  - name: image
 
229
  dtype: string
230
  splits:
231
  - name: train
232
+ num_bytes: 134466.0
233
  num_examples: 450
234
+ download_size: 24433
235
+ dataset_size: 134466.0
236
  - config_name: real_scenes_Water_flow_scene_render
237
  features:
238
  - name: image
 
243
  dtype: string
244
  splits:
245
  - name: train
246
+ num_bytes: 3533718.0
247
  num_examples: 10000
248
+ download_size: 1813070
249
+ dataset_size: 3533718.0
250
  - config_name: real_scenes_convex_len_render_images
251
  features:
252
  - name: image
 
257
  dtype: string
258
  splits:
259
  - name: train
260
+ num_bytes: 161948.95
261
  num_examples: 1078
262
+ download_size: 106436
263
+ dataset_size: 161948.95
264
  - config_name: real_scenes_real_pendulum
265
  features:
266
  - name: image
 
271
  dtype: string
272
  splits:
273
  - name: train
274
+ num_bytes: 2884667.13
275
  num_examples: 9999
276
+ download_size: 1558722
277
+ dataset_size: 2884667.13
278
  - config_name: real_scenes_rendered_magnetic_128
279
  features:
280
  - name: image
 
285
  dtype: string
286
  splits:
287
  - name: train
288
+ num_bytes: 2290040.5
289
  num_examples: 8350
290
+ download_size: 933644
291
+ dataset_size: 2290040.5
292
  - config_name: real_scenes_rendered_reflection_128P
293
  features:
294
  - name: image
 
299
  dtype: string
300
  splits:
301
  - name: train
302
+ num_bytes: 2723942.65
303
  num_examples: 9995
304
+ download_size: 1665779
305
+ dataset_size: 2723942.65
306
  - config_name: real_scenes_seesaw_scene_128P
307
  features:
308
  - name: image
 
313
  dtype: string
314
  splits:
315
  - name: train
316
+ num_bytes: 2234514.0
317
  num_examples: 10000
318
+ download_size: 1257167
319
+ dataset_size: 2234514.0
320
  - config_name: real_scenes_spring_scene_128P
321
  features:
322
  - name: image
 
327
  dtype: string
328
  splits:
329
  - name: train
330
+ num_bytes: 2506086.0
331
  num_examples: 10000
332
+ download_size: 951360
333
+ dataset_size: 2506086.0
334
+ configs:
335
+ - config_name: hypothetical_scenes_Hypothetic_v2_linear
336
+ data_files:
337
+ - split: train
338
+ path: hypothetical_scenes_Hypothetic_v2_linear/train-*
339
+ - config_name: hypothetical_scenes_Hypothetic_v2_nonlinear
340
+ data_files:
341
+ - split: train
342
+ path: hypothetical_scenes_Hypothetic_v2_nonlinear/train-*
343
+ - config_name: hypothetical_scenes_Hypothetic_v3_fully_connected_linear
344
+ data_files:
345
+ - split: train
346
+ path: hypothetical_scenes_Hypothetic_v3_fully_connected_linear/train-*
347
+ - config_name: hypothetical_scenes_Hypothetic_v4_linear_full_connected
348
+ data_files:
349
+ - split: train
350
+ path: hypothetical_scenes_Hypothetic_v4_linear_full_connected/train-*
351
+ - config_name: hypothetical_scenes_Hypothetic_v4_linear_v
352
+ data_files:
353
+ - split: train
354
+ path: hypothetical_scenes_Hypothetic_v4_linear_v/train-*
355
+ - config_name: hypothetical_scenes_Hypothetic_v4_nonlinear_v
356
+ data_files:
357
+ - split: train
358
+ path: hypothetical_scenes_Hypothetic_v4_nonlinear_v/train-*
359
+ - config_name: hypothetical_scenes_Hypothetic_v5_linear
360
+ data_files:
361
+ - split: train
362
+ path: hypothetical_scenes_Hypothetic_v5_linear/train-*
363
+ - config_name: hypothetical_scenes_Hypothetic_v5_linear_full_connected
364
+ data_files:
365
+ - split: train
366
+ path: hypothetical_scenes_Hypothetic_v5_linear_full_connected/train-*
367
+ - config_name: hypothetical_scenes_rendered_h3_linear_128P
368
+ data_files:
369
+ - split: train
370
+ path: hypothetical_scenes_rendered_h3_linear_128P/train-*
371
+ - config_name: hypothetical_scenes_rendered_h3_nonlinear_128P
372
+ data_files:
373
+ - split: train
374
+ path: hypothetical_scenes_rendered_h3_nonlinear_128P/train-*
375
+ - config_name: hypothetical_scenes_rendered_h5_nonlinear
376
+ data_files:
377
+ - split: train
378
+ path: hypothetical_scenes_rendered_h5_nonlinear/train-*
379
+ - config_name: real_scenes_Real_Parabola
380
+ data_files:
381
+ - split: train
382
+ path: real_scenes_Real_Parabola/train-*
383
+ - config_name: real_scenes_Real_magnet_v3
384
+ data_files:
385
+ - split: train
386
+ path: real_scenes_Real_magnet_v3/train-*
387
+ default: true
388
+ - config_name: real_scenes_Real_magnet_v3_5
389
+ data_files:
390
+ - split: train
391
+ path: real_scenes_Real_magnet_v3_5/train-*
392
+ - config_name: real_scenes_Real_spring_v3_256P
393
+ data_files:
394
+ - split: train
395
+ path: real_scenes_Real_spring_v3_256P/train-*
396
+ - config_name: real_scenes_Water_flow_scene_render
397
+ data_files:
398
+ - split: train
399
+ path: real_scenes_Water_flow_scene_render/train-*
400
+ - config_name: real_scenes_convex_len_render_images
401
+ data_files:
402
+ - split: train
403
+ path: real_scenes_convex_len_render_images/train-*
404
+ - config_name: real_scenes_real_pendulum
405
+ data_files:
406
+ - split: train
407
+ path: real_scenes_real_pendulum/train-*
408
+ - config_name: real_scenes_rendered_magnetic_128
409
+ data_files:
410
+ - split: train
411
+ path: real_scenes_rendered_magnetic_128/train-*
412
+ - config_name: real_scenes_rendered_reflection_128P
413
+ data_files:
414
+ - split: train
415
+ path: real_scenes_rendered_reflection_128P/train-*
416
+ - config_name: real_scenes_seesaw_scene_128P
417
+ data_files:
418
+ - split: train
419
+ path: real_scenes_seesaw_scene_128P/train-*
420
+ - config_name: real_scenes_spring_scene_128P
421
+ data_files:
422
+ - split: train
423
+ path: real_scenes_spring_scene_128P/train-*
424
  ---
425
  # 🧠 Causal3D: A Benchmark for Visual Causal Reasoning
426
 
__init__.py DELETED
@@ -1 +0,0 @@
1
- from .Causal3D import Causal3D
 
 
dataset.py DELETED
@@ -1,175 +0,0 @@
1
- import os
2
- import glob
3
- from pathlib import Path
4
- from typing import List
5
- import pandas as pd
6
- import numpy as np
7
- from tqdm import tqdm
8
- import datasets
9
-
10
- print("✅ Custom Causal3D loaded - outside code")
11
- _CITATION = """\
12
- @article{liu2025causal3d,
13
- title={CAUSAL3D: A Comprehensive Benchmark for Causal Learning from Visual Data},
14
- author={Liu, Disheng and Qiao, Yiran and Liu, Wuche and Lu, Yiren and Zhou, Yunlai and Liang, Tuo and Yin, Yu and Ma, Jing},
15
- journal={arXiv preprint arXiv:2503.04852},
16
- year={2025}
17
- }
18
- """
19
-
20
- _DESCRIPTION = """\
21
- Causal3D is a benchmark for evaluating causal reasoning in physical and hypothetical visual scenes.
22
- It includes both real-world recordings and rendered synthetic scenes demonstrating causal interactions.
23
- """
24
-
25
- _HOMEPAGE = "https://huggingface.co/datasets/LLDDSS/Causal3D"
26
- _LICENSE = "CC-BY-4.0"
27
-
28
- class Causal3D(datasets.GeneratorBasedBuilder):
29
- DEFAULT_CONFIG_NAME = "real_scenes_Real_magnet_v3"
30
- BUILDER_CONFIGS = [
31
- # hypothetical_scenes
32
- datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v2_linear",
33
- version=datasets.Version("1.0.0"),
34
- description="Hypothetic_v2_linear scene"),
35
- datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v2_nonlinear", version=datasets.Version("1.0.0"), description="Hypothetic_v2_nonlinear scene"),
36
- datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v3_fully_connected_linear", version=datasets.Version("1.0.0"), description="Hypothetic_v3_fully_connected_linear scene"),
37
- datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v4_linear_full_connected", version=datasets.Version("1.0.0"), description="Hypothetic_v4_linear_full_connected scene"),
38
- datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v4_linear_v", version=datasets.Version("1.0.0"), description="Hypothetic_v4_linear_v scene"),
39
- datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v4_nonlinear_v", version=datasets.Version("1.0.0"), description="Hypothetic_v4_nonlinear_v scene"),
40
- datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v5_linear", version=datasets.Version("1.0.0"), description="Hypothetic_v5_linear scene"),
41
- datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v5_linear_full_connected", version=datasets.Version("1.0.0"), description="Hypothetic_v5_linear_full_connected scene"),
42
- datasets.BuilderConfig(name="hypothetical_scenes_rendered_h3_linear_128P", version=datasets.Version("1.0.0"), description="rendered_h3_linear_128P scene"),
43
- datasets.BuilderConfig(name="hypothetical_scenes_rendered_h3_nonlinear_128P", version=datasets.Version("1.0.0"), description="rendered_h3_nonlinear_128P scene"),
44
- datasets.BuilderConfig(name="hypothetical_scenes_rendered_h5_nonlinear", version=datasets.Version("1.0.0"), description="rendered_h5_nonlinear scene"),
45
-
46
- # real_scenes
47
- datasets.BuilderConfig(name="real_scenes_Real_Parabola", version=datasets.Version("1.0.0"), description="Real_Parabola scene"),
48
- datasets.BuilderConfig(name="real_scenes_Real_magnet_v3", version=datasets.Version("1.0.0"), description="Real_magnet_v3 scene"),
49
- datasets.BuilderConfig(name="real_scenes_Real_magnet_v3_5", version=datasets.Version("1.0.0"), description="Real_magnet_v3_5 scene"),
50
- datasets.BuilderConfig(name="real_scenes_Real_parabola_multi_view", version=datasets.Version("1.0.0"), description="Real_parabola_multi_view scene"),
51
- datasets.BuilderConfig(name="real_scenes_Real_spring_v3_256P", version=datasets.Version("1.0.0"), description="Real_spring_v3_256P scene"),
52
- datasets.BuilderConfig(name="real_scenes_Water_flow_scene_render", version=datasets.Version("1.0.0"), description="Water_flow_scene_render scene"),
53
- datasets.BuilderConfig(name="real_scenes_convex_len_render_images", version=datasets.Version("1.0.0"), description="convex_len_render_images scene"),
54
- datasets.BuilderConfig(name="real_scenes_real_pendulum", version=datasets.Version("1.0.0"), description="real_pendulum scene"),
55
- datasets.BuilderConfig(name="real_scenes_rendered_magnetic_128", version=datasets.Version("1.0.0"), description="rendered_magnetic_128 scene"),
56
- datasets.BuilderConfig(name="real_scenes_rendered_reflection_128P", version=datasets.Version("1.0.0"), description="rendered_reflection_128P scene"),
57
- datasets.BuilderConfig(name="real_scenes_seesaw_scene_128P", version=datasets.Version("1.0.0"), description="seesaw_scene_128P scene"),
58
- datasets.BuilderConfig(name="real_scenes_spring_scene_128P", version=datasets.Version("1.0.0"), description="spring_scene_128P scene"),
59
- ]
60
-
61
- def _info(self):
62
- print(">>> Loaded config:", self.config.name) # 🟡 加这个调试输出
63
- return datasets.DatasetInfo(
64
- description=_DESCRIPTION,
65
- features=datasets.Features({
66
- "image": datasets.Image(),
67
- "file_name": datasets.Value("string"),
68
- "metadata": datasets.Value("string"), # optionally replace with structured fields
69
- }),
70
- homepage=_HOMEPAGE,
71
- license=_LICENSE,
72
- citation=_CITATION,
73
- )
74
-
75
- def _split_generators(self, dl_manager):
76
- parts = self.config.name.split("_", 2)
77
- category = parts[0] + "_" + parts[1] # real_scenes or hypothetical_scenes
78
-
79
- if category not in ["real_scenes", "hypothetical_scenes"]:
80
- raise ValueError(f"Invalid category '{category}'. Must be one of ['real_scenes', 'hypothetical_scenes']")
81
-
82
- scene = parts[2]
83
- data_dir = os.path.join(category, scene)
84
-
85
- return [
86
- datasets.SplitGenerator(
87
- name=datasets.Split.TRAIN,
88
- gen_kwargs={"data_dir": data_dir},
89
- )
90
- ]
91
-
92
- def _generate_examples(self, data_dir):
93
- # Find the .csv file
94
- csv_files = list(Path(data_dir).rglob("*.csv"))
95
- csv_files = [f for f in Path(data_dir).rglob("*.csv") if not f.name.startswith("._")]
96
- if not csv_files:
97
- print(f"\033[33m[SKIP] No CSV found in {data_dir}, skipping this config.\033[0m")
98
- return # ✅ 跳过该 config,不报错
99
- csv_path = csv_files[0]
100
- df = pd.read_csv(csv_path)
101
- if "image" not in df.columns:
102
- print(f"\033[31m[SKIP] 'image' column not found in {csv_path}, skipping this config.\033[0m")
103
- return
104
-
105
- # sub_folders = [os.path.join(data_dir, i) for i in os.listdir(data_dir) if os.path.isdir(os.path.join(data_dir, i))]
106
-
107
- def color(text, code):
108
- return f"\033[{code}m{text}\033[0m"
109
- # print()
110
- # print(color(f"data_dir: {data_dir}", "36")) # Cyan
111
- # print(color(f"csv_path: {csv_path}", "33")) # Yellow
112
- # print(color(f"csv_path.name: {csv_path.name}", "35")) # Magenta
113
- # print(color(f"CSV columns: {list(df.columns)}", "32")) # Green
114
-
115
- images = df["image"].tolist()
116
- # images only contain image names
117
-
118
- images = [i.split('/')[-1].split('.')[0] for i in images if i.endswith(('.png', '.jpg', '.jpeg'))]
119
-
120
-
121
- # Load image paths
122
- try:
123
- image_files = {}
124
- for ext in ("*.png", "*.jpg", "*.jpeg"):
125
- for img_path in Path(data_dir).rglob(ext):
126
- relative_path = str(img_path.relative_to(data_dir))
127
- image_files[relative_path] = str(img_path)
128
- parts = [i.split('/')[0] for i in list(image_files.keys())]
129
- parts = set(parts)
130
- if "part_000" not in parts:
131
- parts= ['']
132
-
133
-
134
- except Exception as e:
135
- print(color(f"Error loading images: {e}", "31")) # Red
136
- return
137
- try:
138
- # Match CSV rows with image paths
139
- for idx, row in tqdm(df.iterrows(), total=len(df), desc="Processing rows", unit="row"):
140
- fname = row["ID"]
141
- raw_record_img_path = row["image"]
142
- record_img_name = raw_record_img_path.split('/')[-1]
143
- for part in parts:
144
- if part == '':
145
- record_img_path = record_img_name
146
- else:
147
- record_img_path = "/".join([part, record_img_name.strip()])
148
- if "Water_flow_scene_render" in data_dir:
149
- record_img_path = "/".join([part, str(int(record_img_name.strip().split('.')[0]))+".png"])
150
-
151
- # print(f"raw_record_img_path: {raw_record_img_path}")
152
- # print(f"record_img_name: {record_img_name}")
153
- # print("part: ", part)
154
- # print(f"part: {part}, record_img_name: {record_img_name}, record_img_path: {record_img_path}")
155
- # print(f"record_img_path in image_files: {record_img_path in image_files}")
156
- # print(image_files.keys())
157
- # print(f"part: {part}, record_img_name: {record_img_name}, record_img_path: {record_img_path}, "
158
- # f"record_image_path in image_files: {record_img_path in image_files}, image_files,key[0]: {list(image_files.keys())[0]}")
159
- # print(image_files)
160
- # exit(0)
161
- if record_img_path in image_files:
162
- # print(color(f"record_img_path: { image_files[record_img_path]}", "34")) # Blue
163
- yield idx, {
164
- "image": image_files[record_img_path],
165
- "file_name": fname,
166
- "metadata": row.to_json(),
167
- }
168
- break
169
-
170
-
171
- except Exception as e:
172
- print(color(f"Error processing CSV rows: {e}", "31"))
173
-
174
-
175
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dataset_infos.json DELETED
@@ -1,899 +0,0 @@
1
- {
2
- "hypothetical_scenes_Hypothetic_v2_linear": {
3
- "description": "Causal3D is a benchmark for evaluating causal reasoning in physical and hypothetical visual scenes. \nIt includes both real-world recordings and rendered synthetic scenes demonstrating causal interactions.\n",
4
- "citation": "@article{liu2025causal3d,\n title={CAUSAL3D: A Comprehensive Benchmark for Causal Learning from Visual Data},\n author={Liu, Disheng and Qiao, Yiran and Liu, Wuche and Lu, Yiren and Zhou, Yunlai and Liang, Tuo and Yin, Yu and Ma, Jing},\n journal={arXiv preprint arXiv:2503.04852},\n year={2025}\n}",
5
- "homepage": "https://huggingface.co/datasets/LLDDSS/Causal3D",
6
- "license": "CC-BY-4.0",
7
- "features": {
8
- "image": {
9
- "_type": "Image"
10
- },
11
- "file_name": {
12
- "dtype": "string",
13
- "_type": "Value"
14
- },
15
- "metadata": {
16
- "dtype": "string",
17
- "_type": "Value"
18
- }
19
- },
20
- "builder_name": "dataset",
21
- "version": {
22
- "version_str": "1.0.0",
23
- "major": 1,
24
- "minor": 0,
25
- "patch": 0
26
- },
27
- "splits": {
28
- "train": {
29
- "name": "train",
30
- "num_bytes": 0,
31
- "num_examples": 0,
32
- "dataset_name": "dataset"
33
- }
34
- },
35
- "download_checksums": {},
36
- "download_size": 0,
37
- "dataset_size": 0,
38
- "size_in_bytes": 0,
39
- "config_name": "hypothetical_scenes_Hypothetic_v2_linear"
40
- },
41
- "hypothetical_scenes_Hypothetic_v2_nonlinear": {
42
- "description": "Causal3D is a benchmark for evaluating causal reasoning in physical and hypothetical visual scenes. \nIt includes both real-world recordings and rendered synthetic scenes demonstrating causal interactions.\n",
43
- "citation": "@article{liu2025causal3d,\n title={CAUSAL3D: A Comprehensive Benchmark for Causal Learning from Visual Data},\n author={Liu, Disheng and Qiao, Yiran and Liu, Wuche and Lu, Yiren and Zhou, Yunlai and Liang, Tuo and Yin, Yu and Ma, Jing},\n journal={arXiv preprint arXiv:2503.04852},\n year={2025}\n}",
44
- "homepage": "https://huggingface.co/datasets/LLDDSS/Causal3D",
45
- "license": "CC-BY-4.0",
46
- "features": {
47
- "image": {
48
- "_type": "Image"
49
- },
50
- "file_name": {
51
- "dtype": "string",
52
- "_type": "Value"
53
- },
54
- "metadata": {
55
- "dtype": "string",
56
- "_type": "Value"
57
- }
58
- },
59
- "builder_name": "dataset",
60
- "version": {
61
- "version_str": "1.0.0",
62
- "major": 1,
63
- "minor": 0,
64
- "patch": 0
65
- },
66
- "splits": {
67
- "train": {
68
- "name": "train",
69
- "num_bytes": 0,
70
- "num_examples": 0,
71
- "dataset_name": "dataset"
72
- }
73
- },
74
- "download_checksums": {},
75
- "download_size": 0,
76
- "dataset_size": 0,
77
- "size_in_bytes": 0,
78
- "config_name": "hypothetical_scenes_Hypothetic_v2_nonlinear"
79
- },
80
- "hypothetical_scenes_Hypothetic_v3_fully_connected_linear": {
81
- "description": "Causal3D is a benchmark for evaluating causal reasoning in physical and hypothetical visual scenes. \nIt includes both real-world recordings and rendered synthetic scenes demonstrating causal interactions.\n",
82
- "citation": "@article{liu2025causal3d,\n title={CAUSAL3D: A Comprehensive Benchmark for Causal Learning from Visual Data},\n author={Liu, Disheng and Qiao, Yiran and Liu, Wuche and Lu, Yiren and Zhou, Yunlai and Liang, Tuo and Yin, Yu and Ma, Jing},\n journal={arXiv preprint arXiv:2503.04852},\n year={2025}\n}",
83
- "homepage": "https://huggingface.co/datasets/LLDDSS/Causal3D",
84
- "license": "CC-BY-4.0",
85
- "features": {
86
- "image": {
87
- "_type": "Image"
88
- },
89
- "file_name": {
90
- "dtype": "string",
91
- "_type": "Value"
92
- },
93
- "metadata": {
94
- "dtype": "string",
95
- "_type": "Value"
96
- }
97
- },
98
- "builder_name": "dataset",
99
- "version": {
100
- "version_str": "1.0.0",
101
- "major": 1,
102
- "minor": 0,
103
- "patch": 0
104
- },
105
- "splits": {
106
- "train": {
107
- "name": "train",
108
- "num_bytes": 0,
109
- "num_examples": 0,
110
- "dataset_name": "dataset"
111
- }
112
- },
113
- "download_checksums": {},
114
- "download_size": 0,
115
- "dataset_size": 0,
116
- "size_in_bytes": 0,
117
- "config_name": "hypothetical_scenes_Hypothetic_v3_fully_connected_linear"
118
- },
119
- "hypothetical_scenes_Hypothetic_v4_linear_full_connected": {
120
- "description": "Causal3D is a benchmark for evaluating causal reasoning in physical and hypothetical visual scenes. \nIt includes both real-world recordings and rendered synthetic scenes demonstrating causal interactions.\n",
121
- "citation": "@article{liu2025causal3d,\n title={CAUSAL3D: A Comprehensive Benchmark for Causal Learning from Visual Data},\n author={Liu, Disheng and Qiao, Yiran and Liu, Wuche and Lu, Yiren and Zhou, Yunlai and Liang, Tuo and Yin, Yu and Ma, Jing},\n journal={arXiv preprint arXiv:2503.04852},\n year={2025}\n}",
122
- "homepage": "https://huggingface.co/datasets/LLDDSS/Causal3D",
123
- "license": "CC-BY-4.0",
124
- "features": {
125
- "image": {
126
- "_type": "Image"
127
- },
128
- "file_name": {
129
- "dtype": "string",
130
- "_type": "Value"
131
- },
132
- "metadata": {
133
- "dtype": "string",
134
- "_type": "Value"
135
- }
136
- },
137
- "builder_name": "dataset",
138
- "version": {
139
- "version_str": "1.0.0",
140
- "major": 1,
141
- "minor": 0,
142
- "patch": 0
143
- },
144
- "splits": {
145
- "train": {
146
- "name": "train",
147
- "num_bytes": 0,
148
- "num_examples": 0,
149
- "dataset_name": "dataset"
150
- }
151
- },
152
- "download_checksums": {},
153
- "download_size": 0,
154
- "dataset_size": 0,
155
- "size_in_bytes": 0,
156
- "config_name": "hypothetical_scenes_Hypothetic_v4_linear_full_connected"
157
- },
158
- "hypothetical_scenes_Hypothetic_v4_linear_v": {
159
- "description": "Causal3D is a benchmark for evaluating causal reasoning in physical and hypothetical visual scenes. \nIt includes both real-world recordings and rendered synthetic scenes demonstrating causal interactions.\n",
160
- "citation": "@article{liu2025causal3d,\n title={CAUSAL3D: A Comprehensive Benchmark for Causal Learning from Visual Data},\n author={Liu, Disheng and Qiao, Yiran and Liu, Wuche and Lu, Yiren and Zhou, Yunlai and Liang, Tuo and Yin, Yu and Ma, Jing},\n journal={arXiv preprint arXiv:2503.04852},\n year={2025}\n}",
161
- "homepage": "https://huggingface.co/datasets/LLDDSS/Causal3D",
162
- "license": "CC-BY-4.0",
163
- "features": {
164
- "image": {
165
- "_type": "Image"
166
- },
167
- "file_name": {
168
- "dtype": "string",
169
- "_type": "Value"
170
- },
171
- "metadata": {
172
- "dtype": "string",
173
- "_type": "Value"
174
- }
175
- },
176
- "builder_name": "dataset",
177
- "version": {
178
- "version_str": "1.0.0",
179
- "major": 1,
180
- "minor": 0,
181
- "patch": 0
182
- },
183
- "splits": {
184
- "train": {
185
- "name": "train",
186
- "num_bytes": 0,
187
- "num_examples": 0,
188
- "dataset_name": "dataset"
189
- }
190
- },
191
- "download_checksums": {},
192
- "download_size": 0,
193
- "dataset_size": 0,
194
- "size_in_bytes": 0,
195
- "config_name": "hypothetical_scenes_Hypothetic_v4_linear_v"
196
- },
197
- "hypothetical_scenes_Hypothetic_v4_nonlinear_v": {
198
- "description": "Causal3D is a benchmark for evaluating causal reasoning in physical and hypothetical visual scenes. \nIt includes both real-world recordings and rendered synthetic scenes demonstrating causal interactions.\n",
199
- "citation": "@article{liu2025causal3d,\n title={CAUSAL3D: A Comprehensive Benchmark for Causal Learning from Visual Data},\n author={Liu, Disheng and Qiao, Yiran and Liu, Wuche and Lu, Yiren and Zhou, Yunlai and Liang, Tuo and Yin, Yu and Ma, Jing},\n journal={arXiv preprint arXiv:2503.04852},\n year={2025}\n}",
200
- "homepage": "https://huggingface.co/datasets/LLDDSS/Causal3D",
201
- "license": "CC-BY-4.0",
202
- "features": {
203
- "image": {
204
- "_type": "Image"
205
- },
206
- "file_name": {
207
- "dtype": "string",
208
- "_type": "Value"
209
- },
210
- "metadata": {
211
- "dtype": "string",
212
- "_type": "Value"
213
- }
214
- },
215
- "builder_name": "dataset",
216
- "version": {
217
- "version_str": "1.0.0",
218
- "major": 1,
219
- "minor": 0,
220
- "patch": 0
221
- },
222
- "splits": {
223
- "train": {
224
- "name": "train",
225
- "num_bytes": 0,
226
- "num_examples": 0,
227
- "dataset_name": "dataset"
228
- }
229
- },
230
- "download_checksums": {},
231
- "download_size": 0,
232
- "dataset_size": 0,
233
- "size_in_bytes": 0,
234
- "config_name": "hypothetical_scenes_Hypothetic_v4_nonlinear_v"
235
- },
236
- "hypothetical_scenes_Hypothetic_v5_linear": {
237
- "description": "Causal3D is a benchmark for evaluating causal reasoning in physical and hypothetical visual scenes. \nIt includes both real-world recordings and rendered synthetic scenes demonstrating causal interactions.\n",
238
- "citation": "@article{liu2025causal3d,\n title={CAUSAL3D: A Comprehensive Benchmark for Causal Learning from Visual Data},\n author={Liu, Disheng and Qiao, Yiran and Liu, Wuche and Lu, Yiren and Zhou, Yunlai and Liang, Tuo and Yin, Yu and Ma, Jing},\n journal={arXiv preprint arXiv:2503.04852},\n year={2025}\n}",
239
- "homepage": "https://huggingface.co/datasets/LLDDSS/Causal3D",
240
- "license": "CC-BY-4.0",
241
- "features": {
242
- "image": {
243
- "_type": "Image"
244
- },
245
- "file_name": {
246
- "dtype": "string",
247
- "_type": "Value"
248
- },
249
- "metadata": {
250
- "dtype": "string",
251
- "_type": "Value"
252
- }
253
- },
254
- "builder_name": "dataset",
255
- "version": {
256
- "version_str": "1.0.0",
257
- "major": 1,
258
- "minor": 0,
259
- "patch": 0
260
- },
261
- "splits": {
262
- "train": {
263
- "name": "train",
264
- "num_bytes": 0,
265
- "num_examples": 0,
266
- "dataset_name": "dataset"
267
- }
268
- },
269
- "download_checksums": {},
270
- "download_size": 0,
271
- "dataset_size": 0,
272
- "size_in_bytes": 0,
273
- "config_name": "hypothetical_scenes_Hypothetic_v5_linear"
274
- },
275
- "hypothetical_scenes_Hypothetic_v5_linear_full_connected": {
276
- "description": "Causal3D is a benchmark for evaluating causal reasoning in physical and hypothetical visual scenes. \nIt includes both real-world recordings and rendered synthetic scenes demonstrating causal interactions.\n",
277
- "citation": "@article{liu2025causal3d,\n title={CAUSAL3D: A Comprehensive Benchmark for Causal Learning from Visual Data},\n author={Liu, Disheng and Qiao, Yiran and Liu, Wuche and Lu, Yiren and Zhou, Yunlai and Liang, Tuo and Yin, Yu and Ma, Jing},\n journal={arXiv preprint arXiv:2503.04852},\n year={2025}\n}",
278
- "homepage": "https://huggingface.co/datasets/LLDDSS/Causal3D",
279
- "license": "CC-BY-4.0",
280
- "features": {
281
- "image": {
282
- "_type": "Image"
283
- },
284
- "file_name": {
285
- "dtype": "string",
286
- "_type": "Value"
287
- },
288
- "metadata": {
289
- "dtype": "string",
290
- "_type": "Value"
291
- }
292
- },
293
- "builder_name": "dataset",
294
- "version": {
295
- "version_str": "1.0.0",
296
- "major": 1,
297
- "minor": 0,
298
- "patch": 0
299
- },
300
- "splits": {
301
- "train": {
302
- "name": "train",
303
- "num_bytes": 0,
304
- "num_examples": 0,
305
- "dataset_name": "dataset"
306
- }
307
- },
308
- "download_checksums": {},
309
- "download_size": 0,
310
- "dataset_size": 0,
311
- "size_in_bytes": 0,
312
- "config_name": "hypothetical_scenes_Hypothetic_v5_linear_full_connected"
313
- },
314
- "hypothetical_scenes_rendered_h3_linear_128P": {
315
- "description": "Causal3D is a benchmark for evaluating causal reasoning in physical and hypothetical visual scenes. \nIt includes both real-world recordings and rendered synthetic scenes demonstrating causal interactions.\n",
316
- "citation": "@article{liu2025causal3d,\n title={CAUSAL3D: A Comprehensive Benchmark for Causal Learning from Visual Data},\n author={Liu, Disheng and Qiao, Yiran and Liu, Wuche and Lu, Yiren and Zhou, Yunlai and Liang, Tuo and Yin, Yu and Ma, Jing},\n journal={arXiv preprint arXiv:2503.04852},\n year={2025}\n}",
317
- "homepage": "https://huggingface.co/datasets/LLDDSS/Causal3D",
318
- "license": "CC-BY-4.0",
319
- "features": {
320
- "image": {
321
- "_type": "Image"
322
- },
323
- "file_name": {
324
- "dtype": "string",
325
- "_type": "Value"
326
- },
327
- "metadata": {
328
- "dtype": "string",
329
- "_type": "Value"
330
- }
331
- },
332
- "builder_name": "dataset",
333
- "version": {
334
- "version_str": "1.0.0",
335
- "major": 1,
336
- "minor": 0,
337
- "patch": 0
338
- },
339
- "splits": {
340
- "train": {
341
- "name": "train",
342
- "num_bytes": 0,
343
- "num_examples": 0,
344
- "dataset_name": "dataset"
345
- }
346
- },
347
- "download_checksums": {},
348
- "download_size": 0,
349
- "dataset_size": 0,
350
- "size_in_bytes": 0,
351
- "config_name": "hypothetical_scenes_rendered_h3_linear_128P"
352
- },
353
- "hypothetical_scenes_rendered_h3_nonlinear_128P": {
354
- "description": "Causal3D is a benchmark for evaluating causal reasoning in physical and hypothetical visual scenes. \nIt includes both real-world recordings and rendered synthetic scenes demonstrating causal interactions.\n",
355
- "citation": "@article{liu2025causal3d,\n title={CAUSAL3D: A Comprehensive Benchmark for Causal Learning from Visual Data},\n author={Liu, Disheng and Qiao, Yiran and Liu, Wuche and Lu, Yiren and Zhou, Yunlai and Liang, Tuo and Yin, Yu and Ma, Jing},\n journal={arXiv preprint arXiv:2503.04852},\n year={2025}\n}",
356
- "homepage": "https://huggingface.co/datasets/LLDDSS/Causal3D",
357
- "license": "CC-BY-4.0",
358
- "features": {
359
- "image": {
360
- "_type": "Image"
361
- },
362
- "file_name": {
363
- "dtype": "string",
364
- "_type": "Value"
365
- },
366
- "metadata": {
367
- "dtype": "string",
368
- "_type": "Value"
369
- }
370
- },
371
- "builder_name": "dataset",
372
- "version": {
373
- "version_str": "1.0.0",
374
- "major": 1,
375
- "minor": 0,
376
- "patch": 0
377
- },
378
- "splits": {
379
- "train": {
380
- "name": "train",
381
- "num_bytes": 0,
382
- "num_examples": 0,
383
- "dataset_name": "dataset"
384
- }
385
- },
386
- "download_checksums": {},
387
- "download_size": 0,
388
- "dataset_size": 0,
389
- "size_in_bytes": 0,
390
- "config_name": "hypothetical_scenes_rendered_h3_nonlinear_128P"
391
- },
392
- "hypothetical_scenes_rendered_h5_nonlinear": {
393
- "description": "Causal3D is a benchmark for evaluating causal reasoning in physical and hypothetical visual scenes. \nIt includes both real-world recordings and rendered synthetic scenes demonstrating causal interactions.\n",
394
- "citation": "@article{liu2025causal3d,\n title={CAUSAL3D: A Comprehensive Benchmark for Causal Learning from Visual Data},\n author={Liu, Disheng and Qiao, Yiran and Liu, Wuche and Lu, Yiren and Zhou, Yunlai and Liang, Tuo and Yin, Yu and Ma, Jing},\n journal={arXiv preprint arXiv:2503.04852},\n year={2025}\n}",
395
- "homepage": "https://huggingface.co/datasets/LLDDSS/Causal3D",
396
- "license": "CC-BY-4.0",
397
- "features": {
398
- "image": {
399
- "_type": "Image"
400
- },
401
- "file_name": {
402
- "dtype": "string",
403
- "_type": "Value"
404
- },
405
- "metadata": {
406
- "dtype": "string",
407
- "_type": "Value"
408
- }
409
- },
410
- "builder_name": "dataset",
411
- "version": {
412
- "version_str": "1.0.0",
413
- "major": 1,
414
- "minor": 0,
415
- "patch": 0
416
- },
417
- "splits": {
418
- "train": {
419
- "name": "train",
420
- "num_bytes": 0,
421
- "num_examples": 0,
422
- "dataset_name": "dataset"
423
- }
424
- },
425
- "download_checksums": {},
426
- "download_size": 0,
427
- "dataset_size": 0,
428
- "size_in_bytes": 0,
429
- "config_name": "hypothetical_scenes_rendered_h5_nonlinear"
430
- },
431
- "real_scenes_Real_Parabola": {
432
- "description": "Causal3D is a benchmark for evaluating causal reasoning in physical and hypothetical visual scenes. \nIt includes both real-world recordings and rendered synthetic scenes demonstrating causal interactions.\n",
433
- "citation": "@article{liu2025causal3d,\n title={CAUSAL3D: A Comprehensive Benchmark for Causal Learning from Visual Data},\n author={Liu, Disheng and Qiao, Yiran and Liu, Wuche and Lu, Yiren and Zhou, Yunlai and Liang, Tuo and Yin, Yu and Ma, Jing},\n journal={arXiv preprint arXiv:2503.04852},\n year={2025}\n}",
434
- "homepage": "https://huggingface.co/datasets/LLDDSS/Causal3D",
435
- "license": "CC-BY-4.0",
436
- "features": {
437
- "image": {
438
- "_type": "Image"
439
- },
440
- "file_name": {
441
- "dtype": "string",
442
- "_type": "Value"
443
- },
444
- "metadata": {
445
- "dtype": "string",
446
- "_type": "Value"
447
- }
448
- },
449
- "builder_name": "dataset",
450
- "version": {
451
- "version_str": "1.0.0",
452
- "major": 1,
453
- "minor": 0,
454
- "patch": 0
455
- },
456
- "splits": {
457
- "train": {
458
- "name": "train",
459
- "num_bytes": 0,
460
- "num_examples": 0,
461
- "dataset_name": "dataset"
462
- }
463
- },
464
- "download_checksums": {},
465
- "download_size": 0,
466
- "dataset_size": 0,
467
- "size_in_bytes": 0,
468
- "config_name": "real_scenes_Real_Parabola"
469
- },
470
- "real_scenes_Real_magnet_v3": {
471
- "description": "Causal3D is a benchmark for evaluating causal reasoning in physical and hypothetical visual scenes. \nIt includes both real-world recordings and rendered synthetic scenes demonstrating causal interactions.\n",
472
- "citation": "@article{liu2025causal3d,\n title={CAUSAL3D: A Comprehensive Benchmark for Causal Learning from Visual Data},\n author={Liu, Disheng and Qiao, Yiran and Liu, Wuche and Lu, Yiren and Zhou, Yunlai and Liang, Tuo and Yin, Yu and Ma, Jing},\n journal={arXiv preprint arXiv:2503.04852},\n year={2025}\n}",
473
- "homepage": "https://huggingface.co/datasets/LLDDSS/Causal3D",
474
- "license": "CC-BY-4.0",
475
- "features": {
476
- "image": {
477
- "_type": "Image"
478
- },
479
- "file_name": {
480
- "dtype": "string",
481
- "_type": "Value"
482
- },
483
- "metadata": {
484
- "dtype": "string",
485
- "_type": "Value"
486
- }
487
- },
488
- "builder_name": "dataset",
489
- "version": {
490
- "version_str": "1.0.0",
491
- "major": 1,
492
- "minor": 0,
493
- "patch": 0
494
- },
495
- "splits": {
496
- "train": {
497
- "name": "train",
498
- "num_bytes": 0,
499
- "num_examples": 0,
500
- "dataset_name": "dataset"
501
- }
502
- },
503
- "download_checksums": {},
504
- "download_size": 0,
505
- "dataset_size": 0,
506
- "size_in_bytes": 0,
507
- "config_name": "real_scenes_Real_magnet_v3"
508
- },
509
- "real_scenes_Real_magnet_v3_5": {
510
- "description": "Causal3D is a benchmark for evaluating causal reasoning in physical and hypothetical visual scenes. \nIt includes both real-world recordings and rendered synthetic scenes demonstrating causal interactions.\n",
511
- "citation": "@article{liu2025causal3d,\n title={CAUSAL3D: A Comprehensive Benchmark for Causal Learning from Visual Data},\n author={Liu, Disheng and Qiao, Yiran and Liu, Wuche and Lu, Yiren and Zhou, Yunlai and Liang, Tuo and Yin, Yu and Ma, Jing},\n journal={arXiv preprint arXiv:2503.04852},\n year={2025}\n}",
512
- "homepage": "https://huggingface.co/datasets/LLDDSS/Causal3D",
513
- "license": "CC-BY-4.0",
514
- "features": {
515
- "image": {
516
- "_type": "Image"
517
- },
518
- "file_name": {
519
- "dtype": "string",
520
- "_type": "Value"
521
- },
522
- "metadata": {
523
- "dtype": "string",
524
- "_type": "Value"
525
- }
526
- },
527
- "builder_name": "dataset",
528
- "version": {
529
- "version_str": "1.0.0",
530
- "major": 1,
531
- "minor": 0,
532
- "patch": 0
533
- },
534
- "splits": {
535
- "train": {
536
- "name": "train",
537
- "num_bytes": 0,
538
- "num_examples": 0,
539
- "dataset_name": "dataset"
540
- }
541
- },
542
- "download_checksums": {},
543
- "download_size": 0,
544
- "dataset_size": 0,
545
- "size_in_bytes": 0,
546
- "config_name": "real_scenes_Real_magnet_v3_5"
547
- },
548
- "real_scenes_Real_parabola_multi_view": {
549
- "description": "Causal3D is a benchmark for evaluating causal reasoning in physical and hypothetical visual scenes. \nIt includes both real-world recordings and rendered synthetic scenes demonstrating causal interactions.\n",
550
- "citation": "@article{liu2025causal3d,\n title={CAUSAL3D: A Comprehensive Benchmark for Causal Learning from Visual Data},\n author={Liu, Disheng and Qiao, Yiran and Liu, Wuche and Lu, Yiren and Zhou, Yunlai and Liang, Tuo and Yin, Yu and Ma, Jing},\n journal={arXiv preprint arXiv:2503.04852},\n year={2025}\n}",
551
- "homepage": "https://huggingface.co/datasets/LLDDSS/Causal3D",
552
- "license": "CC-BY-4.0",
553
- "features": {
554
- "image": {
555
- "_type": "Image"
556
- },
557
- "file_name": {
558
- "dtype": "string",
559
- "_type": "Value"
560
- },
561
- "metadata": {
562
- "dtype": "string",
563
- "_type": "Value"
564
- }
565
- },
566
- "builder_name": "dataset",
567
- "version": {
568
- "version_str": "1.0.0",
569
- "major": 1,
570
- "minor": 0,
571
- "patch": 0
572
- },
573
- "splits": {
574
- "train": {
575
- "name": "train",
576
- "num_bytes": 0,
577
- "num_examples": 0,
578
- "dataset_name": "dataset"
579
- }
580
- },
581
- "download_checksums": {},
582
- "download_size": 0,
583
- "dataset_size": 0,
584
- "size_in_bytes": 0,
585
- "config_name": "real_scenes_Real_parabola_multi_view"
586
- },
587
- "real_scenes_Real_spring_v3_256P": {
588
- "description": "Causal3D is a benchmark for evaluating causal reasoning in physical and hypothetical visual scenes. \nIt includes both real-world recordings and rendered synthetic scenes demonstrating causal interactions.\n",
589
- "citation": "@article{liu2025causal3d,\n title={CAUSAL3D: A Comprehensive Benchmark for Causal Learning from Visual Data},\n author={Liu, Disheng and Qiao, Yiran and Liu, Wuche and Lu, Yiren and Zhou, Yunlai and Liang, Tuo and Yin, Yu and Ma, Jing},\n journal={arXiv preprint arXiv:2503.04852},\n year={2025}\n}",
590
- "homepage": "https://huggingface.co/datasets/LLDDSS/Causal3D",
591
- "license": "CC-BY-4.0",
592
- "features": {
593
- "image": {
594
- "_type": "Image"
595
- },
596
- "file_name": {
597
- "dtype": "string",
598
- "_type": "Value"
599
- },
600
- "metadata": {
601
- "dtype": "string",
602
- "_type": "Value"
603
- }
604
- },
605
- "builder_name": "dataset",
606
- "version": {
607
- "version_str": "1.0.0",
608
- "major": 1,
609
- "minor": 0,
610
- "patch": 0
611
- },
612
- "splits": {
613
- "train": {
614
- "name": "train",
615
- "num_bytes": 0,
616
- "num_examples": 0,
617
- "dataset_name": "dataset"
618
- }
619
- },
620
- "download_checksums": {},
621
- "download_size": 0,
622
- "dataset_size": 0,
623
- "size_in_bytes": 0,
624
- "config_name": "real_scenes_Real_spring_v3_256P"
625
- },
626
- "real_scenes_Water_flow_scene_render": {
627
- "description": "Causal3D is a benchmark for evaluating causal reasoning in physical and hypothetical visual scenes. \nIt includes both real-world recordings and rendered synthetic scenes demonstrating causal interactions.\n",
628
- "citation": "@article{liu2025causal3d,\n title={CAUSAL3D: A Comprehensive Benchmark for Causal Learning from Visual Data},\n author={Liu, Disheng and Qiao, Yiran and Liu, Wuche and Lu, Yiren and Zhou, Yunlai and Liang, Tuo and Yin, Yu and Ma, Jing},\n journal={arXiv preprint arXiv:2503.04852},\n year={2025}\n}",
629
- "homepage": "https://huggingface.co/datasets/LLDDSS/Causal3D",
630
- "license": "CC-BY-4.0",
631
- "features": {
632
- "image": {
633
- "_type": "Image"
634
- },
635
- "file_name": {
636
- "dtype": "string",
637
- "_type": "Value"
638
- },
639
- "metadata": {
640
- "dtype": "string",
641
- "_type": "Value"
642
- }
643
- },
644
- "builder_name": "dataset",
645
- "version": {
646
- "version_str": "1.0.0",
647
- "major": 1,
648
- "minor": 0,
649
- "patch": 0
650
- },
651
- "splits": {
652
- "train": {
653
- "name": "train",
654
- "num_bytes": 0,
655
- "num_examples": 0,
656
- "dataset_name": "dataset"
657
- }
658
- },
659
- "download_checksums": {},
660
- "download_size": 0,
661
- "dataset_size": 0,
662
- "size_in_bytes": 0,
663
- "config_name": "real_scenes_Water_flow_scene_render"
664
- },
665
- "real_scenes_convex_len_render_images": {
666
- "description": "Causal3D is a benchmark for evaluating causal reasoning in physical and hypothetical visual scenes. \nIt includes both real-world recordings and rendered synthetic scenes demonstrating causal interactions.\n",
667
- "citation": "@article{liu2025causal3d,\n title={CAUSAL3D: A Comprehensive Benchmark for Causal Learning from Visual Data},\n author={Liu, Disheng and Qiao, Yiran and Liu, Wuche and Lu, Yiren and Zhou, Yunlai and Liang, Tuo and Yin, Yu and Ma, Jing},\n journal={arXiv preprint arXiv:2503.04852},\n year={2025}\n}",
668
- "homepage": "https://huggingface.co/datasets/LLDDSS/Causal3D",
669
- "license": "CC-BY-4.0",
670
- "features": {
671
- "image": {
672
- "_type": "Image"
673
- },
674
- "file_name": {
675
- "dtype": "string",
676
- "_type": "Value"
677
- },
678
- "metadata": {
679
- "dtype": "string",
680
- "_type": "Value"
681
- }
682
- },
683
- "builder_name": "dataset",
684
- "version": {
685
- "version_str": "1.0.0",
686
- "major": 1,
687
- "minor": 0,
688
- "patch": 0
689
- },
690
- "splits": {
691
- "train": {
692
- "name": "train",
693
- "num_bytes": 0,
694
- "num_examples": 0,
695
- "dataset_name": "dataset"
696
- }
697
- },
698
- "download_checksums": {},
699
- "download_size": 0,
700
- "dataset_size": 0,
701
- "size_in_bytes": 0,
702
- "config_name": "real_scenes_convex_len_render_images"
703
- },
704
- "real_scenes_real_pendulum": {
705
- "description": "Causal3D is a benchmark for evaluating causal reasoning in physical and hypothetical visual scenes. \nIt includes both real-world recordings and rendered synthetic scenes demonstrating causal interactions.\n",
706
- "citation": "@article{liu2025causal3d,\n title={CAUSAL3D: A Comprehensive Benchmark for Causal Learning from Visual Data},\n author={Liu, Disheng and Qiao, Yiran and Liu, Wuche and Lu, Yiren and Zhou, Yunlai and Liang, Tuo and Yin, Yu and Ma, Jing},\n journal={arXiv preprint arXiv:2503.04852},\n year={2025}\n}",
707
- "homepage": "https://huggingface.co/datasets/LLDDSS/Causal3D",
708
- "license": "CC-BY-4.0",
709
- "features": {
710
- "image": {
711
- "_type": "Image"
712
- },
713
- "file_name": {
714
- "dtype": "string",
715
- "_type": "Value"
716
- },
717
- "metadata": {
718
- "dtype": "string",
719
- "_type": "Value"
720
- }
721
- },
722
- "builder_name": "dataset",
723
- "version": {
724
- "version_str": "1.0.0",
725
- "major": 1,
726
- "minor": 0,
727
- "patch": 0
728
- },
729
- "splits": {
730
- "train": {
731
- "name": "train",
732
- "num_bytes": 0,
733
- "num_examples": 0,
734
- "dataset_name": "dataset"
735
- }
736
- },
737
- "download_checksums": {},
738
- "download_size": 0,
739
- "dataset_size": 0,
740
- "size_in_bytes": 0,
741
- "config_name": "real_scenes_real_pendulum"
742
- },
743
- "real_scenes_rendered_magnetic_128": {
744
- "description": "Causal3D is a benchmark for evaluating causal reasoning in physical and hypothetical visual scenes. \nIt includes both real-world recordings and rendered synthetic scenes demonstrating causal interactions.\n",
745
- "citation": "@article{liu2025causal3d,\n title={CAUSAL3D: A Comprehensive Benchmark for Causal Learning from Visual Data},\n author={Liu, Disheng and Qiao, Yiran and Liu, Wuche and Lu, Yiren and Zhou, Yunlai and Liang, Tuo and Yin, Yu and Ma, Jing},\n journal={arXiv preprint arXiv:2503.04852},\n year={2025}\n}",
746
- "homepage": "https://huggingface.co/datasets/LLDDSS/Causal3D",
747
- "license": "CC-BY-4.0",
748
- "features": {
749
- "image": {
750
- "_type": "Image"
751
- },
752
- "file_name": {
753
- "dtype": "string",
754
- "_type": "Value"
755
- },
756
- "metadata": {
757
- "dtype": "string",
758
- "_type": "Value"
759
- }
760
- },
761
- "builder_name": "dataset",
762
- "version": {
763
- "version_str": "1.0.0",
764
- "major": 1,
765
- "minor": 0,
766
- "patch": 0
767
- },
768
- "splits": {
769
- "train": {
770
- "name": "train",
771
- "num_bytes": 0,
772
- "num_examples": 0,
773
- "dataset_name": "dataset"
774
- }
775
- },
776
- "download_checksums": {},
777
- "download_size": 0,
778
- "dataset_size": 0,
779
- "size_in_bytes": 0,
780
- "config_name": "real_scenes_rendered_magnetic_128"
781
- },
782
- "real_scenes_rendered_reflection_128P": {
783
- "description": "Causal3D is a benchmark for evaluating causal reasoning in physical and hypothetical visual scenes. \nIt includes both real-world recordings and rendered synthetic scenes demonstrating causal interactions.\n",
784
- "citation": "@article{liu2025causal3d,\n title={CAUSAL3D: A Comprehensive Benchmark for Causal Learning from Visual Data},\n author={Liu, Disheng and Qiao, Yiran and Liu, Wuche and Lu, Yiren and Zhou, Yunlai and Liang, Tuo and Yin, Yu and Ma, Jing},\n journal={arXiv preprint arXiv:2503.04852},\n year={2025}\n}",
785
- "homepage": "https://huggingface.co/datasets/LLDDSS/Causal3D",
786
- "license": "CC-BY-4.0",
787
- "features": {
788
- "image": {
789
- "_type": "Image"
790
- },
791
- "file_name": {
792
- "dtype": "string",
793
- "_type": "Value"
794
- },
795
- "metadata": {
796
- "dtype": "string",
797
- "_type": "Value"
798
- }
799
- },
800
- "builder_name": "dataset",
801
- "version": {
802
- "version_str": "1.0.0",
803
- "major": 1,
804
- "minor": 0,
805
- "patch": 0
806
- },
807
- "splits": {
808
- "train": {
809
- "name": "train",
810
- "num_bytes": 0,
811
- "num_examples": 0,
812
- "dataset_name": "dataset"
813
- }
814
- },
815
- "download_checksums": {},
816
- "download_size": 0,
817
- "dataset_size": 0,
818
- "size_in_bytes": 0,
819
- "config_name": "real_scenes_rendered_reflection_128P"
820
- },
821
- "real_scenes_seesaw_scene_128P": {
822
- "description": "Causal3D is a benchmark for evaluating causal reasoning in physical and hypothetical visual scenes. \nIt includes both real-world recordings and rendered synthetic scenes demonstrating causal interactions.\n",
823
- "citation": "@article{liu2025causal3d,\n title={CAUSAL3D: A Comprehensive Benchmark for Causal Learning from Visual Data},\n author={Liu, Disheng and Qiao, Yiran and Liu, Wuche and Lu, Yiren and Zhou, Yunlai and Liang, Tuo and Yin, Yu and Ma, Jing},\n journal={arXiv preprint arXiv:2503.04852},\n year={2025}\n}",
824
- "homepage": "https://huggingface.co/datasets/LLDDSS/Causal3D",
825
- "license": "CC-BY-4.0",
826
- "features": {
827
- "image": {
828
- "_type": "Image"
829
- },
830
- "file_name": {
831
- "dtype": "string",
832
- "_type": "Value"
833
- },
834
- "metadata": {
835
- "dtype": "string",
836
- "_type": "Value"
837
- }
838
- },
839
- "builder_name": "dataset",
840
- "version": {
841
- "version_str": "1.0.0",
842
- "major": 1,
843
- "minor": 0,
844
- "patch": 0
845
- },
846
- "splits": {
847
- "train": {
848
- "name": "train",
849
- "num_bytes": 0,
850
- "num_examples": 0,
851
- "dataset_name": "dataset"
852
- }
853
- },
854
- "download_checksums": {},
855
- "download_size": 0,
856
- "dataset_size": 0,
857
- "size_in_bytes": 0,
858
- "config_name": "real_scenes_seesaw_scene_128P"
859
- },
860
- "real_scenes_spring_scene_128P": {
861
- "description": "Causal3D is a benchmark for evaluating causal reasoning in physical and hypothetical visual scenes. \nIt includes both real-world recordings and rendered synthetic scenes demonstrating causal interactions.\n",
862
- "citation": "@article{liu2025causal3d,\n title={CAUSAL3D: A Comprehensive Benchmark for Causal Learning from Visual Data},\n author={Liu, Disheng and Qiao, Yiran and Liu, Wuche and Lu, Yiren and Zhou, Yunlai and Liang, Tuo and Yin, Yu and Ma, Jing},\n journal={arXiv preprint arXiv:2503.04852},\n year={2025}\n}",
863
- "homepage": "https://huggingface.co/datasets/LLDDSS/Causal3D",
864
- "license": "CC-BY-4.0",
865
- "features": {
866
- "image": {
867
- "_type": "Image"
868
- },
869
- "file_name": {
870
- "dtype": "string",
871
- "_type": "Value"
872
- },
873
- "metadata": {
874
- "dtype": "string",
875
- "_type": "Value"
876
- }
877
- },
878
- "builder_name": "dataset",
879
- "version": {
880
- "version_str": "1.0.0",
881
- "major": 1,
882
- "minor": 0,
883
- "patch": 0
884
- },
885
- "splits": {
886
- "train": {
887
- "name": "train",
888
- "num_bytes": 0,
889
- "num_examples": 0,
890
- "dataset_name": "dataset"
891
- }
892
- },
893
- "download_checksums": {},
894
- "download_size": 0,
895
- "dataset_size": 0,
896
- "size_in_bytes": 0,
897
- "config_name": "real_scenes_spring_scene_128P"
898
- }
899
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
hypothetical_scenes/Hypothetic_v2_linear/part_000/00005.png DELETED

Git LFS Details

  • SHA256: 9fcadcac4ec5e551575ff09d41a60b0692618b44e240d88b302352214488b5dd
  • Pointer size: 130 Bytes
  • Size of remote file: 78.7 kB
hypothetical_scenes/Hypothetic_v2_linear/part_000/00006.png DELETED

Git LFS Details

  • SHA256: f705565026d8a6db445eeff257fb4a487f3112e2708b0022ba548290cc0f06bb
  • Pointer size: 130 Bytes
  • Size of remote file: 81.1 kB
hypothetical_scenes/Hypothetic_v2_linear/part_000/00007.png DELETED

Git LFS Details

  • SHA256: 95d2e5ff07015f1c3b18ebaa6d4817ce446b4d4321b5d4ab6c1899636d2be26b
  • Pointer size: 130 Bytes
  • Size of remote file: 77.2 kB
hypothetical_scenes/Hypothetic_v2_linear/part_000/00008.png DELETED

Git LFS Details

  • SHA256: 77cd2aef6b1abd97e54ee8ce18347f93c85914e7fa6b71f214124cfb14449aa1
  • Pointer size: 130 Bytes
  • Size of remote file: 81 kB
hypothetical_scenes/Hypothetic_v2_linear/part_000/00009.png DELETED

Git LFS Details

  • SHA256: 8d60a6dc584636b9abbc14d6a8832930f6b0a7b2544684b6036c2aed8b7bb4ce
  • Pointer size: 130 Bytes
  • Size of remote file: 75.4 kB
hypothetical_scenes/Hypothetic_v2_linear/part_000/00010.png DELETED

Git LFS Details

  • SHA256: 35ab993f1acfa109df5b760d6bd5be1eaca44e79ebf9fb0116bca72265cd1277
  • Pointer size: 130 Bytes
  • Size of remote file: 80.9 kB
hypothetical_scenes/Hypothetic_v2_linear/part_000/00011.png DELETED

Git LFS Details

  • SHA256: ccb3e68dd1731ec4731edf46cdc4ddb87e69669cbe0bfa025dbd1e9425f09497
  • Pointer size: 130 Bytes
  • Size of remote file: 78.3 kB
hypothetical_scenes/Hypothetic_v2_linear/part_000/00012.png DELETED

Git LFS Details

  • SHA256: 97eb6d64a36d7cc11f23cb4046d4fccbfc3598bf06b4c64f4a57d7a5dcb216b3
  • Pointer size: 130 Bytes
  • Size of remote file: 78.1 kB
hypothetical_scenes/Hypothetic_v2_linear/part_000/00013.png DELETED

Git LFS Details

  • SHA256: 47578bf3974c65db5cb9bb0645dd467920cfaa79a5d48df9a00106e2da07c040
  • Pointer size: 130 Bytes
  • Size of remote file: 80.8 kB
hypothetical_scenes/Hypothetic_v2_linear/part_000/00014.png DELETED

Git LFS Details

  • SHA256: c2b375ad68dd8c4fdb67456610803cde7cdf3ed4e81d9d0e4be3d5836afaba1d
  • Pointer size: 130 Bytes
  • Size of remote file: 80.1 kB
hypothetical_scenes/Hypothetic_v2_linear/part_000/00015.png DELETED

Git LFS Details

  • SHA256: 0cc5c41a8a607eda2f99be3921efd6aa5386cc8b53c9b9e418d1fa8f091b2745
  • Pointer size: 130 Bytes
  • Size of remote file: 80.9 kB
hypothetical_scenes/Hypothetic_v2_linear/part_000/00016.png DELETED

Git LFS Details

  • SHA256: 109425474b5204e2465fd84e822656f6a034bee9abe63e3a40fe1ff6ceec8033
  • Pointer size: 130 Bytes
  • Size of remote file: 78.7 kB
hypothetical_scenes/Hypothetic_v2_linear/part_000/00017.png DELETED

Git LFS Details

  • SHA256: 6df11757beb75f65d0d3590f965e5e3b53135496d8aa44bdb2a8a870a437479e
  • Pointer size: 130 Bytes
  • Size of remote file: 79.2 kB
hypothetical_scenes/Hypothetic_v2_linear/part_000/00018.png DELETED

Git LFS Details

  • SHA256: 480b7d30d07a241d15846457185ec83fc0c13a81f59b38089a581f36e5984662
  • Pointer size: 130 Bytes
  • Size of remote file: 80.5 kB
hypothetical_scenes/Hypothetic_v2_linear/part_000/00019.png DELETED

Git LFS Details

  • SHA256: 62b73b9e52f1e6c150b8eaad66a6e831cfe3a85c64e59c0359bb7d891127efd0
  • Pointer size: 130 Bytes
  • Size of remote file: 77.5 kB
hypothetical_scenes/Hypothetic_v2_linear/part_000/00020.png DELETED

Git LFS Details

  • SHA256: bd702f8c70c2b8c2526830b2a664dacf992d524eabc9a1e0a6d5188bb9d64a22
  • Pointer size: 130 Bytes
  • Size of remote file: 80.5 kB
hypothetical_scenes/Hypothetic_v2_linear/part_000/00021.png DELETED

Git LFS Details

  • SHA256: f683f539a39ed0a67b5459bc93614f68d29e540abe414c281baaf3efcdd7c914
  • Pointer size: 130 Bytes
  • Size of remote file: 76.7 kB
hypothetical_scenes/Hypothetic_v2_linear/part_000/00022.png DELETED

Git LFS Details

  • SHA256: e35724ca6db81d58ff4e6cd99e56ed94c5c0dbe93a0e1fc54f42507c997f49bf
  • Pointer size: 130 Bytes
  • Size of remote file: 78.6 kB
hypothetical_scenes/Hypothetic_v2_linear/part_000/00023.png DELETED

Git LFS Details

  • SHA256: e014d585e89d8045f62b0963cb32cbc323336472f2afed6a2a347246014b455e
  • Pointer size: 130 Bytes
  • Size of remote file: 80.1 kB
hypothetical_scenes/Hypothetic_v2_linear/part_000/00024.png DELETED

Git LFS Details

  • SHA256: e4fd79dc1d8c4a9799069fe9378bf366310c824e8eae736146fbb9c69e693dd1
  • Pointer size: 130 Bytes
  • Size of remote file: 81.1 kB
hypothetical_scenes/Hypothetic_v2_linear/part_000/00025.png DELETED

Git LFS Details

  • SHA256: acfc334d58bed8024b35ee5332d5984e86afd72d3afcd162322dc3359c0113f4
  • Pointer size: 130 Bytes
  • Size of remote file: 81 kB
hypothetical_scenes/Hypothetic_v2_linear/part_000/00026.png DELETED

Git LFS Details

  • SHA256: 45abced3efb2c957dcb7977141a6d4c6a14a34cd735f5a80a6aeeeb4c0bd7bc7
  • Pointer size: 130 Bytes
  • Size of remote file: 79.4 kB
hypothetical_scenes/Hypothetic_v2_linear/part_000/00027.png DELETED

Git LFS Details

  • SHA256: c750800cd158b73eaf121b924bb8d6a815798706ec10525502d30aca7b2171f6
  • Pointer size: 130 Bytes
  • Size of remote file: 79.9 kB
hypothetical_scenes/Hypothetic_v2_linear/part_000/00028.png DELETED

Git LFS Details

  • SHA256: cfaf3655eeb33b445bbe23cdea09ebc63673dabf4e469a66a92d7d99a311da91
  • Pointer size: 130 Bytes
  • Size of remote file: 80.8 kB
hypothetical_scenes/Hypothetic_v2_linear/part_000/00029.png DELETED

Git LFS Details

  • SHA256: 3c8f3ee56b106502320137ef848464d3bd0f95f11d54cad0e68ca85c0c7f330e
  • Pointer size: 130 Bytes
  • Size of remote file: 81.1 kB
hypothetical_scenes/Hypothetic_v2_linear/part_000/00030.png DELETED

Git LFS Details

  • SHA256: 3227fbddac14688a41b0fd2859620b8d95ae757187fe5c50156e06649f0ac24b
  • Pointer size: 130 Bytes
  • Size of remote file: 80.5 kB
hypothetical_scenes/Hypothetic_v2_linear/part_000/00031.png DELETED

Git LFS Details

  • SHA256: a06f1a4d91fa50d2213876895d5d91c1ff13bc0d24920a091b477c31c096fa46
  • Pointer size: 130 Bytes
  • Size of remote file: 79.1 kB
hypothetical_scenes/Hypothetic_v2_linear/part_000/00032.png DELETED

Git LFS Details

  • SHA256: f7f9219bd718caca3c157a56d77ecf5cd63bba4a7e59bcd4ae56c3ad37e258d9
  • Pointer size: 130 Bytes
  • Size of remote file: 80.9 kB
hypothetical_scenes/Hypothetic_v2_linear/part_000/00033.png DELETED

Git LFS Details

  • SHA256: e59812b1ac1b96b1eb9f6138cc078f3fad133496e187f92cdb8d347dc3e3d9fd
  • Pointer size: 130 Bytes
  • Size of remote file: 78.8 kB
hypothetical_scenes/Hypothetic_v2_linear/part_000/00034.png DELETED

Git LFS Details

  • SHA256: 8c96be4860f59c29def2fbacfbe28a68fcbee45bdc8b8b136b0e0fa57bed553b
  • Pointer size: 130 Bytes
  • Size of remote file: 76.5 kB
hypothetical_scenes/Hypothetic_v2_linear/part_000/00035.png DELETED

Git LFS Details

  • SHA256: 146dbf1f506c9616ba816f2706e5560f3f08e6317fd50765f24f06ee1af3bb82
  • Pointer size: 130 Bytes
  • Size of remote file: 80 kB
hypothetical_scenes/Hypothetic_v2_linear/part_000/00036.png DELETED

Git LFS Details

  • SHA256: c6b585e8b528e8b23cc0bc0b263bf9a1c9485f37901f1f2a371173346d4ad194
  • Pointer size: 130 Bytes
  • Size of remote file: 80.7 kB
hypothetical_scenes/Hypothetic_v2_linear/part_000/00037.png DELETED

Git LFS Details

  • SHA256: e80bb3d6e16ef2227012b122d6a45fb8481623b32e71c0a6028f658e630e6102
  • Pointer size: 130 Bytes
  • Size of remote file: 81.1 kB
hypothetical_scenes/Hypothetic_v2_linear/part_000/00038.png DELETED

Git LFS Details

  • SHA256: 717abf165a7af459b488c1239abe9f00225491f2a7b75aa4f914031e625fdd11
  • Pointer size: 130 Bytes
  • Size of remote file: 79.6 kB
hypothetical_scenes/Hypothetic_v2_linear/part_000/00039.png DELETED

Git LFS Details

  • SHA256: d045b0b3acdb42b2ef740482ed68d61a6431e7f40094d820d4c9826dfd1313ce
  • Pointer size: 130 Bytes
  • Size of remote file: 80.3 kB
hypothetical_scenes/Hypothetic_v2_linear/part_000/00040.png DELETED

Git LFS Details

  • SHA256: 30be1a30b7ab0f876fb7e8948546d01c2b94b10918f495b9fc6f9a29c225058c
  • Pointer size: 130 Bytes
  • Size of remote file: 79.8 kB
hypothetical_scenes/Hypothetic_v2_linear/part_000/00041.png DELETED

Git LFS Details

  • SHA256: 3f4596ca192f6bcb8fb65e5184dae99f779d95e1975c11bfdd211a2fac09b440
  • Pointer size: 130 Bytes
  • Size of remote file: 78.8 kB
hypothetical_scenes/Hypothetic_v2_linear/part_000/00042.png DELETED

Git LFS Details

  • SHA256: 33ec88fd953463dc79e9fa6026b58650cf72f7a2190a967ba81ad59245a0ea6e
  • Pointer size: 130 Bytes
  • Size of remote file: 79.6 kB
hypothetical_scenes/Hypothetic_v2_linear/part_000/00043.png DELETED

Git LFS Details

  • SHA256: e83a4b8bff336bae5e747e25fbb2f8fc5422ed5041147c7bf09774d55e5b53e8
  • Pointer size: 130 Bytes
  • Size of remote file: 77.7 kB
hypothetical_scenes/Hypothetic_v2_linear/part_000/00044.png DELETED

Git LFS Details

  • SHA256: e4f555135998b99af837a84b0c68133260990d252b3da36900dc375feae3b49f
  • Pointer size: 130 Bytes
  • Size of remote file: 81 kB
hypothetical_scenes/Hypothetic_v2_linear/part_000/00045.png DELETED

Git LFS Details

  • SHA256: 86d3a0c2d9d55bac900e38e0eb25ad4c3d9e838857c99f823ef00db017756f41
  • Pointer size: 130 Bytes
  • Size of remote file: 81.1 kB
hypothetical_scenes/Hypothetic_v2_linear/part_000/00046.png DELETED

Git LFS Details

  • SHA256: 1fe8ea36446b7d29c724c0a86fe1aea15444a26579c4fe9ca83f0733434ffb42
  • Pointer size: 130 Bytes
  • Size of remote file: 80.9 kB
hypothetical_scenes/Hypothetic_v2_linear/part_000/00047.png DELETED

Git LFS Details

  • SHA256: 753ec28d83497f82ea5c766cff4e58dc632e29e49c3307044c87fccfae2df206
  • Pointer size: 130 Bytes
  • Size of remote file: 77.7 kB
hypothetical_scenes/Hypothetic_v2_linear/part_000/00048.png DELETED

Git LFS Details

  • SHA256: adbd208ec77f49a05f39a585020690dc7793a8d97da181e84b161a4fd2ad6d4c
  • Pointer size: 130 Bytes
  • Size of remote file: 75.8 kB
hypothetical_scenes/Hypothetic_v2_linear/part_000/00049.png DELETED

Git LFS Details

  • SHA256: fa6a01fcce96fc3e28b057c05bed9bb818c8cba4a5773e327f7e4f36993b48ad
  • Pointer size: 130 Bytes
  • Size of remote file: 79.3 kB