Convert dataset to Parquet
#8
by
LLDDSS
- opened
This view is limited to 50 files because it contains too many changes.
See the raw diff here.
- Causal3D.py +0 -165
- README.md +156 -66
- __init__.py +0 -1
- dataset.py +0 -175
- dataset_infos.json +0 -899
- hypothetical_scenes/Hypothetic_v2_linear/part_000/00005.png +0 -3
- hypothetical_scenes/Hypothetic_v2_linear/part_000/00006.png +0 -3
- hypothetical_scenes/Hypothetic_v2_linear/part_000/00007.png +0 -3
- hypothetical_scenes/Hypothetic_v2_linear/part_000/00008.png +0 -3
- hypothetical_scenes/Hypothetic_v2_linear/part_000/00009.png +0 -3
- hypothetical_scenes/Hypothetic_v2_linear/part_000/00010.png +0 -3
- hypothetical_scenes/Hypothetic_v2_linear/part_000/00011.png +0 -3
- hypothetical_scenes/Hypothetic_v2_linear/part_000/00012.png +0 -3
- hypothetical_scenes/Hypothetic_v2_linear/part_000/00013.png +0 -3
- hypothetical_scenes/Hypothetic_v2_linear/part_000/00014.png +0 -3
- hypothetical_scenes/Hypothetic_v2_linear/part_000/00015.png +0 -3
- hypothetical_scenes/Hypothetic_v2_linear/part_000/00016.png +0 -3
- hypothetical_scenes/Hypothetic_v2_linear/part_000/00017.png +0 -3
- hypothetical_scenes/Hypothetic_v2_linear/part_000/00018.png +0 -3
- hypothetical_scenes/Hypothetic_v2_linear/part_000/00019.png +0 -3
- hypothetical_scenes/Hypothetic_v2_linear/part_000/00020.png +0 -3
- hypothetical_scenes/Hypothetic_v2_linear/part_000/00021.png +0 -3
- hypothetical_scenes/Hypothetic_v2_linear/part_000/00022.png +0 -3
- hypothetical_scenes/Hypothetic_v2_linear/part_000/00023.png +0 -3
- hypothetical_scenes/Hypothetic_v2_linear/part_000/00024.png +0 -3
- hypothetical_scenes/Hypothetic_v2_linear/part_000/00025.png +0 -3
- hypothetical_scenes/Hypothetic_v2_linear/part_000/00026.png +0 -3
- hypothetical_scenes/Hypothetic_v2_linear/part_000/00027.png +0 -3
- hypothetical_scenes/Hypothetic_v2_linear/part_000/00028.png +0 -3
- hypothetical_scenes/Hypothetic_v2_linear/part_000/00029.png +0 -3
- hypothetical_scenes/Hypothetic_v2_linear/part_000/00030.png +0 -3
- hypothetical_scenes/Hypothetic_v2_linear/part_000/00031.png +0 -3
- hypothetical_scenes/Hypothetic_v2_linear/part_000/00032.png +0 -3
- hypothetical_scenes/Hypothetic_v2_linear/part_000/00033.png +0 -3
- hypothetical_scenes/Hypothetic_v2_linear/part_000/00034.png +0 -3
- hypothetical_scenes/Hypothetic_v2_linear/part_000/00035.png +0 -3
- hypothetical_scenes/Hypothetic_v2_linear/part_000/00036.png +0 -3
- hypothetical_scenes/Hypothetic_v2_linear/part_000/00037.png +0 -3
- hypothetical_scenes/Hypothetic_v2_linear/part_000/00038.png +0 -3
- hypothetical_scenes/Hypothetic_v2_linear/part_000/00039.png +0 -3
- hypothetical_scenes/Hypothetic_v2_linear/part_000/00040.png +0 -3
- hypothetical_scenes/Hypothetic_v2_linear/part_000/00041.png +0 -3
- hypothetical_scenes/Hypothetic_v2_linear/part_000/00042.png +0 -3
- hypothetical_scenes/Hypothetic_v2_linear/part_000/00043.png +0 -3
- hypothetical_scenes/Hypothetic_v2_linear/part_000/00044.png +0 -3
- hypothetical_scenes/Hypothetic_v2_linear/part_000/00045.png +0 -3
- hypothetical_scenes/Hypothetic_v2_linear/part_000/00046.png +0 -3
- hypothetical_scenes/Hypothetic_v2_linear/part_000/00047.png +0 -3
- hypothetical_scenes/Hypothetic_v2_linear/part_000/00048.png +0 -3
- hypothetical_scenes/Hypothetic_v2_linear/part_000/00049.png +0 -3
Causal3D.py
DELETED
|
@@ -1,165 +0,0 @@
|
|
| 1 |
-
import datasets
|
| 2 |
-
import pandas as pd
|
| 3 |
-
import os
|
| 4 |
-
from pathlib import Path
|
| 5 |
-
from tqdm import tqdm
|
| 6 |
-
|
| 7 |
-
print("✅ Custom Causal3D loaded: outside Causal3D.py")
|
| 8 |
-
_CITATION = """\
|
| 9 |
-
@article{liu2025causal3d,
|
| 10 |
-
title={CAUSAL3D: A Comprehensive Benchmark for Causal Learning from Visual Data},
|
| 11 |
-
author={Liu, Disheng and Qiao, Yiran and Liu, Wuche and Lu, Yiren and Zhou, Yunlai and Liang, Tuo and Yin, Yu and Ma, Jing},
|
| 12 |
-
journal={arXiv preprint arXiv:2503.04852},
|
| 13 |
-
year={2025}
|
| 14 |
-
}
|
| 15 |
-
"""
|
| 16 |
-
|
| 17 |
-
_DESCRIPTION = """\
|
| 18 |
-
Causal3D is a benchmark for evaluating causal reasoning in physical and hypothetical visual scenes.
|
| 19 |
-
It includes both real-world recordings and rendered synthetic scenes demonstrating causal interactions.
|
| 20 |
-
"""
|
| 21 |
-
|
| 22 |
-
_HOMEPAGE = "https://huggingface.co/datasets/LLDDSS/Causal3D"
|
| 23 |
-
_LICENSE = "CC-BY-4.0"
|
| 24 |
-
|
| 25 |
-
class Causal3D(datasets.GeneratorBasedBuilder):
|
| 26 |
-
DEFAULT_CONFIG_NAME = "real_scenes_Water_flow_scene_render"
|
| 27 |
-
BUILDER_CONFIGS = [
|
| 28 |
-
# hypothetical_scenes
|
| 29 |
-
datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v2_linear", version=datasets.Version("1.0.0"), description="Hypothetic_v2_linear scene"),
|
| 30 |
-
datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v2_nonlinear", version=datasets.Version("1.0.0"), description="Hypothetic_v2_nonlinear scene"),
|
| 31 |
-
datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v3_fully_connected_linear", version=datasets.Version("1.0.0"), description="Hypothetic_v3_fully_connected_linear scene"),
|
| 32 |
-
datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v4_linear_full_connected", version=datasets.Version("1.0.0"), description="Hypothetic_v4_linear_full_connected scene"),
|
| 33 |
-
datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v4_linear_v", version=datasets.Version("1.0.0"), description="Hypothetic_v4_linear_v scene"),
|
| 34 |
-
datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v4_nonlinear_v", version=datasets.Version("1.0.0"), description="Hypothetic_v4_nonlinear_v scene"),
|
| 35 |
-
datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v5_linear", version=datasets.Version("1.0.0"), description="Hypothetic_v5_linear scene"),
|
| 36 |
-
datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v5_linear_full_connected", version=datasets.Version("1.0.0"), description="Hypothetic_v5_linear_full_connected scene"),
|
| 37 |
-
datasets.BuilderConfig(name="hypothetical_scenes_rendered_h3_linear_128P", version=datasets.Version("1.0.0"), description="rendered_h3_linear_128P scene"),
|
| 38 |
-
datasets.BuilderConfig(name="hypothetical_scenes_rendered_h3_nonlinear_128P", version=datasets.Version("1.0.0"), description="rendered_h3_nonlinear_128P scene"),
|
| 39 |
-
datasets.BuilderConfig(name="hypothetical_scenes_rendered_h5_nonlinear", version=datasets.Version("1.0.0"), description="rendered_h5_nonlinear scene"),
|
| 40 |
-
|
| 41 |
-
# real_scenes
|
| 42 |
-
datasets.BuilderConfig(name="real_scenes_Real_Parabola", version=datasets.Version("1.0.0"), description="Real_Parabola scene"),
|
| 43 |
-
datasets.BuilderConfig(name="real_scenes_Real_magnet_v3", version=datasets.Version("1.0.0"), description="Real_magnet_v3 scene"),
|
| 44 |
-
datasets.BuilderConfig(name="real_scenes_Real_magnet_v3_5", version=datasets.Version("1.0.0"), description="Real_magnet_v3_5 scene"),
|
| 45 |
-
# datasets.BuilderConfig(name="real_scenes_Real_Parabola_multi_view", version=datasets.Version("1.0.0"), description="Real_parabola_multi_view scene"),
|
| 46 |
-
datasets.BuilderConfig(name="real_scenes_Real_spring_v3_256P", version=datasets.Version("1.0.0"), description="Real_spring_v3_256P scene"),
|
| 47 |
-
datasets.BuilderConfig(name="real_scenes_Water_flow_scene_render", version=datasets.Version("1.0.0"), description="Water_flow_scene_render scene"),
|
| 48 |
-
datasets.BuilderConfig(name="real_scenes_convex_len_render_images", version=datasets.Version("1.0.0"), description="convex_len_render_images scene"),
|
| 49 |
-
datasets.BuilderConfig(name="real_scenes_real_pendulum", version=datasets.Version("1.0.0"), description="real_pendulum scene"),
|
| 50 |
-
datasets.BuilderConfig(name="real_scenes_rendered_magnetic_128", version=datasets.Version("1.0.0"), description="rendered_magnetic_128 scene"),
|
| 51 |
-
datasets.BuilderConfig(name="real_scenes_rendered_reflection_128P", version=datasets.Version("1.0.0"), description="rendered_reflection_128P scene"),
|
| 52 |
-
datasets.BuilderConfig(name="real_scenes_seesaw_scene_128P", version=datasets.Version("1.0.0"), description="seesaw_scene_128P scene"),
|
| 53 |
-
datasets.BuilderConfig(name="real_scenes_spring_scene_128P", version=datasets.Version("1.0.0"), description="spring_scene_128P scene"),
|
| 54 |
-
]
|
| 55 |
-
|
| 56 |
-
def _info(self):
|
| 57 |
-
return datasets.DatasetInfo(
|
| 58 |
-
description=_DESCRIPTION,
|
| 59 |
-
features=datasets.Features({
|
| 60 |
-
"image": datasets.Image(),
|
| 61 |
-
"file_name": datasets.Value("string"),
|
| 62 |
-
"metadata": datasets.Value("string"), # optionally replace with structured fields
|
| 63 |
-
}),
|
| 64 |
-
homepage=_HOMEPAGE,
|
| 65 |
-
license=_LICENSE,
|
| 66 |
-
citation=_CITATION,
|
| 67 |
-
)
|
| 68 |
-
|
| 69 |
-
def _split_generators(self, dl_manager):
|
| 70 |
-
parts = self.config.name.split("_", 2)
|
| 71 |
-
category = parts[0] + "_" + parts[1] # real_scenes or hypothetical_scenes
|
| 72 |
-
|
| 73 |
-
if category not in ["real_scenes", "hypothetical_scenes"]:
|
| 74 |
-
raise ValueError(f"Invalid category '{category}'. Must be one of ['real_scenes', 'hypothetical_scenes']")
|
| 75 |
-
|
| 76 |
-
scene = parts[2]
|
| 77 |
-
data_dir = os.path.join(category, scene)
|
| 78 |
-
|
| 79 |
-
return [
|
| 80 |
-
datasets.SplitGenerator(
|
| 81 |
-
name=datasets.Split.TRAIN,
|
| 82 |
-
gen_kwargs={"data_dir": data_dir},
|
| 83 |
-
)
|
| 84 |
-
]
|
| 85 |
-
|
| 86 |
-
def _generate_examples(self, data_dir):
|
| 87 |
-
def color(text, code):
|
| 88 |
-
return f"\033[{code}m{text}\033[0m"
|
| 89 |
-
|
| 90 |
-
# Load image paths
|
| 91 |
-
try:
|
| 92 |
-
image_files = {}
|
| 93 |
-
for ext in ("*.png", "*.jpg", "*.jpeg"):
|
| 94 |
-
for img_path in Path(data_dir).rglob(ext):
|
| 95 |
-
relative_path = str(img_path.relative_to(data_dir))
|
| 96 |
-
image_files[relative_path] = str(img_path)
|
| 97 |
-
parts = [i.split('/')[0] for i in list(image_files.keys())]
|
| 98 |
-
parts = set(parts)
|
| 99 |
-
if "part_000" not in parts:
|
| 100 |
-
parts= ['']
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
except Exception as e:
|
| 104 |
-
print(color(f"Error loading images: {e}", "31")) # Red
|
| 105 |
-
return
|
| 106 |
-
|
| 107 |
-
# Find the .csv file
|
| 108 |
-
csv_files = list(Path(data_dir).rglob("*.csv"))
|
| 109 |
-
csv_files = [f for f in Path(data_dir).rglob("*.csv") if not f.name.startswith("._")]
|
| 110 |
-
if not csv_files:
|
| 111 |
-
# print(f"\033[33m[SKIP] No CSV found in {data_dir}, skipping this config.\033[0m")
|
| 112 |
-
pass
|
| 113 |
-
# print(f"\033[33m[INFO] Found CSV: {csv_files}\033[0m")
|
| 114 |
-
csv_path = csv_files[0] if csv_files else None
|
| 115 |
-
df = pd.read_csv(csv_path) if csv_path else None
|
| 116 |
-
image_col_exists = True
|
| 117 |
-
if df is not None and "image" not in df.columns:
|
| 118 |
-
image_col_exists = False
|
| 119 |
-
|
| 120 |
-
images = df["image"].tolist() if image_col_exists and df is not None else []
|
| 121 |
-
images = [i.split('/')[-1].split('.')[0] for i in images if i.endswith(('.png', '.jpg', '.jpeg'))]
|
| 122 |
-
|
| 123 |
-
try:
|
| 124 |
-
# Match CSV rows with image paths
|
| 125 |
-
if df is None:
|
| 126 |
-
for i, j in tqdm(image_files.items(), desc="Processing images", unit="image"):
|
| 127 |
-
yield i, {
|
| 128 |
-
"image": j,
|
| 129 |
-
"file_name": i,
|
| 130 |
-
"metadata": None,
|
| 131 |
-
}
|
| 132 |
-
|
| 133 |
-
else:
|
| 134 |
-
for idx, row in tqdm(df.iterrows(), total=len(df), desc="Processing rows", unit="row"):
|
| 135 |
-
fname = row["ID"]
|
| 136 |
-
raw_record_img_path = images[idx] if images else "" #row["image"]
|
| 137 |
-
record_img_name = raw_record_img_path.split('/')[-1]
|
| 138 |
-
for part in parts:
|
| 139 |
-
if part == '':
|
| 140 |
-
record_img_path = record_img_name
|
| 141 |
-
else:
|
| 142 |
-
record_img_path = "/".join([part, record_img_name.strip()])
|
| 143 |
-
if "Water_flow_scene_render" in data_dir:
|
| 144 |
-
record_img_path = "/".join([part, str(int(record_img_name.strip().split('.')[0]))+".png"])
|
| 145 |
-
if record_img_path in image_files:
|
| 146 |
-
# print(color(f"record_img_path: { image_files[record_img_path]}", "34")) # Blue
|
| 147 |
-
yield idx, {
|
| 148 |
-
"image": image_files[record_img_path],
|
| 149 |
-
"file_name": fname,
|
| 150 |
-
"metadata": row.to_json(),
|
| 151 |
-
}
|
| 152 |
-
break
|
| 153 |
-
|
| 154 |
-
else:
|
| 155 |
-
yield idx, {
|
| 156 |
-
# "image": "",
|
| 157 |
-
"file_name": fname,
|
| 158 |
-
"metadata": row.to_json(),
|
| 159 |
-
}
|
| 160 |
-
break
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
except Exception as e:
|
| 164 |
-
print(color(f"Error processing CSV rows: {e}", "31"))
|
| 165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
README.md
CHANGED
|
@@ -19,10 +19,10 @@ dataset_info:
|
|
| 19 |
dtype: string
|
| 20 |
splits:
|
| 21 |
- name: train
|
| 22 |
-
num_bytes:
|
| 23 |
num_examples: 14368
|
| 24 |
-
download_size:
|
| 25 |
-
dataset_size:
|
| 26 |
- config_name: hypothetical_scenes_Hypothetic_v2_nonlinear
|
| 27 |
features:
|
| 28 |
- name: image
|
|
@@ -33,10 +33,10 @@ dataset_info:
|
|
| 33 |
dtype: string
|
| 34 |
splits:
|
| 35 |
- name: train
|
| 36 |
-
num_bytes:
|
| 37 |
num_examples: 10000
|
| 38 |
-
download_size:
|
| 39 |
-
dataset_size:
|
| 40 |
- config_name: hypothetical_scenes_Hypothetic_v3_fully_connected_linear
|
| 41 |
features:
|
| 42 |
- name: image
|
|
@@ -47,10 +47,10 @@ dataset_info:
|
|
| 47 |
dtype: string
|
| 48 |
splits:
|
| 49 |
- name: train
|
| 50 |
-
num_bytes:
|
| 51 |
num_examples: 10000
|
| 52 |
-
download_size:
|
| 53 |
-
dataset_size:
|
| 54 |
- config_name: hypothetical_scenes_Hypothetic_v4_linear_full_connected
|
| 55 |
features:
|
| 56 |
- name: image
|
|
@@ -61,10 +61,10 @@ dataset_info:
|
|
| 61 |
dtype: string
|
| 62 |
splits:
|
| 63 |
- name: train
|
| 64 |
-
num_bytes:
|
| 65 |
num_examples: 10050
|
| 66 |
-
download_size:
|
| 67 |
-
dataset_size:
|
| 68 |
- config_name: hypothetical_scenes_Hypothetic_v4_linear_v
|
| 69 |
features:
|
| 70 |
- name: image
|
|
@@ -75,10 +75,10 @@ dataset_info:
|
|
| 75 |
dtype: string
|
| 76 |
splits:
|
| 77 |
- name: train
|
| 78 |
-
num_bytes:
|
| 79 |
num_examples: 10000
|
| 80 |
-
download_size:
|
| 81 |
-
dataset_size:
|
| 82 |
- config_name: hypothetical_scenes_Hypothetic_v4_nonlinear_v
|
| 83 |
features:
|
| 84 |
- name: image
|
|
@@ -89,10 +89,10 @@ dataset_info:
|
|
| 89 |
dtype: string
|
| 90 |
splits:
|
| 91 |
- name: train
|
| 92 |
-
num_bytes:
|
| 93 |
num_examples: 10000
|
| 94 |
-
download_size:
|
| 95 |
-
dataset_size:
|
| 96 |
- config_name: hypothetical_scenes_Hypothetic_v5_linear
|
| 97 |
features:
|
| 98 |
- name: image
|
|
@@ -103,10 +103,10 @@ dataset_info:
|
|
| 103 |
dtype: string
|
| 104 |
splits:
|
| 105 |
- name: train
|
| 106 |
-
num_bytes:
|
| 107 |
num_examples: 10000
|
| 108 |
-
download_size:
|
| 109 |
-
dataset_size:
|
| 110 |
- config_name: hypothetical_scenes_Hypothetic_v5_linear_full_connected
|
| 111 |
features:
|
| 112 |
- name: image
|
|
@@ -117,10 +117,10 @@ dataset_info:
|
|
| 117 |
dtype: string
|
| 118 |
splits:
|
| 119 |
- name: train
|
| 120 |
-
num_bytes:
|
| 121 |
num_examples: 10000
|
| 122 |
-
download_size:
|
| 123 |
-
dataset_size:
|
| 124 |
- config_name: hypothetical_scenes_rendered_h3_linear_128P
|
| 125 |
features:
|
| 126 |
- name: image
|
|
@@ -131,10 +131,10 @@ dataset_info:
|
|
| 131 |
dtype: string
|
| 132 |
splits:
|
| 133 |
- name: train
|
| 134 |
-
num_bytes:
|
| 135 |
num_examples: 15000
|
| 136 |
-
download_size:
|
| 137 |
-
dataset_size:
|
| 138 |
- config_name: hypothetical_scenes_rendered_h3_nonlinear_128P
|
| 139 |
features:
|
| 140 |
- name: image
|
|
@@ -145,10 +145,10 @@ dataset_info:
|
|
| 145 |
dtype: string
|
| 146 |
splits:
|
| 147 |
- name: train
|
| 148 |
-
num_bytes:
|
| 149 |
num_examples: 10223
|
| 150 |
-
download_size:
|
| 151 |
-
dataset_size:
|
| 152 |
- config_name: hypothetical_scenes_rendered_h5_nonlinear
|
| 153 |
features:
|
| 154 |
- name: image
|
|
@@ -159,10 +159,10 @@ dataset_info:
|
|
| 159 |
dtype: string
|
| 160 |
splits:
|
| 161 |
- name: train
|
| 162 |
-
num_bytes:
|
| 163 |
num_examples: 10360
|
| 164 |
-
download_size:
|
| 165 |
-
dataset_size:
|
| 166 |
- config_name: real_scenes_Real_Parabola
|
| 167 |
features:
|
| 168 |
- name: image
|
|
@@ -173,10 +173,10 @@ dataset_info:
|
|
| 173 |
dtype: string
|
| 174 |
splits:
|
| 175 |
- name: train
|
| 176 |
-
num_bytes:
|
| 177 |
num_examples: 10000
|
| 178 |
-
download_size:
|
| 179 |
-
dataset_size:
|
| 180 |
- config_name: real_scenes_Real_magnet_v3
|
| 181 |
features:
|
| 182 |
- name: image
|
|
@@ -187,10 +187,10 @@ dataset_info:
|
|
| 187 |
dtype: string
|
| 188 |
splits:
|
| 189 |
- name: train
|
| 190 |
-
num_bytes:
|
| 191 |
num_examples: 481
|
| 192 |
-
download_size:
|
| 193 |
-
dataset_size:
|
| 194 |
- config_name: real_scenes_Real_magnet_v3_5
|
| 195 |
features:
|
| 196 |
- name: image
|
|
@@ -201,10 +201,10 @@ dataset_info:
|
|
| 201 |
dtype: string
|
| 202 |
splits:
|
| 203 |
- name: train
|
| 204 |
-
num_bytes:
|
| 205 |
num_examples: 1503
|
| 206 |
-
download_size:
|
| 207 |
-
dataset_size:
|
| 208 |
- config_name: real_scenes_Real_parabola_multi_view
|
| 209 |
features:
|
| 210 |
- name: image
|
|
@@ -229,10 +229,10 @@ dataset_info:
|
|
| 229 |
dtype: string
|
| 230 |
splits:
|
| 231 |
- name: train
|
| 232 |
-
num_bytes:
|
| 233 |
num_examples: 450
|
| 234 |
-
download_size:
|
| 235 |
-
dataset_size:
|
| 236 |
- config_name: real_scenes_Water_flow_scene_render
|
| 237 |
features:
|
| 238 |
- name: image
|
|
@@ -243,10 +243,10 @@ dataset_info:
|
|
| 243 |
dtype: string
|
| 244 |
splits:
|
| 245 |
- name: train
|
| 246 |
-
num_bytes:
|
| 247 |
num_examples: 10000
|
| 248 |
-
download_size:
|
| 249 |
-
dataset_size:
|
| 250 |
- config_name: real_scenes_convex_len_render_images
|
| 251 |
features:
|
| 252 |
- name: image
|
|
@@ -257,10 +257,10 @@ dataset_info:
|
|
| 257 |
dtype: string
|
| 258 |
splits:
|
| 259 |
- name: train
|
| 260 |
-
num_bytes:
|
| 261 |
num_examples: 1078
|
| 262 |
-
download_size:
|
| 263 |
-
dataset_size:
|
| 264 |
- config_name: real_scenes_real_pendulum
|
| 265 |
features:
|
| 266 |
- name: image
|
|
@@ -271,10 +271,10 @@ dataset_info:
|
|
| 271 |
dtype: string
|
| 272 |
splits:
|
| 273 |
- name: train
|
| 274 |
-
num_bytes:
|
| 275 |
num_examples: 9999
|
| 276 |
-
download_size:
|
| 277 |
-
dataset_size:
|
| 278 |
- config_name: real_scenes_rendered_magnetic_128
|
| 279 |
features:
|
| 280 |
- name: image
|
|
@@ -285,10 +285,10 @@ dataset_info:
|
|
| 285 |
dtype: string
|
| 286 |
splits:
|
| 287 |
- name: train
|
| 288 |
-
num_bytes:
|
| 289 |
num_examples: 8350
|
| 290 |
-
download_size:
|
| 291 |
-
dataset_size:
|
| 292 |
- config_name: real_scenes_rendered_reflection_128P
|
| 293 |
features:
|
| 294 |
- name: image
|
|
@@ -299,10 +299,10 @@ dataset_info:
|
|
| 299 |
dtype: string
|
| 300 |
splits:
|
| 301 |
- name: train
|
| 302 |
-
num_bytes:
|
| 303 |
num_examples: 9995
|
| 304 |
-
download_size:
|
| 305 |
-
dataset_size:
|
| 306 |
- config_name: real_scenes_seesaw_scene_128P
|
| 307 |
features:
|
| 308 |
- name: image
|
|
@@ -313,10 +313,10 @@ dataset_info:
|
|
| 313 |
dtype: string
|
| 314 |
splits:
|
| 315 |
- name: train
|
| 316 |
-
num_bytes:
|
| 317 |
num_examples: 10000
|
| 318 |
-
download_size:
|
| 319 |
-
dataset_size:
|
| 320 |
- config_name: real_scenes_spring_scene_128P
|
| 321 |
features:
|
| 322 |
- name: image
|
|
@@ -327,10 +327,100 @@ dataset_info:
|
|
| 327 |
dtype: string
|
| 328 |
splits:
|
| 329 |
- name: train
|
| 330 |
-
num_bytes:
|
| 331 |
num_examples: 10000
|
| 332 |
-
download_size:
|
| 333 |
-
dataset_size:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 334 |
---
|
| 335 |
# 🧠 Causal3D: A Benchmark for Visual Causal Reasoning
|
| 336 |
|
|
|
|
| 19 |
dtype: string
|
| 20 |
splits:
|
| 21 |
- name: train
|
| 22 |
+
num_bytes: 2137802.16
|
| 23 |
num_examples: 14368
|
| 24 |
+
download_size: 1216402
|
| 25 |
+
dataset_size: 2137802.16
|
| 26 |
- config_name: hypothetical_scenes_Hypothetic_v2_nonlinear
|
| 27 |
features:
|
| 28 |
- name: image
|
|
|
|
| 33 |
dtype: string
|
| 34 |
splits:
|
| 35 |
- name: train
|
| 36 |
+
num_bytes: 1768656.0
|
| 37 |
num_examples: 10000
|
| 38 |
+
download_size: 939321
|
| 39 |
+
dataset_size: 1768656.0
|
| 40 |
- config_name: hypothetical_scenes_Hypothetic_v3_fully_connected_linear
|
| 41 |
features:
|
| 42 |
- name: image
|
|
|
|
| 47 |
dtype: string
|
| 48 |
splits:
|
| 49 |
- name: train
|
| 50 |
+
num_bytes: 1355793.0
|
| 51 |
num_examples: 10000
|
| 52 |
+
download_size: 617191
|
| 53 |
+
dataset_size: 1355793.0
|
| 54 |
- config_name: hypothetical_scenes_Hypothetic_v4_linear_full_connected
|
| 55 |
features:
|
| 56 |
- name: image
|
|
|
|
| 61 |
dtype: string
|
| 62 |
splits:
|
| 63 |
- name: train
|
| 64 |
+
num_bytes: 1658091.5
|
| 65 |
num_examples: 10050
|
| 66 |
+
download_size: 915357
|
| 67 |
+
dataset_size: 1658091.5
|
| 68 |
- config_name: hypothetical_scenes_Hypothetic_v4_linear_v
|
| 69 |
features:
|
| 70 |
- name: image
|
|
|
|
| 75 |
dtype: string
|
| 76 |
splits:
|
| 77 |
- name: train
|
| 78 |
+
num_bytes: 2012079.0
|
| 79 |
num_examples: 10000
|
| 80 |
+
download_size: 907646
|
| 81 |
+
dataset_size: 2012079.0
|
| 82 |
- config_name: hypothetical_scenes_Hypothetic_v4_nonlinear_v
|
| 83 |
features:
|
| 84 |
- name: image
|
|
|
|
| 89 |
dtype: string
|
| 90 |
splits:
|
| 91 |
- name: train
|
| 92 |
+
num_bytes: 2786917.0
|
| 93 |
num_examples: 10000
|
| 94 |
+
download_size: 1262319
|
| 95 |
+
dataset_size: 2786917.0
|
| 96 |
- config_name: hypothetical_scenes_Hypothetic_v5_linear
|
| 97 |
features:
|
| 98 |
- name: image
|
|
|
|
| 103 |
dtype: string
|
| 104 |
splits:
|
| 105 |
- name: train
|
| 106 |
+
num_bytes: 1915161.0
|
| 107 |
num_examples: 10000
|
| 108 |
+
download_size: 1048013
|
| 109 |
+
dataset_size: 1915161.0
|
| 110 |
- config_name: hypothetical_scenes_Hypothetic_v5_linear_full_connected
|
| 111 |
features:
|
| 112 |
- name: image
|
|
|
|
| 117 |
dtype: string
|
| 118 |
splits:
|
| 119 |
- name: train
|
| 120 |
+
num_bytes: 1914621.0
|
| 121 |
num_examples: 10000
|
| 122 |
+
download_size: 1051232
|
| 123 |
+
dataset_size: 1914621.0
|
| 124 |
- config_name: hypothetical_scenes_rendered_h3_linear_128P
|
| 125 |
features:
|
| 126 |
- name: image
|
|
|
|
| 131 |
dtype: string
|
| 132 |
splits:
|
| 133 |
- name: train
|
| 134 |
+
num_bytes: 5363548.0
|
| 135 |
num_examples: 15000
|
| 136 |
+
download_size: 2476630
|
| 137 |
+
dataset_size: 5363548.0
|
| 138 |
- config_name: hypothetical_scenes_rendered_h3_nonlinear_128P
|
| 139 |
features:
|
| 140 |
- name: image
|
|
|
|
| 145 |
dtype: string
|
| 146 |
splits:
|
| 147 |
- name: train
|
| 148 |
+
num_bytes: 3810279.01
|
| 149 |
num_examples: 10223
|
| 150 |
+
download_size: 1726102
|
| 151 |
+
dataset_size: 3810279.01
|
| 152 |
- config_name: hypothetical_scenes_rendered_h5_nonlinear
|
| 153 |
features:
|
| 154 |
- name: image
|
|
|
|
| 159 |
dtype: string
|
| 160 |
splits:
|
| 161 |
- name: train
|
| 162 |
+
num_bytes: 5416339.2
|
| 163 |
num_examples: 10360
|
| 164 |
+
download_size: 2056220
|
| 165 |
+
dataset_size: 5416339.2
|
| 166 |
- config_name: real_scenes_Real_Parabola
|
| 167 |
features:
|
| 168 |
- name: image
|
|
|
|
| 173 |
dtype: string
|
| 174 |
splits:
|
| 175 |
- name: train
|
| 176 |
+
num_bytes: 1282248.0
|
| 177 |
num_examples: 10000
|
| 178 |
+
download_size: 768322
|
| 179 |
+
dataset_size: 1282248.0
|
| 180 |
- config_name: real_scenes_Real_magnet_v3
|
| 181 |
features:
|
| 182 |
- name: image
|
|
|
|
| 187 |
dtype: string
|
| 188 |
splits:
|
| 189 |
- name: train
|
| 190 |
+
num_bytes: 72702.0
|
| 191 |
num_examples: 481
|
| 192 |
+
download_size: 48333
|
| 193 |
+
dataset_size: 72702.0
|
| 194 |
- config_name: real_scenes_Real_magnet_v3_5
|
| 195 |
features:
|
| 196 |
- name: image
|
|
|
|
| 201 |
dtype: string
|
| 202 |
splits:
|
| 203 |
- name: train
|
| 204 |
+
num_bytes: 228301.613
|
| 205 |
num_examples: 1503
|
| 206 |
+
download_size: 152240
|
| 207 |
+
dataset_size: 228301.613
|
| 208 |
- config_name: real_scenes_Real_parabola_multi_view
|
| 209 |
features:
|
| 210 |
- name: image
|
|
|
|
| 229 |
dtype: string
|
| 230 |
splits:
|
| 231 |
- name: train
|
| 232 |
+
num_bytes: 134466.0
|
| 233 |
num_examples: 450
|
| 234 |
+
download_size: 24433
|
| 235 |
+
dataset_size: 134466.0
|
| 236 |
- config_name: real_scenes_Water_flow_scene_render
|
| 237 |
features:
|
| 238 |
- name: image
|
|
|
|
| 243 |
dtype: string
|
| 244 |
splits:
|
| 245 |
- name: train
|
| 246 |
+
num_bytes: 3533718.0
|
| 247 |
num_examples: 10000
|
| 248 |
+
download_size: 1813070
|
| 249 |
+
dataset_size: 3533718.0
|
| 250 |
- config_name: real_scenes_convex_len_render_images
|
| 251 |
features:
|
| 252 |
- name: image
|
|
|
|
| 257 |
dtype: string
|
| 258 |
splits:
|
| 259 |
- name: train
|
| 260 |
+
num_bytes: 161948.95
|
| 261 |
num_examples: 1078
|
| 262 |
+
download_size: 106436
|
| 263 |
+
dataset_size: 161948.95
|
| 264 |
- config_name: real_scenes_real_pendulum
|
| 265 |
features:
|
| 266 |
- name: image
|
|
|
|
| 271 |
dtype: string
|
| 272 |
splits:
|
| 273 |
- name: train
|
| 274 |
+
num_bytes: 2884667.13
|
| 275 |
num_examples: 9999
|
| 276 |
+
download_size: 1558722
|
| 277 |
+
dataset_size: 2884667.13
|
| 278 |
- config_name: real_scenes_rendered_magnetic_128
|
| 279 |
features:
|
| 280 |
- name: image
|
|
|
|
| 285 |
dtype: string
|
| 286 |
splits:
|
| 287 |
- name: train
|
| 288 |
+
num_bytes: 2290040.5
|
| 289 |
num_examples: 8350
|
| 290 |
+
download_size: 933644
|
| 291 |
+
dataset_size: 2290040.5
|
| 292 |
- config_name: real_scenes_rendered_reflection_128P
|
| 293 |
features:
|
| 294 |
- name: image
|
|
|
|
| 299 |
dtype: string
|
| 300 |
splits:
|
| 301 |
- name: train
|
| 302 |
+
num_bytes: 2723942.65
|
| 303 |
num_examples: 9995
|
| 304 |
+
download_size: 1665779
|
| 305 |
+
dataset_size: 2723942.65
|
| 306 |
- config_name: real_scenes_seesaw_scene_128P
|
| 307 |
features:
|
| 308 |
- name: image
|
|
|
|
| 313 |
dtype: string
|
| 314 |
splits:
|
| 315 |
- name: train
|
| 316 |
+
num_bytes: 2234514.0
|
| 317 |
num_examples: 10000
|
| 318 |
+
download_size: 1257167
|
| 319 |
+
dataset_size: 2234514.0
|
| 320 |
- config_name: real_scenes_spring_scene_128P
|
| 321 |
features:
|
| 322 |
- name: image
|
|
|
|
| 327 |
dtype: string
|
| 328 |
splits:
|
| 329 |
- name: train
|
| 330 |
+
num_bytes: 2506086.0
|
| 331 |
num_examples: 10000
|
| 332 |
+
download_size: 951360
|
| 333 |
+
dataset_size: 2506086.0
|
| 334 |
+
configs:
|
| 335 |
+
- config_name: hypothetical_scenes_Hypothetic_v2_linear
|
| 336 |
+
data_files:
|
| 337 |
+
- split: train
|
| 338 |
+
path: hypothetical_scenes_Hypothetic_v2_linear/train-*
|
| 339 |
+
- config_name: hypothetical_scenes_Hypothetic_v2_nonlinear
|
| 340 |
+
data_files:
|
| 341 |
+
- split: train
|
| 342 |
+
path: hypothetical_scenes_Hypothetic_v2_nonlinear/train-*
|
| 343 |
+
- config_name: hypothetical_scenes_Hypothetic_v3_fully_connected_linear
|
| 344 |
+
data_files:
|
| 345 |
+
- split: train
|
| 346 |
+
path: hypothetical_scenes_Hypothetic_v3_fully_connected_linear/train-*
|
| 347 |
+
- config_name: hypothetical_scenes_Hypothetic_v4_linear_full_connected
|
| 348 |
+
data_files:
|
| 349 |
+
- split: train
|
| 350 |
+
path: hypothetical_scenes_Hypothetic_v4_linear_full_connected/train-*
|
| 351 |
+
- config_name: hypothetical_scenes_Hypothetic_v4_linear_v
|
| 352 |
+
data_files:
|
| 353 |
+
- split: train
|
| 354 |
+
path: hypothetical_scenes_Hypothetic_v4_linear_v/train-*
|
| 355 |
+
- config_name: hypothetical_scenes_Hypothetic_v4_nonlinear_v
|
| 356 |
+
data_files:
|
| 357 |
+
- split: train
|
| 358 |
+
path: hypothetical_scenes_Hypothetic_v4_nonlinear_v/train-*
|
| 359 |
+
- config_name: hypothetical_scenes_Hypothetic_v5_linear
|
| 360 |
+
data_files:
|
| 361 |
+
- split: train
|
| 362 |
+
path: hypothetical_scenes_Hypothetic_v5_linear/train-*
|
| 363 |
+
- config_name: hypothetical_scenes_Hypothetic_v5_linear_full_connected
|
| 364 |
+
data_files:
|
| 365 |
+
- split: train
|
| 366 |
+
path: hypothetical_scenes_Hypothetic_v5_linear_full_connected/train-*
|
| 367 |
+
- config_name: hypothetical_scenes_rendered_h3_linear_128P
|
| 368 |
+
data_files:
|
| 369 |
+
- split: train
|
| 370 |
+
path: hypothetical_scenes_rendered_h3_linear_128P/train-*
|
| 371 |
+
- config_name: hypothetical_scenes_rendered_h3_nonlinear_128P
|
| 372 |
+
data_files:
|
| 373 |
+
- split: train
|
| 374 |
+
path: hypothetical_scenes_rendered_h3_nonlinear_128P/train-*
|
| 375 |
+
- config_name: hypothetical_scenes_rendered_h5_nonlinear
|
| 376 |
+
data_files:
|
| 377 |
+
- split: train
|
| 378 |
+
path: hypothetical_scenes_rendered_h5_nonlinear/train-*
|
| 379 |
+
- config_name: real_scenes_Real_Parabola
|
| 380 |
+
data_files:
|
| 381 |
+
- split: train
|
| 382 |
+
path: real_scenes_Real_Parabola/train-*
|
| 383 |
+
- config_name: real_scenes_Real_magnet_v3
|
| 384 |
+
data_files:
|
| 385 |
+
- split: train
|
| 386 |
+
path: real_scenes_Real_magnet_v3/train-*
|
| 387 |
+
default: true
|
| 388 |
+
- config_name: real_scenes_Real_magnet_v3_5
|
| 389 |
+
data_files:
|
| 390 |
+
- split: train
|
| 391 |
+
path: real_scenes_Real_magnet_v3_5/train-*
|
| 392 |
+
- config_name: real_scenes_Real_spring_v3_256P
|
| 393 |
+
data_files:
|
| 394 |
+
- split: train
|
| 395 |
+
path: real_scenes_Real_spring_v3_256P/train-*
|
| 396 |
+
- config_name: real_scenes_Water_flow_scene_render
|
| 397 |
+
data_files:
|
| 398 |
+
- split: train
|
| 399 |
+
path: real_scenes_Water_flow_scene_render/train-*
|
| 400 |
+
- config_name: real_scenes_convex_len_render_images
|
| 401 |
+
data_files:
|
| 402 |
+
- split: train
|
| 403 |
+
path: real_scenes_convex_len_render_images/train-*
|
| 404 |
+
- config_name: real_scenes_real_pendulum
|
| 405 |
+
data_files:
|
| 406 |
+
- split: train
|
| 407 |
+
path: real_scenes_real_pendulum/train-*
|
| 408 |
+
- config_name: real_scenes_rendered_magnetic_128
|
| 409 |
+
data_files:
|
| 410 |
+
- split: train
|
| 411 |
+
path: real_scenes_rendered_magnetic_128/train-*
|
| 412 |
+
- config_name: real_scenes_rendered_reflection_128P
|
| 413 |
+
data_files:
|
| 414 |
+
- split: train
|
| 415 |
+
path: real_scenes_rendered_reflection_128P/train-*
|
| 416 |
+
- config_name: real_scenes_seesaw_scene_128P
|
| 417 |
+
data_files:
|
| 418 |
+
- split: train
|
| 419 |
+
path: real_scenes_seesaw_scene_128P/train-*
|
| 420 |
+
- config_name: real_scenes_spring_scene_128P
|
| 421 |
+
data_files:
|
| 422 |
+
- split: train
|
| 423 |
+
path: real_scenes_spring_scene_128P/train-*
|
| 424 |
---
|
| 425 |
# 🧠 Causal3D: A Benchmark for Visual Causal Reasoning
|
| 426 |
|
__init__.py
DELETED
|
@@ -1 +0,0 @@
|
|
| 1 |
-
from .Causal3D import Causal3D
|
|
|
|
|
|
dataset.py
DELETED
|
@@ -1,175 +0,0 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import glob
|
| 3 |
-
from pathlib import Path
|
| 4 |
-
from typing import List
|
| 5 |
-
import pandas as pd
|
| 6 |
-
import numpy as np
|
| 7 |
-
from tqdm import tqdm
|
| 8 |
-
import datasets
|
| 9 |
-
|
| 10 |
-
print("✅ Custom Causal3D loaded - outside code")
|
| 11 |
-
_CITATION = """\
|
| 12 |
-
@article{liu2025causal3d,
|
| 13 |
-
title={CAUSAL3D: A Comprehensive Benchmark for Causal Learning from Visual Data},
|
| 14 |
-
author={Liu, Disheng and Qiao, Yiran and Liu, Wuche and Lu, Yiren and Zhou, Yunlai and Liang, Tuo and Yin, Yu and Ma, Jing},
|
| 15 |
-
journal={arXiv preprint arXiv:2503.04852},
|
| 16 |
-
year={2025}
|
| 17 |
-
}
|
| 18 |
-
"""
|
| 19 |
-
|
| 20 |
-
_DESCRIPTION = """\
|
| 21 |
-
Causal3D is a benchmark for evaluating causal reasoning in physical and hypothetical visual scenes.
|
| 22 |
-
It includes both real-world recordings and rendered synthetic scenes demonstrating causal interactions.
|
| 23 |
-
"""
|
| 24 |
-
|
| 25 |
-
_HOMEPAGE = "https://huggingface.co/datasets/LLDDSS/Causal3D"
|
| 26 |
-
_LICENSE = "CC-BY-4.0"
|
| 27 |
-
|
| 28 |
-
class Causal3D(datasets.GeneratorBasedBuilder):
|
| 29 |
-
DEFAULT_CONFIG_NAME = "real_scenes_Real_magnet_v3"
|
| 30 |
-
BUILDER_CONFIGS = [
|
| 31 |
-
# hypothetical_scenes
|
| 32 |
-
datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v2_linear",
|
| 33 |
-
version=datasets.Version("1.0.0"),
|
| 34 |
-
description="Hypothetic_v2_linear scene"),
|
| 35 |
-
datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v2_nonlinear", version=datasets.Version("1.0.0"), description="Hypothetic_v2_nonlinear scene"),
|
| 36 |
-
datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v3_fully_connected_linear", version=datasets.Version("1.0.0"), description="Hypothetic_v3_fully_connected_linear scene"),
|
| 37 |
-
datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v4_linear_full_connected", version=datasets.Version("1.0.0"), description="Hypothetic_v4_linear_full_connected scene"),
|
| 38 |
-
datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v4_linear_v", version=datasets.Version("1.0.0"), description="Hypothetic_v4_linear_v scene"),
|
| 39 |
-
datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v4_nonlinear_v", version=datasets.Version("1.0.0"), description="Hypothetic_v4_nonlinear_v scene"),
|
| 40 |
-
datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v5_linear", version=datasets.Version("1.0.0"), description="Hypothetic_v5_linear scene"),
|
| 41 |
-
datasets.BuilderConfig(name="hypothetical_scenes_Hypothetic_v5_linear_full_connected", version=datasets.Version("1.0.0"), description="Hypothetic_v5_linear_full_connected scene"),
|
| 42 |
-
datasets.BuilderConfig(name="hypothetical_scenes_rendered_h3_linear_128P", version=datasets.Version("1.0.0"), description="rendered_h3_linear_128P scene"),
|
| 43 |
-
datasets.BuilderConfig(name="hypothetical_scenes_rendered_h3_nonlinear_128P", version=datasets.Version("1.0.0"), description="rendered_h3_nonlinear_128P scene"),
|
| 44 |
-
datasets.BuilderConfig(name="hypothetical_scenes_rendered_h5_nonlinear", version=datasets.Version("1.0.0"), description="rendered_h5_nonlinear scene"),
|
| 45 |
-
|
| 46 |
-
# real_scenes
|
| 47 |
-
datasets.BuilderConfig(name="real_scenes_Real_Parabola", version=datasets.Version("1.0.0"), description="Real_Parabola scene"),
|
| 48 |
-
datasets.BuilderConfig(name="real_scenes_Real_magnet_v3", version=datasets.Version("1.0.0"), description="Real_magnet_v3 scene"),
|
| 49 |
-
datasets.BuilderConfig(name="real_scenes_Real_magnet_v3_5", version=datasets.Version("1.0.0"), description="Real_magnet_v3_5 scene"),
|
| 50 |
-
datasets.BuilderConfig(name="real_scenes_Real_parabola_multi_view", version=datasets.Version("1.0.0"), description="Real_parabola_multi_view scene"),
|
| 51 |
-
datasets.BuilderConfig(name="real_scenes_Real_spring_v3_256P", version=datasets.Version("1.0.0"), description="Real_spring_v3_256P scene"),
|
| 52 |
-
datasets.BuilderConfig(name="real_scenes_Water_flow_scene_render", version=datasets.Version("1.0.0"), description="Water_flow_scene_render scene"),
|
| 53 |
-
datasets.BuilderConfig(name="real_scenes_convex_len_render_images", version=datasets.Version("1.0.0"), description="convex_len_render_images scene"),
|
| 54 |
-
datasets.BuilderConfig(name="real_scenes_real_pendulum", version=datasets.Version("1.0.0"), description="real_pendulum scene"),
|
| 55 |
-
datasets.BuilderConfig(name="real_scenes_rendered_magnetic_128", version=datasets.Version("1.0.0"), description="rendered_magnetic_128 scene"),
|
| 56 |
-
datasets.BuilderConfig(name="real_scenes_rendered_reflection_128P", version=datasets.Version("1.0.0"), description="rendered_reflection_128P scene"),
|
| 57 |
-
datasets.BuilderConfig(name="real_scenes_seesaw_scene_128P", version=datasets.Version("1.0.0"), description="seesaw_scene_128P scene"),
|
| 58 |
-
datasets.BuilderConfig(name="real_scenes_spring_scene_128P", version=datasets.Version("1.0.0"), description="spring_scene_128P scene"),
|
| 59 |
-
]
|
| 60 |
-
|
| 61 |
-
def _info(self):
|
| 62 |
-
print(">>> Loaded config:", self.config.name) # 🟡 加这个调试输出
|
| 63 |
-
return datasets.DatasetInfo(
|
| 64 |
-
description=_DESCRIPTION,
|
| 65 |
-
features=datasets.Features({
|
| 66 |
-
"image": datasets.Image(),
|
| 67 |
-
"file_name": datasets.Value("string"),
|
| 68 |
-
"metadata": datasets.Value("string"), # optionally replace with structured fields
|
| 69 |
-
}),
|
| 70 |
-
homepage=_HOMEPAGE,
|
| 71 |
-
license=_LICENSE,
|
| 72 |
-
citation=_CITATION,
|
| 73 |
-
)
|
| 74 |
-
|
| 75 |
-
def _split_generators(self, dl_manager):
|
| 76 |
-
parts = self.config.name.split("_", 2)
|
| 77 |
-
category = parts[0] + "_" + parts[1] # real_scenes or hypothetical_scenes
|
| 78 |
-
|
| 79 |
-
if category not in ["real_scenes", "hypothetical_scenes"]:
|
| 80 |
-
raise ValueError(f"Invalid category '{category}'. Must be one of ['real_scenes', 'hypothetical_scenes']")
|
| 81 |
-
|
| 82 |
-
scene = parts[2]
|
| 83 |
-
data_dir = os.path.join(category, scene)
|
| 84 |
-
|
| 85 |
-
return [
|
| 86 |
-
datasets.SplitGenerator(
|
| 87 |
-
name=datasets.Split.TRAIN,
|
| 88 |
-
gen_kwargs={"data_dir": data_dir},
|
| 89 |
-
)
|
| 90 |
-
]
|
| 91 |
-
|
| 92 |
-
def _generate_examples(self, data_dir):
|
| 93 |
-
# Find the .csv file
|
| 94 |
-
csv_files = list(Path(data_dir).rglob("*.csv"))
|
| 95 |
-
csv_files = [f for f in Path(data_dir).rglob("*.csv") if not f.name.startswith("._")]
|
| 96 |
-
if not csv_files:
|
| 97 |
-
print(f"\033[33m[SKIP] No CSV found in {data_dir}, skipping this config.\033[0m")
|
| 98 |
-
return # ✅ 跳过该 config,不报错
|
| 99 |
-
csv_path = csv_files[0]
|
| 100 |
-
df = pd.read_csv(csv_path)
|
| 101 |
-
if "image" not in df.columns:
|
| 102 |
-
print(f"\033[31m[SKIP] 'image' column not found in {csv_path}, skipping this config.\033[0m")
|
| 103 |
-
return
|
| 104 |
-
|
| 105 |
-
# sub_folders = [os.path.join(data_dir, i) for i in os.listdir(data_dir) if os.path.isdir(os.path.join(data_dir, i))]
|
| 106 |
-
|
| 107 |
-
def color(text, code):
|
| 108 |
-
return f"\033[{code}m{text}\033[0m"
|
| 109 |
-
# print()
|
| 110 |
-
# print(color(f"data_dir: {data_dir}", "36")) # Cyan
|
| 111 |
-
# print(color(f"csv_path: {csv_path}", "33")) # Yellow
|
| 112 |
-
# print(color(f"csv_path.name: {csv_path.name}", "35")) # Magenta
|
| 113 |
-
# print(color(f"CSV columns: {list(df.columns)}", "32")) # Green
|
| 114 |
-
|
| 115 |
-
images = df["image"].tolist()
|
| 116 |
-
# images only contain image names
|
| 117 |
-
|
| 118 |
-
images = [i.split('/')[-1].split('.')[0] for i in images if i.endswith(('.png', '.jpg', '.jpeg'))]
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
# Load image paths
|
| 122 |
-
try:
|
| 123 |
-
image_files = {}
|
| 124 |
-
for ext in ("*.png", "*.jpg", "*.jpeg"):
|
| 125 |
-
for img_path in Path(data_dir).rglob(ext):
|
| 126 |
-
relative_path = str(img_path.relative_to(data_dir))
|
| 127 |
-
image_files[relative_path] = str(img_path)
|
| 128 |
-
parts = [i.split('/')[0] for i in list(image_files.keys())]
|
| 129 |
-
parts = set(parts)
|
| 130 |
-
if "part_000" not in parts:
|
| 131 |
-
parts= ['']
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
except Exception as e:
|
| 135 |
-
print(color(f"Error loading images: {e}", "31")) # Red
|
| 136 |
-
return
|
| 137 |
-
try:
|
| 138 |
-
# Match CSV rows with image paths
|
| 139 |
-
for idx, row in tqdm(df.iterrows(), total=len(df), desc="Processing rows", unit="row"):
|
| 140 |
-
fname = row["ID"]
|
| 141 |
-
raw_record_img_path = row["image"]
|
| 142 |
-
record_img_name = raw_record_img_path.split('/')[-1]
|
| 143 |
-
for part in parts:
|
| 144 |
-
if part == '':
|
| 145 |
-
record_img_path = record_img_name
|
| 146 |
-
else:
|
| 147 |
-
record_img_path = "/".join([part, record_img_name.strip()])
|
| 148 |
-
if "Water_flow_scene_render" in data_dir:
|
| 149 |
-
record_img_path = "/".join([part, str(int(record_img_name.strip().split('.')[0]))+".png"])
|
| 150 |
-
|
| 151 |
-
# print(f"raw_record_img_path: {raw_record_img_path}")
|
| 152 |
-
# print(f"record_img_name: {record_img_name}")
|
| 153 |
-
# print("part: ", part)
|
| 154 |
-
# print(f"part: {part}, record_img_name: {record_img_name}, record_img_path: {record_img_path}")
|
| 155 |
-
# print(f"record_img_path in image_files: {record_img_path in image_files}")
|
| 156 |
-
# print(image_files.keys())
|
| 157 |
-
# print(f"part: {part}, record_img_name: {record_img_name}, record_img_path: {record_img_path}, "
|
| 158 |
-
# f"record_image_path in image_files: {record_img_path in image_files}, image_files,key[0]: {list(image_files.keys())[0]}")
|
| 159 |
-
# print(image_files)
|
| 160 |
-
# exit(0)
|
| 161 |
-
if record_img_path in image_files:
|
| 162 |
-
# print(color(f"record_img_path: { image_files[record_img_path]}", "34")) # Blue
|
| 163 |
-
yield idx, {
|
| 164 |
-
"image": image_files[record_img_path],
|
| 165 |
-
"file_name": fname,
|
| 166 |
-
"metadata": row.to_json(),
|
| 167 |
-
}
|
| 168 |
-
break
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
except Exception as e:
|
| 172 |
-
print(color(f"Error processing CSV rows: {e}", "31"))
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dataset_infos.json
DELETED
|
@@ -1,899 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"hypothetical_scenes_Hypothetic_v2_linear": {
|
| 3 |
-
"description": "Causal3D is a benchmark for evaluating causal reasoning in physical and hypothetical visual scenes. \nIt includes both real-world recordings and rendered synthetic scenes demonstrating causal interactions.\n",
|
| 4 |
-
"citation": "@article{liu2025causal3d,\n title={CAUSAL3D: A Comprehensive Benchmark for Causal Learning from Visual Data},\n author={Liu, Disheng and Qiao, Yiran and Liu, Wuche and Lu, Yiren and Zhou, Yunlai and Liang, Tuo and Yin, Yu and Ma, Jing},\n journal={arXiv preprint arXiv:2503.04852},\n year={2025}\n}",
|
| 5 |
-
"homepage": "https://huggingface.co/datasets/LLDDSS/Causal3D",
|
| 6 |
-
"license": "CC-BY-4.0",
|
| 7 |
-
"features": {
|
| 8 |
-
"image": {
|
| 9 |
-
"_type": "Image"
|
| 10 |
-
},
|
| 11 |
-
"file_name": {
|
| 12 |
-
"dtype": "string",
|
| 13 |
-
"_type": "Value"
|
| 14 |
-
},
|
| 15 |
-
"metadata": {
|
| 16 |
-
"dtype": "string",
|
| 17 |
-
"_type": "Value"
|
| 18 |
-
}
|
| 19 |
-
},
|
| 20 |
-
"builder_name": "dataset",
|
| 21 |
-
"version": {
|
| 22 |
-
"version_str": "1.0.0",
|
| 23 |
-
"major": 1,
|
| 24 |
-
"minor": 0,
|
| 25 |
-
"patch": 0
|
| 26 |
-
},
|
| 27 |
-
"splits": {
|
| 28 |
-
"train": {
|
| 29 |
-
"name": "train",
|
| 30 |
-
"num_bytes": 0,
|
| 31 |
-
"num_examples": 0,
|
| 32 |
-
"dataset_name": "dataset"
|
| 33 |
-
}
|
| 34 |
-
},
|
| 35 |
-
"download_checksums": {},
|
| 36 |
-
"download_size": 0,
|
| 37 |
-
"dataset_size": 0,
|
| 38 |
-
"size_in_bytes": 0,
|
| 39 |
-
"config_name": "hypothetical_scenes_Hypothetic_v2_linear"
|
| 40 |
-
},
|
| 41 |
-
"hypothetical_scenes_Hypothetic_v2_nonlinear": {
|
| 42 |
-
"description": "Causal3D is a benchmark for evaluating causal reasoning in physical and hypothetical visual scenes. \nIt includes both real-world recordings and rendered synthetic scenes demonstrating causal interactions.\n",
|
| 43 |
-
"citation": "@article{liu2025causal3d,\n title={CAUSAL3D: A Comprehensive Benchmark for Causal Learning from Visual Data},\n author={Liu, Disheng and Qiao, Yiran and Liu, Wuche and Lu, Yiren and Zhou, Yunlai and Liang, Tuo and Yin, Yu and Ma, Jing},\n journal={arXiv preprint arXiv:2503.04852},\n year={2025}\n}",
|
| 44 |
-
"homepage": "https://huggingface.co/datasets/LLDDSS/Causal3D",
|
| 45 |
-
"license": "CC-BY-4.0",
|
| 46 |
-
"features": {
|
| 47 |
-
"image": {
|
| 48 |
-
"_type": "Image"
|
| 49 |
-
},
|
| 50 |
-
"file_name": {
|
| 51 |
-
"dtype": "string",
|
| 52 |
-
"_type": "Value"
|
| 53 |
-
},
|
| 54 |
-
"metadata": {
|
| 55 |
-
"dtype": "string",
|
| 56 |
-
"_type": "Value"
|
| 57 |
-
}
|
| 58 |
-
},
|
| 59 |
-
"builder_name": "dataset",
|
| 60 |
-
"version": {
|
| 61 |
-
"version_str": "1.0.0",
|
| 62 |
-
"major": 1,
|
| 63 |
-
"minor": 0,
|
| 64 |
-
"patch": 0
|
| 65 |
-
},
|
| 66 |
-
"splits": {
|
| 67 |
-
"train": {
|
| 68 |
-
"name": "train",
|
| 69 |
-
"num_bytes": 0,
|
| 70 |
-
"num_examples": 0,
|
| 71 |
-
"dataset_name": "dataset"
|
| 72 |
-
}
|
| 73 |
-
},
|
| 74 |
-
"download_checksums": {},
|
| 75 |
-
"download_size": 0,
|
| 76 |
-
"dataset_size": 0,
|
| 77 |
-
"size_in_bytes": 0,
|
| 78 |
-
"config_name": "hypothetical_scenes_Hypothetic_v2_nonlinear"
|
| 79 |
-
},
|
| 80 |
-
"hypothetical_scenes_Hypothetic_v3_fully_connected_linear": {
|
| 81 |
-
"description": "Causal3D is a benchmark for evaluating causal reasoning in physical and hypothetical visual scenes. \nIt includes both real-world recordings and rendered synthetic scenes demonstrating causal interactions.\n",
|
| 82 |
-
"citation": "@article{liu2025causal3d,\n title={CAUSAL3D: A Comprehensive Benchmark for Causal Learning from Visual Data},\n author={Liu, Disheng and Qiao, Yiran and Liu, Wuche and Lu, Yiren and Zhou, Yunlai and Liang, Tuo and Yin, Yu and Ma, Jing},\n journal={arXiv preprint arXiv:2503.04852},\n year={2025}\n}",
|
| 83 |
-
"homepage": "https://huggingface.co/datasets/LLDDSS/Causal3D",
|
| 84 |
-
"license": "CC-BY-4.0",
|
| 85 |
-
"features": {
|
| 86 |
-
"image": {
|
| 87 |
-
"_type": "Image"
|
| 88 |
-
},
|
| 89 |
-
"file_name": {
|
| 90 |
-
"dtype": "string",
|
| 91 |
-
"_type": "Value"
|
| 92 |
-
},
|
| 93 |
-
"metadata": {
|
| 94 |
-
"dtype": "string",
|
| 95 |
-
"_type": "Value"
|
| 96 |
-
}
|
| 97 |
-
},
|
| 98 |
-
"builder_name": "dataset",
|
| 99 |
-
"version": {
|
| 100 |
-
"version_str": "1.0.0",
|
| 101 |
-
"major": 1,
|
| 102 |
-
"minor": 0,
|
| 103 |
-
"patch": 0
|
| 104 |
-
},
|
| 105 |
-
"splits": {
|
| 106 |
-
"train": {
|
| 107 |
-
"name": "train",
|
| 108 |
-
"num_bytes": 0,
|
| 109 |
-
"num_examples": 0,
|
| 110 |
-
"dataset_name": "dataset"
|
| 111 |
-
}
|
| 112 |
-
},
|
| 113 |
-
"download_checksums": {},
|
| 114 |
-
"download_size": 0,
|
| 115 |
-
"dataset_size": 0,
|
| 116 |
-
"size_in_bytes": 0,
|
| 117 |
-
"config_name": "hypothetical_scenes_Hypothetic_v3_fully_connected_linear"
|
| 118 |
-
},
|
| 119 |
-
"hypothetical_scenes_Hypothetic_v4_linear_full_connected": {
|
| 120 |
-
"description": "Causal3D is a benchmark for evaluating causal reasoning in physical and hypothetical visual scenes. \nIt includes both real-world recordings and rendered synthetic scenes demonstrating causal interactions.\n",
|
| 121 |
-
"citation": "@article{liu2025causal3d,\n title={CAUSAL3D: A Comprehensive Benchmark for Causal Learning from Visual Data},\n author={Liu, Disheng and Qiao, Yiran and Liu, Wuche and Lu, Yiren and Zhou, Yunlai and Liang, Tuo and Yin, Yu and Ma, Jing},\n journal={arXiv preprint arXiv:2503.04852},\n year={2025}\n}",
|
| 122 |
-
"homepage": "https://huggingface.co/datasets/LLDDSS/Causal3D",
|
| 123 |
-
"license": "CC-BY-4.0",
|
| 124 |
-
"features": {
|
| 125 |
-
"image": {
|
| 126 |
-
"_type": "Image"
|
| 127 |
-
},
|
| 128 |
-
"file_name": {
|
| 129 |
-
"dtype": "string",
|
| 130 |
-
"_type": "Value"
|
| 131 |
-
},
|
| 132 |
-
"metadata": {
|
| 133 |
-
"dtype": "string",
|
| 134 |
-
"_type": "Value"
|
| 135 |
-
}
|
| 136 |
-
},
|
| 137 |
-
"builder_name": "dataset",
|
| 138 |
-
"version": {
|
| 139 |
-
"version_str": "1.0.0",
|
| 140 |
-
"major": 1,
|
| 141 |
-
"minor": 0,
|
| 142 |
-
"patch": 0
|
| 143 |
-
},
|
| 144 |
-
"splits": {
|
| 145 |
-
"train": {
|
| 146 |
-
"name": "train",
|
| 147 |
-
"num_bytes": 0,
|
| 148 |
-
"num_examples": 0,
|
| 149 |
-
"dataset_name": "dataset"
|
| 150 |
-
}
|
| 151 |
-
},
|
| 152 |
-
"download_checksums": {},
|
| 153 |
-
"download_size": 0,
|
| 154 |
-
"dataset_size": 0,
|
| 155 |
-
"size_in_bytes": 0,
|
| 156 |
-
"config_name": "hypothetical_scenes_Hypothetic_v4_linear_full_connected"
|
| 157 |
-
},
|
| 158 |
-
"hypothetical_scenes_Hypothetic_v4_linear_v": {
|
| 159 |
-
"description": "Causal3D is a benchmark for evaluating causal reasoning in physical and hypothetical visual scenes. \nIt includes both real-world recordings and rendered synthetic scenes demonstrating causal interactions.\n",
|
| 160 |
-
"citation": "@article{liu2025causal3d,\n title={CAUSAL3D: A Comprehensive Benchmark for Causal Learning from Visual Data},\n author={Liu, Disheng and Qiao, Yiran and Liu, Wuche and Lu, Yiren and Zhou, Yunlai and Liang, Tuo and Yin, Yu and Ma, Jing},\n journal={arXiv preprint arXiv:2503.04852},\n year={2025}\n}",
|
| 161 |
-
"homepage": "https://huggingface.co/datasets/LLDDSS/Causal3D",
|
| 162 |
-
"license": "CC-BY-4.0",
|
| 163 |
-
"features": {
|
| 164 |
-
"image": {
|
| 165 |
-
"_type": "Image"
|
| 166 |
-
},
|
| 167 |
-
"file_name": {
|
| 168 |
-
"dtype": "string",
|
| 169 |
-
"_type": "Value"
|
| 170 |
-
},
|
| 171 |
-
"metadata": {
|
| 172 |
-
"dtype": "string",
|
| 173 |
-
"_type": "Value"
|
| 174 |
-
}
|
| 175 |
-
},
|
| 176 |
-
"builder_name": "dataset",
|
| 177 |
-
"version": {
|
| 178 |
-
"version_str": "1.0.0",
|
| 179 |
-
"major": 1,
|
| 180 |
-
"minor": 0,
|
| 181 |
-
"patch": 0
|
| 182 |
-
},
|
| 183 |
-
"splits": {
|
| 184 |
-
"train": {
|
| 185 |
-
"name": "train",
|
| 186 |
-
"num_bytes": 0,
|
| 187 |
-
"num_examples": 0,
|
| 188 |
-
"dataset_name": "dataset"
|
| 189 |
-
}
|
| 190 |
-
},
|
| 191 |
-
"download_checksums": {},
|
| 192 |
-
"download_size": 0,
|
| 193 |
-
"dataset_size": 0,
|
| 194 |
-
"size_in_bytes": 0,
|
| 195 |
-
"config_name": "hypothetical_scenes_Hypothetic_v4_linear_v"
|
| 196 |
-
},
|
| 197 |
-
"hypothetical_scenes_Hypothetic_v4_nonlinear_v": {
|
| 198 |
-
"description": "Causal3D is a benchmark for evaluating causal reasoning in physical and hypothetical visual scenes. \nIt includes both real-world recordings and rendered synthetic scenes demonstrating causal interactions.\n",
|
| 199 |
-
"citation": "@article{liu2025causal3d,\n title={CAUSAL3D: A Comprehensive Benchmark for Causal Learning from Visual Data},\n author={Liu, Disheng and Qiao, Yiran and Liu, Wuche and Lu, Yiren and Zhou, Yunlai and Liang, Tuo and Yin, Yu and Ma, Jing},\n journal={arXiv preprint arXiv:2503.04852},\n year={2025}\n}",
|
| 200 |
-
"homepage": "https://huggingface.co/datasets/LLDDSS/Causal3D",
|
| 201 |
-
"license": "CC-BY-4.0",
|
| 202 |
-
"features": {
|
| 203 |
-
"image": {
|
| 204 |
-
"_type": "Image"
|
| 205 |
-
},
|
| 206 |
-
"file_name": {
|
| 207 |
-
"dtype": "string",
|
| 208 |
-
"_type": "Value"
|
| 209 |
-
},
|
| 210 |
-
"metadata": {
|
| 211 |
-
"dtype": "string",
|
| 212 |
-
"_type": "Value"
|
| 213 |
-
}
|
| 214 |
-
},
|
| 215 |
-
"builder_name": "dataset",
|
| 216 |
-
"version": {
|
| 217 |
-
"version_str": "1.0.0",
|
| 218 |
-
"major": 1,
|
| 219 |
-
"minor": 0,
|
| 220 |
-
"patch": 0
|
| 221 |
-
},
|
| 222 |
-
"splits": {
|
| 223 |
-
"train": {
|
| 224 |
-
"name": "train",
|
| 225 |
-
"num_bytes": 0,
|
| 226 |
-
"num_examples": 0,
|
| 227 |
-
"dataset_name": "dataset"
|
| 228 |
-
}
|
| 229 |
-
},
|
| 230 |
-
"download_checksums": {},
|
| 231 |
-
"download_size": 0,
|
| 232 |
-
"dataset_size": 0,
|
| 233 |
-
"size_in_bytes": 0,
|
| 234 |
-
"config_name": "hypothetical_scenes_Hypothetic_v4_nonlinear_v"
|
| 235 |
-
},
|
| 236 |
-
"hypothetical_scenes_Hypothetic_v5_linear": {
|
| 237 |
-
"description": "Causal3D is a benchmark for evaluating causal reasoning in physical and hypothetical visual scenes. \nIt includes both real-world recordings and rendered synthetic scenes demonstrating causal interactions.\n",
|
| 238 |
-
"citation": "@article{liu2025causal3d,\n title={CAUSAL3D: A Comprehensive Benchmark for Causal Learning from Visual Data},\n author={Liu, Disheng and Qiao, Yiran and Liu, Wuche and Lu, Yiren and Zhou, Yunlai and Liang, Tuo and Yin, Yu and Ma, Jing},\n journal={arXiv preprint arXiv:2503.04852},\n year={2025}\n}",
|
| 239 |
-
"homepage": "https://huggingface.co/datasets/LLDDSS/Causal3D",
|
| 240 |
-
"license": "CC-BY-4.0",
|
| 241 |
-
"features": {
|
| 242 |
-
"image": {
|
| 243 |
-
"_type": "Image"
|
| 244 |
-
},
|
| 245 |
-
"file_name": {
|
| 246 |
-
"dtype": "string",
|
| 247 |
-
"_type": "Value"
|
| 248 |
-
},
|
| 249 |
-
"metadata": {
|
| 250 |
-
"dtype": "string",
|
| 251 |
-
"_type": "Value"
|
| 252 |
-
}
|
| 253 |
-
},
|
| 254 |
-
"builder_name": "dataset",
|
| 255 |
-
"version": {
|
| 256 |
-
"version_str": "1.0.0",
|
| 257 |
-
"major": 1,
|
| 258 |
-
"minor": 0,
|
| 259 |
-
"patch": 0
|
| 260 |
-
},
|
| 261 |
-
"splits": {
|
| 262 |
-
"train": {
|
| 263 |
-
"name": "train",
|
| 264 |
-
"num_bytes": 0,
|
| 265 |
-
"num_examples": 0,
|
| 266 |
-
"dataset_name": "dataset"
|
| 267 |
-
}
|
| 268 |
-
},
|
| 269 |
-
"download_checksums": {},
|
| 270 |
-
"download_size": 0,
|
| 271 |
-
"dataset_size": 0,
|
| 272 |
-
"size_in_bytes": 0,
|
| 273 |
-
"config_name": "hypothetical_scenes_Hypothetic_v5_linear"
|
| 274 |
-
},
|
| 275 |
-
"hypothetical_scenes_Hypothetic_v5_linear_full_connected": {
|
| 276 |
-
"description": "Causal3D is a benchmark for evaluating causal reasoning in physical and hypothetical visual scenes. \nIt includes both real-world recordings and rendered synthetic scenes demonstrating causal interactions.\n",
|
| 277 |
-
"citation": "@article{liu2025causal3d,\n title={CAUSAL3D: A Comprehensive Benchmark for Causal Learning from Visual Data},\n author={Liu, Disheng and Qiao, Yiran and Liu, Wuche and Lu, Yiren and Zhou, Yunlai and Liang, Tuo and Yin, Yu and Ma, Jing},\n journal={arXiv preprint arXiv:2503.04852},\n year={2025}\n}",
|
| 278 |
-
"homepage": "https://huggingface.co/datasets/LLDDSS/Causal3D",
|
| 279 |
-
"license": "CC-BY-4.0",
|
| 280 |
-
"features": {
|
| 281 |
-
"image": {
|
| 282 |
-
"_type": "Image"
|
| 283 |
-
},
|
| 284 |
-
"file_name": {
|
| 285 |
-
"dtype": "string",
|
| 286 |
-
"_type": "Value"
|
| 287 |
-
},
|
| 288 |
-
"metadata": {
|
| 289 |
-
"dtype": "string",
|
| 290 |
-
"_type": "Value"
|
| 291 |
-
}
|
| 292 |
-
},
|
| 293 |
-
"builder_name": "dataset",
|
| 294 |
-
"version": {
|
| 295 |
-
"version_str": "1.0.0",
|
| 296 |
-
"major": 1,
|
| 297 |
-
"minor": 0,
|
| 298 |
-
"patch": 0
|
| 299 |
-
},
|
| 300 |
-
"splits": {
|
| 301 |
-
"train": {
|
| 302 |
-
"name": "train",
|
| 303 |
-
"num_bytes": 0,
|
| 304 |
-
"num_examples": 0,
|
| 305 |
-
"dataset_name": "dataset"
|
| 306 |
-
}
|
| 307 |
-
},
|
| 308 |
-
"download_checksums": {},
|
| 309 |
-
"download_size": 0,
|
| 310 |
-
"dataset_size": 0,
|
| 311 |
-
"size_in_bytes": 0,
|
| 312 |
-
"config_name": "hypothetical_scenes_Hypothetic_v5_linear_full_connected"
|
| 313 |
-
},
|
| 314 |
-
"hypothetical_scenes_rendered_h3_linear_128P": {
|
| 315 |
-
"description": "Causal3D is a benchmark for evaluating causal reasoning in physical and hypothetical visual scenes. \nIt includes both real-world recordings and rendered synthetic scenes demonstrating causal interactions.\n",
|
| 316 |
-
"citation": "@article{liu2025causal3d,\n title={CAUSAL3D: A Comprehensive Benchmark for Causal Learning from Visual Data},\n author={Liu, Disheng and Qiao, Yiran and Liu, Wuche and Lu, Yiren and Zhou, Yunlai and Liang, Tuo and Yin, Yu and Ma, Jing},\n journal={arXiv preprint arXiv:2503.04852},\n year={2025}\n}",
|
| 317 |
-
"homepage": "https://huggingface.co/datasets/LLDDSS/Causal3D",
|
| 318 |
-
"license": "CC-BY-4.0",
|
| 319 |
-
"features": {
|
| 320 |
-
"image": {
|
| 321 |
-
"_type": "Image"
|
| 322 |
-
},
|
| 323 |
-
"file_name": {
|
| 324 |
-
"dtype": "string",
|
| 325 |
-
"_type": "Value"
|
| 326 |
-
},
|
| 327 |
-
"metadata": {
|
| 328 |
-
"dtype": "string",
|
| 329 |
-
"_type": "Value"
|
| 330 |
-
}
|
| 331 |
-
},
|
| 332 |
-
"builder_name": "dataset",
|
| 333 |
-
"version": {
|
| 334 |
-
"version_str": "1.0.0",
|
| 335 |
-
"major": 1,
|
| 336 |
-
"minor": 0,
|
| 337 |
-
"patch": 0
|
| 338 |
-
},
|
| 339 |
-
"splits": {
|
| 340 |
-
"train": {
|
| 341 |
-
"name": "train",
|
| 342 |
-
"num_bytes": 0,
|
| 343 |
-
"num_examples": 0,
|
| 344 |
-
"dataset_name": "dataset"
|
| 345 |
-
}
|
| 346 |
-
},
|
| 347 |
-
"download_checksums": {},
|
| 348 |
-
"download_size": 0,
|
| 349 |
-
"dataset_size": 0,
|
| 350 |
-
"size_in_bytes": 0,
|
| 351 |
-
"config_name": "hypothetical_scenes_rendered_h3_linear_128P"
|
| 352 |
-
},
|
| 353 |
-
"hypothetical_scenes_rendered_h3_nonlinear_128P": {
|
| 354 |
-
"description": "Causal3D is a benchmark for evaluating causal reasoning in physical and hypothetical visual scenes. \nIt includes both real-world recordings and rendered synthetic scenes demonstrating causal interactions.\n",
|
| 355 |
-
"citation": "@article{liu2025causal3d,\n title={CAUSAL3D: A Comprehensive Benchmark for Causal Learning from Visual Data},\n author={Liu, Disheng and Qiao, Yiran and Liu, Wuche and Lu, Yiren and Zhou, Yunlai and Liang, Tuo and Yin, Yu and Ma, Jing},\n journal={arXiv preprint arXiv:2503.04852},\n year={2025}\n}",
|
| 356 |
-
"homepage": "https://huggingface.co/datasets/LLDDSS/Causal3D",
|
| 357 |
-
"license": "CC-BY-4.0",
|
| 358 |
-
"features": {
|
| 359 |
-
"image": {
|
| 360 |
-
"_type": "Image"
|
| 361 |
-
},
|
| 362 |
-
"file_name": {
|
| 363 |
-
"dtype": "string",
|
| 364 |
-
"_type": "Value"
|
| 365 |
-
},
|
| 366 |
-
"metadata": {
|
| 367 |
-
"dtype": "string",
|
| 368 |
-
"_type": "Value"
|
| 369 |
-
}
|
| 370 |
-
},
|
| 371 |
-
"builder_name": "dataset",
|
| 372 |
-
"version": {
|
| 373 |
-
"version_str": "1.0.0",
|
| 374 |
-
"major": 1,
|
| 375 |
-
"minor": 0,
|
| 376 |
-
"patch": 0
|
| 377 |
-
},
|
| 378 |
-
"splits": {
|
| 379 |
-
"train": {
|
| 380 |
-
"name": "train",
|
| 381 |
-
"num_bytes": 0,
|
| 382 |
-
"num_examples": 0,
|
| 383 |
-
"dataset_name": "dataset"
|
| 384 |
-
}
|
| 385 |
-
},
|
| 386 |
-
"download_checksums": {},
|
| 387 |
-
"download_size": 0,
|
| 388 |
-
"dataset_size": 0,
|
| 389 |
-
"size_in_bytes": 0,
|
| 390 |
-
"config_name": "hypothetical_scenes_rendered_h3_nonlinear_128P"
|
| 391 |
-
},
|
| 392 |
-
"hypothetical_scenes_rendered_h5_nonlinear": {
|
| 393 |
-
"description": "Causal3D is a benchmark for evaluating causal reasoning in physical and hypothetical visual scenes. \nIt includes both real-world recordings and rendered synthetic scenes demonstrating causal interactions.\n",
|
| 394 |
-
"citation": "@article{liu2025causal3d,\n title={CAUSAL3D: A Comprehensive Benchmark for Causal Learning from Visual Data},\n author={Liu, Disheng and Qiao, Yiran and Liu, Wuche and Lu, Yiren and Zhou, Yunlai and Liang, Tuo and Yin, Yu and Ma, Jing},\n journal={arXiv preprint arXiv:2503.04852},\n year={2025}\n}",
|
| 395 |
-
"homepage": "https://huggingface.co/datasets/LLDDSS/Causal3D",
|
| 396 |
-
"license": "CC-BY-4.0",
|
| 397 |
-
"features": {
|
| 398 |
-
"image": {
|
| 399 |
-
"_type": "Image"
|
| 400 |
-
},
|
| 401 |
-
"file_name": {
|
| 402 |
-
"dtype": "string",
|
| 403 |
-
"_type": "Value"
|
| 404 |
-
},
|
| 405 |
-
"metadata": {
|
| 406 |
-
"dtype": "string",
|
| 407 |
-
"_type": "Value"
|
| 408 |
-
}
|
| 409 |
-
},
|
| 410 |
-
"builder_name": "dataset",
|
| 411 |
-
"version": {
|
| 412 |
-
"version_str": "1.0.0",
|
| 413 |
-
"major": 1,
|
| 414 |
-
"minor": 0,
|
| 415 |
-
"patch": 0
|
| 416 |
-
},
|
| 417 |
-
"splits": {
|
| 418 |
-
"train": {
|
| 419 |
-
"name": "train",
|
| 420 |
-
"num_bytes": 0,
|
| 421 |
-
"num_examples": 0,
|
| 422 |
-
"dataset_name": "dataset"
|
| 423 |
-
}
|
| 424 |
-
},
|
| 425 |
-
"download_checksums": {},
|
| 426 |
-
"download_size": 0,
|
| 427 |
-
"dataset_size": 0,
|
| 428 |
-
"size_in_bytes": 0,
|
| 429 |
-
"config_name": "hypothetical_scenes_rendered_h5_nonlinear"
|
| 430 |
-
},
|
| 431 |
-
"real_scenes_Real_Parabola": {
|
| 432 |
-
"description": "Causal3D is a benchmark for evaluating causal reasoning in physical and hypothetical visual scenes. \nIt includes both real-world recordings and rendered synthetic scenes demonstrating causal interactions.\n",
|
| 433 |
-
"citation": "@article{liu2025causal3d,\n title={CAUSAL3D: A Comprehensive Benchmark for Causal Learning from Visual Data},\n author={Liu, Disheng and Qiao, Yiran and Liu, Wuche and Lu, Yiren and Zhou, Yunlai and Liang, Tuo and Yin, Yu and Ma, Jing},\n journal={arXiv preprint arXiv:2503.04852},\n year={2025}\n}",
|
| 434 |
-
"homepage": "https://huggingface.co/datasets/LLDDSS/Causal3D",
|
| 435 |
-
"license": "CC-BY-4.0",
|
| 436 |
-
"features": {
|
| 437 |
-
"image": {
|
| 438 |
-
"_type": "Image"
|
| 439 |
-
},
|
| 440 |
-
"file_name": {
|
| 441 |
-
"dtype": "string",
|
| 442 |
-
"_type": "Value"
|
| 443 |
-
},
|
| 444 |
-
"metadata": {
|
| 445 |
-
"dtype": "string",
|
| 446 |
-
"_type": "Value"
|
| 447 |
-
}
|
| 448 |
-
},
|
| 449 |
-
"builder_name": "dataset",
|
| 450 |
-
"version": {
|
| 451 |
-
"version_str": "1.0.0",
|
| 452 |
-
"major": 1,
|
| 453 |
-
"minor": 0,
|
| 454 |
-
"patch": 0
|
| 455 |
-
},
|
| 456 |
-
"splits": {
|
| 457 |
-
"train": {
|
| 458 |
-
"name": "train",
|
| 459 |
-
"num_bytes": 0,
|
| 460 |
-
"num_examples": 0,
|
| 461 |
-
"dataset_name": "dataset"
|
| 462 |
-
}
|
| 463 |
-
},
|
| 464 |
-
"download_checksums": {},
|
| 465 |
-
"download_size": 0,
|
| 466 |
-
"dataset_size": 0,
|
| 467 |
-
"size_in_bytes": 0,
|
| 468 |
-
"config_name": "real_scenes_Real_Parabola"
|
| 469 |
-
},
|
| 470 |
-
"real_scenes_Real_magnet_v3": {
|
| 471 |
-
"description": "Causal3D is a benchmark for evaluating causal reasoning in physical and hypothetical visual scenes. \nIt includes both real-world recordings and rendered synthetic scenes demonstrating causal interactions.\n",
|
| 472 |
-
"citation": "@article{liu2025causal3d,\n title={CAUSAL3D: A Comprehensive Benchmark for Causal Learning from Visual Data},\n author={Liu, Disheng and Qiao, Yiran and Liu, Wuche and Lu, Yiren and Zhou, Yunlai and Liang, Tuo and Yin, Yu and Ma, Jing},\n journal={arXiv preprint arXiv:2503.04852},\n year={2025}\n}",
|
| 473 |
-
"homepage": "https://huggingface.co/datasets/LLDDSS/Causal3D",
|
| 474 |
-
"license": "CC-BY-4.0",
|
| 475 |
-
"features": {
|
| 476 |
-
"image": {
|
| 477 |
-
"_type": "Image"
|
| 478 |
-
},
|
| 479 |
-
"file_name": {
|
| 480 |
-
"dtype": "string",
|
| 481 |
-
"_type": "Value"
|
| 482 |
-
},
|
| 483 |
-
"metadata": {
|
| 484 |
-
"dtype": "string",
|
| 485 |
-
"_type": "Value"
|
| 486 |
-
}
|
| 487 |
-
},
|
| 488 |
-
"builder_name": "dataset",
|
| 489 |
-
"version": {
|
| 490 |
-
"version_str": "1.0.0",
|
| 491 |
-
"major": 1,
|
| 492 |
-
"minor": 0,
|
| 493 |
-
"patch": 0
|
| 494 |
-
},
|
| 495 |
-
"splits": {
|
| 496 |
-
"train": {
|
| 497 |
-
"name": "train",
|
| 498 |
-
"num_bytes": 0,
|
| 499 |
-
"num_examples": 0,
|
| 500 |
-
"dataset_name": "dataset"
|
| 501 |
-
}
|
| 502 |
-
},
|
| 503 |
-
"download_checksums": {},
|
| 504 |
-
"download_size": 0,
|
| 505 |
-
"dataset_size": 0,
|
| 506 |
-
"size_in_bytes": 0,
|
| 507 |
-
"config_name": "real_scenes_Real_magnet_v3"
|
| 508 |
-
},
|
| 509 |
-
"real_scenes_Real_magnet_v3_5": {
|
| 510 |
-
"description": "Causal3D is a benchmark for evaluating causal reasoning in physical and hypothetical visual scenes. \nIt includes both real-world recordings and rendered synthetic scenes demonstrating causal interactions.\n",
|
| 511 |
-
"citation": "@article{liu2025causal3d,\n title={CAUSAL3D: A Comprehensive Benchmark for Causal Learning from Visual Data},\n author={Liu, Disheng and Qiao, Yiran and Liu, Wuche and Lu, Yiren and Zhou, Yunlai and Liang, Tuo and Yin, Yu and Ma, Jing},\n journal={arXiv preprint arXiv:2503.04852},\n year={2025}\n}",
|
| 512 |
-
"homepage": "https://huggingface.co/datasets/LLDDSS/Causal3D",
|
| 513 |
-
"license": "CC-BY-4.0",
|
| 514 |
-
"features": {
|
| 515 |
-
"image": {
|
| 516 |
-
"_type": "Image"
|
| 517 |
-
},
|
| 518 |
-
"file_name": {
|
| 519 |
-
"dtype": "string",
|
| 520 |
-
"_type": "Value"
|
| 521 |
-
},
|
| 522 |
-
"metadata": {
|
| 523 |
-
"dtype": "string",
|
| 524 |
-
"_type": "Value"
|
| 525 |
-
}
|
| 526 |
-
},
|
| 527 |
-
"builder_name": "dataset",
|
| 528 |
-
"version": {
|
| 529 |
-
"version_str": "1.0.0",
|
| 530 |
-
"major": 1,
|
| 531 |
-
"minor": 0,
|
| 532 |
-
"patch": 0
|
| 533 |
-
},
|
| 534 |
-
"splits": {
|
| 535 |
-
"train": {
|
| 536 |
-
"name": "train",
|
| 537 |
-
"num_bytes": 0,
|
| 538 |
-
"num_examples": 0,
|
| 539 |
-
"dataset_name": "dataset"
|
| 540 |
-
}
|
| 541 |
-
},
|
| 542 |
-
"download_checksums": {},
|
| 543 |
-
"download_size": 0,
|
| 544 |
-
"dataset_size": 0,
|
| 545 |
-
"size_in_bytes": 0,
|
| 546 |
-
"config_name": "real_scenes_Real_magnet_v3_5"
|
| 547 |
-
},
|
| 548 |
-
"real_scenes_Real_parabola_multi_view": {
|
| 549 |
-
"description": "Causal3D is a benchmark for evaluating causal reasoning in physical and hypothetical visual scenes. \nIt includes both real-world recordings and rendered synthetic scenes demonstrating causal interactions.\n",
|
| 550 |
-
"citation": "@article{liu2025causal3d,\n title={CAUSAL3D: A Comprehensive Benchmark for Causal Learning from Visual Data},\n author={Liu, Disheng and Qiao, Yiran and Liu, Wuche and Lu, Yiren and Zhou, Yunlai and Liang, Tuo and Yin, Yu and Ma, Jing},\n journal={arXiv preprint arXiv:2503.04852},\n year={2025}\n}",
|
| 551 |
-
"homepage": "https://huggingface.co/datasets/LLDDSS/Causal3D",
|
| 552 |
-
"license": "CC-BY-4.0",
|
| 553 |
-
"features": {
|
| 554 |
-
"image": {
|
| 555 |
-
"_type": "Image"
|
| 556 |
-
},
|
| 557 |
-
"file_name": {
|
| 558 |
-
"dtype": "string",
|
| 559 |
-
"_type": "Value"
|
| 560 |
-
},
|
| 561 |
-
"metadata": {
|
| 562 |
-
"dtype": "string",
|
| 563 |
-
"_type": "Value"
|
| 564 |
-
}
|
| 565 |
-
},
|
| 566 |
-
"builder_name": "dataset",
|
| 567 |
-
"version": {
|
| 568 |
-
"version_str": "1.0.0",
|
| 569 |
-
"major": 1,
|
| 570 |
-
"minor": 0,
|
| 571 |
-
"patch": 0
|
| 572 |
-
},
|
| 573 |
-
"splits": {
|
| 574 |
-
"train": {
|
| 575 |
-
"name": "train",
|
| 576 |
-
"num_bytes": 0,
|
| 577 |
-
"num_examples": 0,
|
| 578 |
-
"dataset_name": "dataset"
|
| 579 |
-
}
|
| 580 |
-
},
|
| 581 |
-
"download_checksums": {},
|
| 582 |
-
"download_size": 0,
|
| 583 |
-
"dataset_size": 0,
|
| 584 |
-
"size_in_bytes": 0,
|
| 585 |
-
"config_name": "real_scenes_Real_parabola_multi_view"
|
| 586 |
-
},
|
| 587 |
-
"real_scenes_Real_spring_v3_256P": {
|
| 588 |
-
"description": "Causal3D is a benchmark for evaluating causal reasoning in physical and hypothetical visual scenes. \nIt includes both real-world recordings and rendered synthetic scenes demonstrating causal interactions.\n",
|
| 589 |
-
"citation": "@article{liu2025causal3d,\n title={CAUSAL3D: A Comprehensive Benchmark for Causal Learning from Visual Data},\n author={Liu, Disheng and Qiao, Yiran and Liu, Wuche and Lu, Yiren and Zhou, Yunlai and Liang, Tuo and Yin, Yu and Ma, Jing},\n journal={arXiv preprint arXiv:2503.04852},\n year={2025}\n}",
|
| 590 |
-
"homepage": "https://huggingface.co/datasets/LLDDSS/Causal3D",
|
| 591 |
-
"license": "CC-BY-4.0",
|
| 592 |
-
"features": {
|
| 593 |
-
"image": {
|
| 594 |
-
"_type": "Image"
|
| 595 |
-
},
|
| 596 |
-
"file_name": {
|
| 597 |
-
"dtype": "string",
|
| 598 |
-
"_type": "Value"
|
| 599 |
-
},
|
| 600 |
-
"metadata": {
|
| 601 |
-
"dtype": "string",
|
| 602 |
-
"_type": "Value"
|
| 603 |
-
}
|
| 604 |
-
},
|
| 605 |
-
"builder_name": "dataset",
|
| 606 |
-
"version": {
|
| 607 |
-
"version_str": "1.0.0",
|
| 608 |
-
"major": 1,
|
| 609 |
-
"minor": 0,
|
| 610 |
-
"patch": 0
|
| 611 |
-
},
|
| 612 |
-
"splits": {
|
| 613 |
-
"train": {
|
| 614 |
-
"name": "train",
|
| 615 |
-
"num_bytes": 0,
|
| 616 |
-
"num_examples": 0,
|
| 617 |
-
"dataset_name": "dataset"
|
| 618 |
-
}
|
| 619 |
-
},
|
| 620 |
-
"download_checksums": {},
|
| 621 |
-
"download_size": 0,
|
| 622 |
-
"dataset_size": 0,
|
| 623 |
-
"size_in_bytes": 0,
|
| 624 |
-
"config_name": "real_scenes_Real_spring_v3_256P"
|
| 625 |
-
},
|
| 626 |
-
"real_scenes_Water_flow_scene_render": {
|
| 627 |
-
"description": "Causal3D is a benchmark for evaluating causal reasoning in physical and hypothetical visual scenes. \nIt includes both real-world recordings and rendered synthetic scenes demonstrating causal interactions.\n",
|
| 628 |
-
"citation": "@article{liu2025causal3d,\n title={CAUSAL3D: A Comprehensive Benchmark for Causal Learning from Visual Data},\n author={Liu, Disheng and Qiao, Yiran and Liu, Wuche and Lu, Yiren and Zhou, Yunlai and Liang, Tuo and Yin, Yu and Ma, Jing},\n journal={arXiv preprint arXiv:2503.04852},\n year={2025}\n}",
|
| 629 |
-
"homepage": "https://huggingface.co/datasets/LLDDSS/Causal3D",
|
| 630 |
-
"license": "CC-BY-4.0",
|
| 631 |
-
"features": {
|
| 632 |
-
"image": {
|
| 633 |
-
"_type": "Image"
|
| 634 |
-
},
|
| 635 |
-
"file_name": {
|
| 636 |
-
"dtype": "string",
|
| 637 |
-
"_type": "Value"
|
| 638 |
-
},
|
| 639 |
-
"metadata": {
|
| 640 |
-
"dtype": "string",
|
| 641 |
-
"_type": "Value"
|
| 642 |
-
}
|
| 643 |
-
},
|
| 644 |
-
"builder_name": "dataset",
|
| 645 |
-
"version": {
|
| 646 |
-
"version_str": "1.0.0",
|
| 647 |
-
"major": 1,
|
| 648 |
-
"minor": 0,
|
| 649 |
-
"patch": 0
|
| 650 |
-
},
|
| 651 |
-
"splits": {
|
| 652 |
-
"train": {
|
| 653 |
-
"name": "train",
|
| 654 |
-
"num_bytes": 0,
|
| 655 |
-
"num_examples": 0,
|
| 656 |
-
"dataset_name": "dataset"
|
| 657 |
-
}
|
| 658 |
-
},
|
| 659 |
-
"download_checksums": {},
|
| 660 |
-
"download_size": 0,
|
| 661 |
-
"dataset_size": 0,
|
| 662 |
-
"size_in_bytes": 0,
|
| 663 |
-
"config_name": "real_scenes_Water_flow_scene_render"
|
| 664 |
-
},
|
| 665 |
-
"real_scenes_convex_len_render_images": {
|
| 666 |
-
"description": "Causal3D is a benchmark for evaluating causal reasoning in physical and hypothetical visual scenes. \nIt includes both real-world recordings and rendered synthetic scenes demonstrating causal interactions.\n",
|
| 667 |
-
"citation": "@article{liu2025causal3d,\n title={CAUSAL3D: A Comprehensive Benchmark for Causal Learning from Visual Data},\n author={Liu, Disheng and Qiao, Yiran and Liu, Wuche and Lu, Yiren and Zhou, Yunlai and Liang, Tuo and Yin, Yu and Ma, Jing},\n journal={arXiv preprint arXiv:2503.04852},\n year={2025}\n}",
|
| 668 |
-
"homepage": "https://huggingface.co/datasets/LLDDSS/Causal3D",
|
| 669 |
-
"license": "CC-BY-4.0",
|
| 670 |
-
"features": {
|
| 671 |
-
"image": {
|
| 672 |
-
"_type": "Image"
|
| 673 |
-
},
|
| 674 |
-
"file_name": {
|
| 675 |
-
"dtype": "string",
|
| 676 |
-
"_type": "Value"
|
| 677 |
-
},
|
| 678 |
-
"metadata": {
|
| 679 |
-
"dtype": "string",
|
| 680 |
-
"_type": "Value"
|
| 681 |
-
}
|
| 682 |
-
},
|
| 683 |
-
"builder_name": "dataset",
|
| 684 |
-
"version": {
|
| 685 |
-
"version_str": "1.0.0",
|
| 686 |
-
"major": 1,
|
| 687 |
-
"minor": 0,
|
| 688 |
-
"patch": 0
|
| 689 |
-
},
|
| 690 |
-
"splits": {
|
| 691 |
-
"train": {
|
| 692 |
-
"name": "train",
|
| 693 |
-
"num_bytes": 0,
|
| 694 |
-
"num_examples": 0,
|
| 695 |
-
"dataset_name": "dataset"
|
| 696 |
-
}
|
| 697 |
-
},
|
| 698 |
-
"download_checksums": {},
|
| 699 |
-
"download_size": 0,
|
| 700 |
-
"dataset_size": 0,
|
| 701 |
-
"size_in_bytes": 0,
|
| 702 |
-
"config_name": "real_scenes_convex_len_render_images"
|
| 703 |
-
},
|
| 704 |
-
"real_scenes_real_pendulum": {
|
| 705 |
-
"description": "Causal3D is a benchmark for evaluating causal reasoning in physical and hypothetical visual scenes. \nIt includes both real-world recordings and rendered synthetic scenes demonstrating causal interactions.\n",
|
| 706 |
-
"citation": "@article{liu2025causal3d,\n title={CAUSAL3D: A Comprehensive Benchmark for Causal Learning from Visual Data},\n author={Liu, Disheng and Qiao, Yiran and Liu, Wuche and Lu, Yiren and Zhou, Yunlai and Liang, Tuo and Yin, Yu and Ma, Jing},\n journal={arXiv preprint arXiv:2503.04852},\n year={2025}\n}",
|
| 707 |
-
"homepage": "https://huggingface.co/datasets/LLDDSS/Causal3D",
|
| 708 |
-
"license": "CC-BY-4.0",
|
| 709 |
-
"features": {
|
| 710 |
-
"image": {
|
| 711 |
-
"_type": "Image"
|
| 712 |
-
},
|
| 713 |
-
"file_name": {
|
| 714 |
-
"dtype": "string",
|
| 715 |
-
"_type": "Value"
|
| 716 |
-
},
|
| 717 |
-
"metadata": {
|
| 718 |
-
"dtype": "string",
|
| 719 |
-
"_type": "Value"
|
| 720 |
-
}
|
| 721 |
-
},
|
| 722 |
-
"builder_name": "dataset",
|
| 723 |
-
"version": {
|
| 724 |
-
"version_str": "1.0.0",
|
| 725 |
-
"major": 1,
|
| 726 |
-
"minor": 0,
|
| 727 |
-
"patch": 0
|
| 728 |
-
},
|
| 729 |
-
"splits": {
|
| 730 |
-
"train": {
|
| 731 |
-
"name": "train",
|
| 732 |
-
"num_bytes": 0,
|
| 733 |
-
"num_examples": 0,
|
| 734 |
-
"dataset_name": "dataset"
|
| 735 |
-
}
|
| 736 |
-
},
|
| 737 |
-
"download_checksums": {},
|
| 738 |
-
"download_size": 0,
|
| 739 |
-
"dataset_size": 0,
|
| 740 |
-
"size_in_bytes": 0,
|
| 741 |
-
"config_name": "real_scenes_real_pendulum"
|
| 742 |
-
},
|
| 743 |
-
"real_scenes_rendered_magnetic_128": {
|
| 744 |
-
"description": "Causal3D is a benchmark for evaluating causal reasoning in physical and hypothetical visual scenes. \nIt includes both real-world recordings and rendered synthetic scenes demonstrating causal interactions.\n",
|
| 745 |
-
"citation": "@article{liu2025causal3d,\n title={CAUSAL3D: A Comprehensive Benchmark for Causal Learning from Visual Data},\n author={Liu, Disheng and Qiao, Yiran and Liu, Wuche and Lu, Yiren and Zhou, Yunlai and Liang, Tuo and Yin, Yu and Ma, Jing},\n journal={arXiv preprint arXiv:2503.04852},\n year={2025}\n}",
|
| 746 |
-
"homepage": "https://huggingface.co/datasets/LLDDSS/Causal3D",
|
| 747 |
-
"license": "CC-BY-4.0",
|
| 748 |
-
"features": {
|
| 749 |
-
"image": {
|
| 750 |
-
"_type": "Image"
|
| 751 |
-
},
|
| 752 |
-
"file_name": {
|
| 753 |
-
"dtype": "string",
|
| 754 |
-
"_type": "Value"
|
| 755 |
-
},
|
| 756 |
-
"metadata": {
|
| 757 |
-
"dtype": "string",
|
| 758 |
-
"_type": "Value"
|
| 759 |
-
}
|
| 760 |
-
},
|
| 761 |
-
"builder_name": "dataset",
|
| 762 |
-
"version": {
|
| 763 |
-
"version_str": "1.0.0",
|
| 764 |
-
"major": 1,
|
| 765 |
-
"minor": 0,
|
| 766 |
-
"patch": 0
|
| 767 |
-
},
|
| 768 |
-
"splits": {
|
| 769 |
-
"train": {
|
| 770 |
-
"name": "train",
|
| 771 |
-
"num_bytes": 0,
|
| 772 |
-
"num_examples": 0,
|
| 773 |
-
"dataset_name": "dataset"
|
| 774 |
-
}
|
| 775 |
-
},
|
| 776 |
-
"download_checksums": {},
|
| 777 |
-
"download_size": 0,
|
| 778 |
-
"dataset_size": 0,
|
| 779 |
-
"size_in_bytes": 0,
|
| 780 |
-
"config_name": "real_scenes_rendered_magnetic_128"
|
| 781 |
-
},
|
| 782 |
-
"real_scenes_rendered_reflection_128P": {
|
| 783 |
-
"description": "Causal3D is a benchmark for evaluating causal reasoning in physical and hypothetical visual scenes. \nIt includes both real-world recordings and rendered synthetic scenes demonstrating causal interactions.\n",
|
| 784 |
-
"citation": "@article{liu2025causal3d,\n title={CAUSAL3D: A Comprehensive Benchmark for Causal Learning from Visual Data},\n author={Liu, Disheng and Qiao, Yiran and Liu, Wuche and Lu, Yiren and Zhou, Yunlai and Liang, Tuo and Yin, Yu and Ma, Jing},\n journal={arXiv preprint arXiv:2503.04852},\n year={2025}\n}",
|
| 785 |
-
"homepage": "https://huggingface.co/datasets/LLDDSS/Causal3D",
|
| 786 |
-
"license": "CC-BY-4.0",
|
| 787 |
-
"features": {
|
| 788 |
-
"image": {
|
| 789 |
-
"_type": "Image"
|
| 790 |
-
},
|
| 791 |
-
"file_name": {
|
| 792 |
-
"dtype": "string",
|
| 793 |
-
"_type": "Value"
|
| 794 |
-
},
|
| 795 |
-
"metadata": {
|
| 796 |
-
"dtype": "string",
|
| 797 |
-
"_type": "Value"
|
| 798 |
-
}
|
| 799 |
-
},
|
| 800 |
-
"builder_name": "dataset",
|
| 801 |
-
"version": {
|
| 802 |
-
"version_str": "1.0.0",
|
| 803 |
-
"major": 1,
|
| 804 |
-
"minor": 0,
|
| 805 |
-
"patch": 0
|
| 806 |
-
},
|
| 807 |
-
"splits": {
|
| 808 |
-
"train": {
|
| 809 |
-
"name": "train",
|
| 810 |
-
"num_bytes": 0,
|
| 811 |
-
"num_examples": 0,
|
| 812 |
-
"dataset_name": "dataset"
|
| 813 |
-
}
|
| 814 |
-
},
|
| 815 |
-
"download_checksums": {},
|
| 816 |
-
"download_size": 0,
|
| 817 |
-
"dataset_size": 0,
|
| 818 |
-
"size_in_bytes": 0,
|
| 819 |
-
"config_name": "real_scenes_rendered_reflection_128P"
|
| 820 |
-
},
|
| 821 |
-
"real_scenes_seesaw_scene_128P": {
|
| 822 |
-
"description": "Causal3D is a benchmark for evaluating causal reasoning in physical and hypothetical visual scenes. \nIt includes both real-world recordings and rendered synthetic scenes demonstrating causal interactions.\n",
|
| 823 |
-
"citation": "@article{liu2025causal3d,\n title={CAUSAL3D: A Comprehensive Benchmark for Causal Learning from Visual Data},\n author={Liu, Disheng and Qiao, Yiran and Liu, Wuche and Lu, Yiren and Zhou, Yunlai and Liang, Tuo and Yin, Yu and Ma, Jing},\n journal={arXiv preprint arXiv:2503.04852},\n year={2025}\n}",
|
| 824 |
-
"homepage": "https://huggingface.co/datasets/LLDDSS/Causal3D",
|
| 825 |
-
"license": "CC-BY-4.0",
|
| 826 |
-
"features": {
|
| 827 |
-
"image": {
|
| 828 |
-
"_type": "Image"
|
| 829 |
-
},
|
| 830 |
-
"file_name": {
|
| 831 |
-
"dtype": "string",
|
| 832 |
-
"_type": "Value"
|
| 833 |
-
},
|
| 834 |
-
"metadata": {
|
| 835 |
-
"dtype": "string",
|
| 836 |
-
"_type": "Value"
|
| 837 |
-
}
|
| 838 |
-
},
|
| 839 |
-
"builder_name": "dataset",
|
| 840 |
-
"version": {
|
| 841 |
-
"version_str": "1.0.0",
|
| 842 |
-
"major": 1,
|
| 843 |
-
"minor": 0,
|
| 844 |
-
"patch": 0
|
| 845 |
-
},
|
| 846 |
-
"splits": {
|
| 847 |
-
"train": {
|
| 848 |
-
"name": "train",
|
| 849 |
-
"num_bytes": 0,
|
| 850 |
-
"num_examples": 0,
|
| 851 |
-
"dataset_name": "dataset"
|
| 852 |
-
}
|
| 853 |
-
},
|
| 854 |
-
"download_checksums": {},
|
| 855 |
-
"download_size": 0,
|
| 856 |
-
"dataset_size": 0,
|
| 857 |
-
"size_in_bytes": 0,
|
| 858 |
-
"config_name": "real_scenes_seesaw_scene_128P"
|
| 859 |
-
},
|
| 860 |
-
"real_scenes_spring_scene_128P": {
|
| 861 |
-
"description": "Causal3D is a benchmark for evaluating causal reasoning in physical and hypothetical visual scenes. \nIt includes both real-world recordings and rendered synthetic scenes demonstrating causal interactions.\n",
|
| 862 |
-
"citation": "@article{liu2025causal3d,\n title={CAUSAL3D: A Comprehensive Benchmark for Causal Learning from Visual Data},\n author={Liu, Disheng and Qiao, Yiran and Liu, Wuche and Lu, Yiren and Zhou, Yunlai and Liang, Tuo and Yin, Yu and Ma, Jing},\n journal={arXiv preprint arXiv:2503.04852},\n year={2025}\n}",
|
| 863 |
-
"homepage": "https://huggingface.co/datasets/LLDDSS/Causal3D",
|
| 864 |
-
"license": "CC-BY-4.0",
|
| 865 |
-
"features": {
|
| 866 |
-
"image": {
|
| 867 |
-
"_type": "Image"
|
| 868 |
-
},
|
| 869 |
-
"file_name": {
|
| 870 |
-
"dtype": "string",
|
| 871 |
-
"_type": "Value"
|
| 872 |
-
},
|
| 873 |
-
"metadata": {
|
| 874 |
-
"dtype": "string",
|
| 875 |
-
"_type": "Value"
|
| 876 |
-
}
|
| 877 |
-
},
|
| 878 |
-
"builder_name": "dataset",
|
| 879 |
-
"version": {
|
| 880 |
-
"version_str": "1.0.0",
|
| 881 |
-
"major": 1,
|
| 882 |
-
"minor": 0,
|
| 883 |
-
"patch": 0
|
| 884 |
-
},
|
| 885 |
-
"splits": {
|
| 886 |
-
"train": {
|
| 887 |
-
"name": "train",
|
| 888 |
-
"num_bytes": 0,
|
| 889 |
-
"num_examples": 0,
|
| 890 |
-
"dataset_name": "dataset"
|
| 891 |
-
}
|
| 892 |
-
},
|
| 893 |
-
"download_checksums": {},
|
| 894 |
-
"download_size": 0,
|
| 895 |
-
"dataset_size": 0,
|
| 896 |
-
"size_in_bytes": 0,
|
| 897 |
-
"config_name": "real_scenes_spring_scene_128P"
|
| 898 |
-
}
|
| 899 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hypothetical_scenes/Hypothetic_v2_linear/part_000/00005.png
DELETED
Git LFS Details
|
hypothetical_scenes/Hypothetic_v2_linear/part_000/00006.png
DELETED
Git LFS Details
|
hypothetical_scenes/Hypothetic_v2_linear/part_000/00007.png
DELETED
Git LFS Details
|
hypothetical_scenes/Hypothetic_v2_linear/part_000/00008.png
DELETED
Git LFS Details
|
hypothetical_scenes/Hypothetic_v2_linear/part_000/00009.png
DELETED
Git LFS Details
|
hypothetical_scenes/Hypothetic_v2_linear/part_000/00010.png
DELETED
Git LFS Details
|
hypothetical_scenes/Hypothetic_v2_linear/part_000/00011.png
DELETED
Git LFS Details
|
hypothetical_scenes/Hypothetic_v2_linear/part_000/00012.png
DELETED
Git LFS Details
|
hypothetical_scenes/Hypothetic_v2_linear/part_000/00013.png
DELETED
Git LFS Details
|
hypothetical_scenes/Hypothetic_v2_linear/part_000/00014.png
DELETED
Git LFS Details
|
hypothetical_scenes/Hypothetic_v2_linear/part_000/00015.png
DELETED
Git LFS Details
|
hypothetical_scenes/Hypothetic_v2_linear/part_000/00016.png
DELETED
Git LFS Details
|
hypothetical_scenes/Hypothetic_v2_linear/part_000/00017.png
DELETED
Git LFS Details
|
hypothetical_scenes/Hypothetic_v2_linear/part_000/00018.png
DELETED
Git LFS Details
|
hypothetical_scenes/Hypothetic_v2_linear/part_000/00019.png
DELETED
Git LFS Details
|
hypothetical_scenes/Hypothetic_v2_linear/part_000/00020.png
DELETED
Git LFS Details
|
hypothetical_scenes/Hypothetic_v2_linear/part_000/00021.png
DELETED
Git LFS Details
|
hypothetical_scenes/Hypothetic_v2_linear/part_000/00022.png
DELETED
Git LFS Details
|
hypothetical_scenes/Hypothetic_v2_linear/part_000/00023.png
DELETED
Git LFS Details
|
hypothetical_scenes/Hypothetic_v2_linear/part_000/00024.png
DELETED
Git LFS Details
|
hypothetical_scenes/Hypothetic_v2_linear/part_000/00025.png
DELETED
Git LFS Details
|
hypothetical_scenes/Hypothetic_v2_linear/part_000/00026.png
DELETED
Git LFS Details
|
hypothetical_scenes/Hypothetic_v2_linear/part_000/00027.png
DELETED
Git LFS Details
|
hypothetical_scenes/Hypothetic_v2_linear/part_000/00028.png
DELETED
Git LFS Details
|
hypothetical_scenes/Hypothetic_v2_linear/part_000/00029.png
DELETED
Git LFS Details
|
hypothetical_scenes/Hypothetic_v2_linear/part_000/00030.png
DELETED
Git LFS Details
|
hypothetical_scenes/Hypothetic_v2_linear/part_000/00031.png
DELETED
Git LFS Details
|
hypothetical_scenes/Hypothetic_v2_linear/part_000/00032.png
DELETED
Git LFS Details
|
hypothetical_scenes/Hypothetic_v2_linear/part_000/00033.png
DELETED
Git LFS Details
|
hypothetical_scenes/Hypothetic_v2_linear/part_000/00034.png
DELETED
Git LFS Details
|
hypothetical_scenes/Hypothetic_v2_linear/part_000/00035.png
DELETED
Git LFS Details
|
hypothetical_scenes/Hypothetic_v2_linear/part_000/00036.png
DELETED
Git LFS Details
|
hypothetical_scenes/Hypothetic_v2_linear/part_000/00037.png
DELETED
Git LFS Details
|
hypothetical_scenes/Hypothetic_v2_linear/part_000/00038.png
DELETED
Git LFS Details
|
hypothetical_scenes/Hypothetic_v2_linear/part_000/00039.png
DELETED
Git LFS Details
|
hypothetical_scenes/Hypothetic_v2_linear/part_000/00040.png
DELETED
Git LFS Details
|
hypothetical_scenes/Hypothetic_v2_linear/part_000/00041.png
DELETED
Git LFS Details
|
hypothetical_scenes/Hypothetic_v2_linear/part_000/00042.png
DELETED
Git LFS Details
|
hypothetical_scenes/Hypothetic_v2_linear/part_000/00043.png
DELETED
Git LFS Details
|
hypothetical_scenes/Hypothetic_v2_linear/part_000/00044.png
DELETED
Git LFS Details
|
hypothetical_scenes/Hypothetic_v2_linear/part_000/00045.png
DELETED
Git LFS Details
|
hypothetical_scenes/Hypothetic_v2_linear/part_000/00046.png
DELETED
Git LFS Details
|
hypothetical_scenes/Hypothetic_v2_linear/part_000/00047.png
DELETED
Git LFS Details
|
hypothetical_scenes/Hypothetic_v2_linear/part_000/00048.png
DELETED
Git LFS Details
|
hypothetical_scenes/Hypothetic_v2_linear/part_000/00049.png
DELETED
Git LFS Details
|