File size: 6,015 Bytes
ee94703 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Age-Related_Macular_Degeneration"
cohort = "GSE67899"
# Input paths
in_trait_dir = "../DATA/GEO/Age-Related_Macular_Degeneration"
in_cohort_dir = "../DATA/GEO/Age-Related_Macular_Degeneration/GSE67899"
# Output paths
out_data_file = "./output/preprocess/1/Age-Related_Macular_Degeneration/GSE67899.csv"
out_gene_data_file = "./output/preprocess/1/Age-Related_Macular_Degeneration/gene_data/GSE67899.csv"
out_clinical_data_file = "./output/preprocess/1/Age-Related_Macular_Degeneration/clinical_data/GSE67899.csv"
json_path = "./output/preprocess/1/Age-Related_Macular_Degeneration/cohort_info.json"
# STEP1
from tools.preprocess import *
# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
matrix_file,
background_prefixes,
clinical_prefixes
)
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("Sample Characteristics Dictionary:")
print(sample_characteristics_dict)
# Step 1: Determine if gene expression data is available
# Based on the background info mentioning TGF-beta inhibitors and typical gene regulatory factors,
# we assume this dataset likely contains gene expression data. Hence:
is_gene_available = True
# Step 2: Identify rows for trait, age, and gender.
# The sample characteristics dictionary does not mention AMD status, age, or gender.
# Therefore, we set them to None.
trait_row = None
age_row = None
gender_row = None
# Define data type conversion functions.
# Although the data is unavailable, we still provide these to
# maintain the required function signatures.
def convert_trait(value: str):
"""
Convert trait (AMD) values to binary (0 or 1).
For this study, AMD = 1 and Non-AMD = 0.
But since trait data is not found in the dictionary, we will return None.
"""
return None
def convert_age(value: str):
"""
Convert age values to continuous. Extract numerical part if possible.
Since age data is not found in this dataset, always return None.
"""
return None
def convert_gender(value: str):
"""
Convert gender values to binary (female=0, male=1).
Since gender data is not found in this dataset, always return None.
"""
return None
# Step 3: Conduct initial filtering and save metadata.
# Trait data availability is based on whether trait_row is None.
is_trait_available = (trait_row is not None)
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# Step 4: We skip clinical feature extraction because trait_row is None (no trait data available).
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# Based on observation, these numeric IDs are not standard human gene symbols and likely require mapping.
print("requires_gene_mapping = True")
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP6: Gene Identifier Mapping
# 1. Decide which columns store the consistent ID and gene symbol.
# From the annotation preview and the gene_data index, we identify:
# - "ID" as the probe identifier column
# - "GENE_SYMBOL" as the gene symbol column
# 2. Get a gene mapping dataframe
mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="GENE_SYMBOL")
# 3. Convert probe-level measurements to gene expression data
gene_data = apply_gene_mapping(gene_data, mapping_df)
# Optional: Print shape for verification
print("Gene expression data shape after mapping:", gene_data.shape)
# STEP 7: Data Normalization and Linking
# In this dataset, we determined in Step 2 that trait data is not available (trait_row = None).
# Therefore, we cannot link clinical and genetic data or perform trait-based processing.
# Nonetheless, we can still normalize probe-level data to standard gene symbols and finalize validation.
# 1. Normalize gene symbols in the obtained gene expression data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file, index=True)
# 2. Since trait data is missing, skip linking clinical and genetic data,
# skip missing-value handling and bias detection for the trait.
# 3. Conduct final validation and record info.
# Since trait data is unavailable, set is_trait_available=False,
# pass a dummy/empty DataFrame and is_biased=False (it won't be used).
dummy_df = pd.DataFrame()
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=False,
is_biased=False,
df=dummy_df,
note="No trait data found; skipped clinical-linking steps."
)
# 4. If the dataset were usable, save. In this scenario, it's not usable due to missing trait data.
if is_usable:
dummy_df.to_csv(out_data_file, index=True) |