File size: 6,015 Bytes
ee94703
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Age-Related_Macular_Degeneration"
cohort = "GSE67899"

# Input paths
in_trait_dir = "../DATA/GEO/Age-Related_Macular_Degeneration"
in_cohort_dir = "../DATA/GEO/Age-Related_Macular_Degeneration/GSE67899"

# Output paths
out_data_file = "./output/preprocess/1/Age-Related_Macular_Degeneration/GSE67899.csv"
out_gene_data_file = "./output/preprocess/1/Age-Related_Macular_Degeneration/gene_data/GSE67899.csv"
out_clinical_data_file = "./output/preprocess/1/Age-Related_Macular_Degeneration/clinical_data/GSE67899.csv"
json_path = "./output/preprocess/1/Age-Related_Macular_Degeneration/cohort_info.json"

# STEP1
from tools.preprocess import *

# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
    matrix_file, 
    background_prefixes, 
    clinical_prefixes
)

# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)

# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("Sample Characteristics Dictionary:")
print(sample_characteristics_dict)
# Step 1: Determine if gene expression data is available
# Based on the background info mentioning TGF-beta inhibitors and typical gene regulatory factors,
# we assume this dataset likely contains gene expression data. Hence:
is_gene_available = True

# Step 2: Identify rows for trait, age, and gender.
# The sample characteristics dictionary does not mention AMD status, age, or gender.
# Therefore, we set them to None. 
trait_row = None
age_row = None
gender_row = None

# Define data type conversion functions.
# Although the data is unavailable, we still provide these to
# maintain the required function signatures.

def convert_trait(value: str):
    """
    Convert trait (AMD) values to binary (0 or 1).
    For this study, AMD = 1 and Non-AMD = 0.
    But since trait data is not found in the dictionary, we will return None.
    """
    return None

def convert_age(value: str):
    """
    Convert age values to continuous. Extract numerical part if possible.
    Since age data is not found in this dataset, always return None.
    """
    return None

def convert_gender(value: str):
    """
    Convert gender values to binary (female=0, male=1).
    Since gender data is not found in this dataset, always return None.
    """
    return None

# Step 3: Conduct initial filtering and save metadata.
# Trait data availability is based on whether trait_row is None.
is_trait_available = (trait_row is not None)

validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# Step 4: We skip clinical feature extraction because trait_row is None (no trait data available).
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)

# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# Based on observation, these numeric IDs are not standard human gene symbols and likely require mapping.
print("requires_gene_mapping = True")
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)

# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP6: Gene Identifier Mapping

# 1. Decide which columns store the consistent ID and gene symbol.
#    From the annotation preview and the gene_data index, we identify:
#    - "ID" as the probe identifier column
#    - "GENE_SYMBOL" as the gene symbol column

# 2. Get a gene mapping dataframe
mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="GENE_SYMBOL")

# 3. Convert probe-level measurements to gene expression data
gene_data = apply_gene_mapping(gene_data, mapping_df)

# Optional: Print shape for verification
print("Gene expression data shape after mapping:", gene_data.shape)
# STEP 7: Data Normalization and Linking

# In this dataset, we determined in Step 2 that trait data is not available (trait_row = None).
# Therefore, we cannot link clinical and genetic data or perform trait-based processing.
# Nonetheless, we can still normalize probe-level data to standard gene symbols and finalize validation.

# 1. Normalize gene symbols in the obtained gene expression data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file, index=True)

# 2. Since trait data is missing, skip linking clinical and genetic data, 
#    skip missing-value handling and bias detection for the trait.

# 3. Conduct final validation and record info.
#    Since trait data is unavailable, set is_trait_available=False, 
#    pass a dummy/empty DataFrame and is_biased=False (it won't be used).
dummy_df = pd.DataFrame()
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=False,
    is_biased=False,
    df=dummy_df,
    note="No trait data found; skipped clinical-linking steps."
)

# 4. If the dataset were usable, save. In this scenario, it's not usable due to missing trait data.
if is_usable:
    dummy_df.to_csv(out_data_file, index=True)