Liu-Hy commited on
Commit
ee94703
·
verified ·
1 Parent(s): 9ffee36

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +26 -0
  2. p1/preprocess/Acute_Myeloid_Leukemia/GSE222124.csv +3 -0
  3. p1/preprocess/Acute_Myeloid_Leukemia/GSE249638.csv +3 -0
  4. p1/preprocess/Acute_Myeloid_Leukemia/GSE99612.csv +3 -0
  5. p1/preprocess/Acute_Myeloid_Leukemia/clinical_data/GSE222124.csv +2 -0
  6. p1/preprocess/Acute_Myeloid_Leukemia/clinical_data/GSE249638.csv +2 -0
  7. p1/preprocess/Acute_Myeloid_Leukemia/clinical_data/GSE99612.csv +3 -0
  8. p1/preprocess/Acute_Myeloid_Leukemia/clinical_data/TCGA.csv +201 -0
  9. p1/preprocess/Acute_Myeloid_Leukemia/code/GSE121291.py +155 -0
  10. p1/preprocess/Acute_Myeloid_Leukemia/code/GSE121431.py +128 -0
  11. p1/preprocess/Acute_Myeloid_Leukemia/code/GSE161532.py +158 -0
  12. p1/preprocess/Acute_Myeloid_Leukemia/code/GSE222124.py +153 -0
  13. p1/preprocess/Acute_Myeloid_Leukemia/code/GSE222169.py +158 -0
  14. p1/preprocess/Acute_Myeloid_Leukemia/code/GSE222616.py +69 -0
  15. p1/preprocess/Acute_Myeloid_Leukemia/code/GSE235070.py +68 -0
  16. p1/preprocess/Acute_Myeloid_Leukemia/code/GSE249638.py +198 -0
  17. p1/preprocess/Acute_Myeloid_Leukemia/code/GSE98578.py +131 -0
  18. p1/preprocess/Acute_Myeloid_Leukemia/code/GSE99612.py +165 -0
  19. p1/preprocess/Acute_Myeloid_Leukemia/code/TCGA.py +116 -0
  20. p1/preprocess/Acute_Myeloid_Leukemia/cohort_info.json +1 -0
  21. p1/preprocess/Acute_Myeloid_Leukemia/gene_data/GSE121291.csv +0 -0
  22. p1/preprocess/Acute_Myeloid_Leukemia/gene_data/GSE121431.csv +0 -0
  23. p1/preprocess/Acute_Myeloid_Leukemia/gene_data/GSE161532.csv +3 -0
  24. p1/preprocess/Acute_Myeloid_Leukemia/gene_data/GSE222124.csv +3 -0
  25. p1/preprocess/Acute_Myeloid_Leukemia/gene_data/GSE222169.csv +3 -0
  26. p1/preprocess/Acute_Myeloid_Leukemia/gene_data/GSE249638.csv +3 -0
  27. p1/preprocess/Acute_Myeloid_Leukemia/gene_data/GSE98578.csv +3 -0
  28. p1/preprocess/Acute_Myeloid_Leukemia/gene_data/GSE99612.csv +3 -0
  29. p1/preprocess/Adrenocortical_Cancer/GSE75415.csv +0 -0
  30. p1/preprocess/Adrenocortical_Cancer/GSE90713.csv +3 -0
  31. p1/preprocess/Adrenocortical_Cancer/clinical_data/GSE68950.csv +2 -0
  32. p1/preprocess/Adrenocortical_Cancer/clinical_data/GSE75415.csv +3 -0
  33. p1/preprocess/Adrenocortical_Cancer/clinical_data/GSE90713.csv +2 -0
  34. p1/preprocess/Adrenocortical_Cancer/clinical_data/TCGA.csv +93 -0
  35. p1/preprocess/Adrenocortical_Cancer/code/GSE108088.py +149 -0
  36. p1/preprocess/Adrenocortical_Cancer/code/GSE143383.py +165 -0
  37. p1/preprocess/Adrenocortical_Cancer/code/GSE19776.py +175 -0
  38. p1/preprocess/Adrenocortical_Cancer/code/GSE49278.py +152 -0
  39. p1/preprocess/Adrenocortical_Cancer/code/GSE67766.py +132 -0
  40. p1/preprocess/Adrenocortical_Cancer/code/GSE68606.py +149 -0
  41. p1/preprocess/Adrenocortical_Cancer/code/GSE68950.py +153 -0
  42. p1/preprocess/Adrenocortical_Cancer/code/GSE75415.py +175 -0
  43. p1/preprocess/Adrenocortical_Cancer/code/GSE76019.py +127 -0
  44. p1/preprocess/Adrenocortical_Cancer/code/GSE90713.py +165 -0
  45. p1/preprocess/Adrenocortical_Cancer/code/TCGA.py +112 -0
  46. p1/preprocess/Adrenocortical_Cancer/cohort_info.json +1 -0
  47. p1/preprocess/Adrenocortical_Cancer/gene_data/GSE108088.csv +3 -0
  48. p1/preprocess/Adrenocortical_Cancer/gene_data/GSE143383.csv +3 -0
  49. p1/preprocess/Adrenocortical_Cancer/gene_data/GSE19776.csv +1 -0
  50. p1/preprocess/Adrenocortical_Cancer/gene_data/GSE49278.csv +1 -0
.gitattributes CHANGED
@@ -898,3 +898,29 @@ p1/preprocess/Type_2_Diabetes/gene_data/GSE250283.csv filter=lfs diff=lfs merge=
898
  p1/preprocess/Type_2_Diabetes/gene_data/GSE182120.csv filter=lfs diff=lfs merge=lfs -text
899
  p1/preprocess/Type_2_Diabetes/gene_data/GSE281144.csv filter=lfs diff=lfs merge=lfs -text
900
  p1/preprocess/Underweight/GSE57802.csv filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
898
  p1/preprocess/Type_2_Diabetes/gene_data/GSE182120.csv filter=lfs diff=lfs merge=lfs -text
899
  p1/preprocess/Type_2_Diabetes/gene_data/GSE281144.csv filter=lfs diff=lfs merge=lfs -text
900
  p1/preprocess/Underweight/GSE57802.csv filter=lfs diff=lfs merge=lfs -text
901
+ p1/preprocess/Underweight/gene_data/GSE57802.csv filter=lfs diff=lfs merge=lfs -text
902
+ p1/preprocess/Uterine_Carcinosarcoma/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
903
+ p1/preprocess/Stomach_Cancer/TCGA.csv filter=lfs diff=lfs merge=lfs -text
904
+ p1/preprocess/Von_Willebrand_Disease/GSE27597.csv filter=lfs diff=lfs merge=lfs -text
905
+ p1/preprocess/Von_Willebrand_Disease/gene_data/GSE27597.csv filter=lfs diff=lfs merge=lfs -text
906
+ p1/preprocess/Vitamin_D_Levels/gene_data/GSE34450.csv filter=lfs diff=lfs merge=lfs -text
907
+ p1/preprocess/Werner_Syndrome/GSE48761.csv filter=lfs diff=lfs merge=lfs -text
908
+ p1/preprocess/Acute_Myeloid_Leukemia/GSE249638.csv filter=lfs diff=lfs merge=lfs -text
909
+ p1/preprocess/Acute_Myeloid_Leukemia/GSE99612.csv filter=lfs diff=lfs merge=lfs -text
910
+ p1/preprocess/Werner_Syndrome/gene_data/GSE48761.csv filter=lfs diff=lfs merge=lfs -text
911
+ p1/preprocess/Stomach_Cancer/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
912
+ p1/preprocess/Acute_Myeloid_Leukemia/GSE222124.csv filter=lfs diff=lfs merge=lfs -text
913
+ p1/preprocess/Vitamin_D_Levels/gene_data/GSE76324.csv filter=lfs diff=lfs merge=lfs -text
914
+ p1/preprocess/Acute_Myeloid_Leukemia/gene_data/GSE98578.csv filter=lfs diff=lfs merge=lfs -text
915
+ p1/preprocess/Acute_Myeloid_Leukemia/gene_data/GSE249638.csv filter=lfs diff=lfs merge=lfs -text
916
+ p1/preprocess/Acute_Myeloid_Leukemia/gene_data/GSE99612.csv filter=lfs diff=lfs merge=lfs -text
917
+ p1/preprocess/Acute_Myeloid_Leukemia/gene_data/GSE222169.csv filter=lfs diff=lfs merge=lfs -text
918
+ p1/preprocess/Acute_Myeloid_Leukemia/gene_data/GSE222124.csv filter=lfs diff=lfs merge=lfs -text
919
+ p1/preprocess/Uterine_Corpus_Endometrial_Carcinoma/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
920
+ p1/preprocess/Uterine_Corpus_Endometrial_Carcinoma/TCGA.csv filter=lfs diff=lfs merge=lfs -text
921
+ p1/preprocess/Uterine_Carcinosarcoma/gene_data/GSE68950.csv filter=lfs diff=lfs merge=lfs -text
922
+ p1/preprocess/Adrenocortical_Cancer/GSE90713.csv filter=lfs diff=lfs merge=lfs -text
923
+ p1/preprocess/Acute_Myeloid_Leukemia/gene_data/GSE161532.csv filter=lfs diff=lfs merge=lfs -text
924
+ p1/preprocess/Adrenocortical_Cancer/gene_data/GSE108088.csv filter=lfs diff=lfs merge=lfs -text
925
+ p1/preprocess/Adrenocortical_Cancer/gene_data/GSE143383.csv filter=lfs diff=lfs merge=lfs -text
926
+ p1/preprocess/Adrenocortical_Cancer/gene_data/GSE68606.csv filter=lfs diff=lfs merge=lfs -text
p1/preprocess/Acute_Myeloid_Leukemia/GSE222124.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f205ba0aa1ab83409ba3a8672017b0ae7f27631c1f7b34841e549550220df9f
3
+ size 13765210
p1/preprocess/Acute_Myeloid_Leukemia/GSE249638.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a361b229a4d45e13416428a8743199dfa9a755341d7d9d2e6c63a80d79461c12
3
+ size 11134453
p1/preprocess/Acute_Myeloid_Leukemia/GSE99612.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:090599129737ea01127e44ed647ccc147103017fe525e5878f3184f20d441c08
3
+ size 11930068
p1/preprocess/Acute_Myeloid_Leukemia/clinical_data/GSE222124.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ GSM6915207,GSM6915208,GSM6915209,GSM6915210,GSM6915211,GSM6915212,GSM6915213,GSM6915214,GSM6915215,GSM6915216,GSM6915217,GSM6915218,GSM6915219,GSM6915220,GSM6915221,GSM6915222,GSM6915223,GSM6915224,GSM6915225,GSM6915226,GSM6915227,GSM6915228,GSM6915229,GSM6915230,GSM6915231,GSM6915232,GSM6915233,GSM6915234,GSM6915235,GSM6915236,GSM6915237,GSM6915238,GSM6915239,GSM6915240,GSM6915241,GSM6915242,GSM6915243,GSM6915244,GSM6915245,GSM6915246,GSM6915247,GSM6915248,GSM6915249,GSM6915250,GSM6915251,GSM6915252,GSM6915253,GSM6915254,GSM6915255,GSM6915256,GSM6915257,GSM6915258,GSM6915259,GSM6915260,GSM6915261,GSM6915262,GSM6915263,GSM6915264,GSM6915265,GSM6915266,GSM6915267,GSM6915268,GSM6915269,GSM6915270,GSM6915271,GSM6915272,GSM6915273,GSM6915274,GSM6915275,GSM6915276
2
+ 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
p1/preprocess/Acute_Myeloid_Leukemia/clinical_data/GSE249638.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ GSM7956652,GSM7956653,GSM7956654,GSM7956655,GSM7956656,GSM7956657,GSM7956658,GSM7956659,GSM7956660,GSM7956661,GSM7956662,GSM7956663,GSM7956664,GSM7956665,GSM7956666,GSM7956667,GSM7956668,GSM7956669,GSM7956670,GSM7956671,GSM7956672,GSM7956673,GSM7956674,GSM7956675,GSM7956676,GSM7956677,GSM7956678,GSM7956679,GSM7956680,GSM7956681,GSM7956682,GSM7956683,GSM7956684,GSM7956685,GSM7956686,GSM7956687,GSM7956688
2
+ 1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
p1/preprocess/Acute_Myeloid_Leukemia/clinical_data/GSE99612.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ GSM2648543,GSM2648544,GSM2648545,GSM2648546,GSM2648547,GSM2648548,GSM2648549,GSM2648550,GSM2648551,GSM2648552,GSM2648553,GSM2648554,GSM2648555,GSM2648556,GSM2648557,GSM2648558,GSM2648559,GSM2648560,GSM2648561,GSM2648562,GSM2648563,GSM2648564,GSM2648565,GSM2648566,GSM2648567,GSM2648568,GSM2648569,GSM2648570,GSM2648571,GSM2648572,GSM2648573,GSM2648574,GSM2648575,GSM2648576,GSM2648577,GSM2648578,GSM2648579,GSM2648580,GSM2648581,GSM2648582,GSM2648583,GSM2648584,GSM2648585,GSM2648586,GSM2648587,GSM2648588,GSM2648589,GSM2648590
2
+ 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
3
+ ,,,,,,,,,,,,,,,,,,,,,,,,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
p1/preprocess/Acute_Myeloid_Leukemia/clinical_data/TCGA.csv ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ sampleID,Acute_Myeloid_Leukemia,Age,Gender
2
+ TCGA-AB-2802-03,1,50,1
3
+ TCGA-AB-2803-03,1,61,0
4
+ TCGA-AB-2804-03,1,30,1
5
+ TCGA-AB-2805-03,1,77,1
6
+ TCGA-AB-2806-03,1,46,1
7
+ TCGA-AB-2807-03,1,68,0
8
+ TCGA-AB-2808-03,1,23,1
9
+ TCGA-AB-2809-03,1,64,0
10
+ TCGA-AB-2810-03,1,76,0
11
+ TCGA-AB-2811-03,1,81,1
12
+ TCGA-AB-2812-03,1,25,0
13
+ TCGA-AB-2813-03,1,78,1
14
+ TCGA-AB-2814-03,1,39,0
15
+ TCGA-AB-2815-03,1,49,1
16
+ TCGA-AB-2816-03,1,57,0
17
+ TCGA-AB-2817-03,1,64,1
18
+ TCGA-AB-2818-03,1,62,0
19
+ TCGA-AB-2819-03,1,52,0
20
+ TCGA-AB-2820-03,1,76,1
21
+ TCGA-AB-2821-03,1,64,1
22
+ TCGA-AB-2822-03,1,65,1
23
+ TCGA-AB-2823-03,1,61,0
24
+ TCGA-AB-2824-03,1,45,1
25
+ TCGA-AB-2825-03,1,31,0
26
+ TCGA-AB-2826-03,1,64,0
27
+ TCGA-AB-2827-03,1,33,1
28
+ TCGA-AB-2828-03,1,55,1
29
+ TCGA-AB-2829-03,1,50,1
30
+ TCGA-AB-2830-03,1,64,0
31
+ TCGA-AB-2831-03,1,59,1
32
+ TCGA-AB-2832-03,1,60,0
33
+ TCGA-AB-2833-03,1,77,1
34
+ TCGA-AB-2834-03,1,33,1
35
+ TCGA-AB-2835-03,1,48,1
36
+ TCGA-AB-2836-03,1,35,1
37
+ TCGA-AB-2837-03,1,66,0
38
+ TCGA-AB-2838-03,1,67,1
39
+ TCGA-AB-2839-03,1,51,0
40
+ TCGA-AB-2840-03,1,74,1
41
+ TCGA-AB-2841-03,1,51,0
42
+ TCGA-AB-2842-03,1,65,1
43
+ TCGA-AB-2843-03,1,77,1
44
+ TCGA-AB-2844-03,1,63,1
45
+ TCGA-AB-2845-03,1,37,0
46
+ TCGA-AB-2846-03,1,57,0
47
+ TCGA-AB-2847-03,1,53,1
48
+ TCGA-AB-2848-03,1,62,1
49
+ TCGA-AB-2849-03,1,39,1
50
+ TCGA-AB-2850-03,1,72,0
51
+ TCGA-AB-2851-03,1,66,0
52
+ TCGA-AB-2853-03,1,51,1
53
+ TCGA-AB-2854-03,1,51,0
54
+ TCGA-AB-2855-03,1,18,1
55
+ TCGA-AB-2856-03,1,63,1
56
+ TCGA-AB-2857-03,1,54,1
57
+ TCGA-AB-2858-03,1,75,0
58
+ TCGA-AB-2859-03,1,40,1
59
+ TCGA-AB-2860-03,1,60,0
60
+ TCGA-AB-2861-03,1,76,1
61
+ TCGA-AB-2862-03,1,33,0
62
+ TCGA-AB-2863-03,1,63,1
63
+ TCGA-AB-2864-03,1,54,0
64
+ TCGA-AB-2865-03,1,75,1
65
+ TCGA-AB-2866-03,1,67,1
66
+ TCGA-AB-2867-03,1,66,0
67
+ TCGA-AB-2868-03,1,77,1
68
+ TCGA-AB-2869-03,1,64,0
69
+ TCGA-AB-2870-03,1,76,1
70
+ TCGA-AB-2871-03,1,51,1
71
+ TCGA-AB-2872-03,1,42,1
72
+ TCGA-AB-2873-03,1,51,0
73
+ TCGA-AB-2874-03,1,59,1
74
+ TCGA-AB-2875-03,1,43,1
75
+ TCGA-AB-2876-03,1,45,0
76
+ TCGA-AB-2877-03,1,60,0
77
+ TCGA-AB-2878-03,1,47,0
78
+ TCGA-AB-2879-03,1,68,0
79
+ TCGA-AB-2880-03,1,24,1
80
+ TCGA-AB-2881-03,1,48,0
81
+ TCGA-AB-2882-03,1,73,0
82
+ TCGA-AB-2883-03,1,60,1
83
+ TCGA-AB-2884-03,1,44,0
84
+ TCGA-AB-2885-03,1,71,1
85
+ TCGA-AB-2886-03,1,26,1
86
+ TCGA-AB-2887-03,1,60,0
87
+ TCGA-AB-2888-03,1,57,1
88
+ TCGA-AB-2889-03,1,55,1
89
+ TCGA-AB-2890-03,1,69,1
90
+ TCGA-AB-2891-03,1,42,1
91
+ TCGA-AB-2892-03,1,42,0
92
+ TCGA-AB-2893-03,1,45,1
93
+ TCGA-AB-2894-03,1,50,0
94
+ TCGA-AB-2895-03,1,41,0
95
+ TCGA-AB-2896-03,1,21,0
96
+ TCGA-AB-2897-03,1,50,0
97
+ TCGA-AB-2898-03,1,69,0
98
+ TCGA-AB-2899-03,1,76,0
99
+ TCGA-AB-2900-03,1,70,1
100
+ TCGA-AB-2901-03,1,27,1
101
+ TCGA-AB-2903-03,1,76,0
102
+ TCGA-AB-2904-03,1,65,1
103
+ TCGA-AB-2905-03,1,48,1
104
+ TCGA-AB-2906-03,1,59,1
105
+ TCGA-AB-2907-03,1,69,1
106
+ TCGA-AB-2908-03,1,81,1
107
+ TCGA-AB-2909-03,1,22,1
108
+ TCGA-AB-2910-03,1,61,0
109
+ TCGA-AB-2911-03,1,51,0
110
+ TCGA-AB-2912-03,1,63,1
111
+ TCGA-AB-2913-03,1,61,1
112
+ TCGA-AB-2914-03,1,22,0
113
+ TCGA-AB-2915-03,1,73,0
114
+ TCGA-AB-2916-03,1,48,0
115
+ TCGA-AB-2917-03,1,41,0
116
+ TCGA-AB-2918-03,1,47,0
117
+ TCGA-AB-2919-03,1,54,0
118
+ TCGA-AB-2920-03,1,44,1
119
+ TCGA-AB-2921-03,1,56,0
120
+ TCGA-AB-2922-03,1,83,1
121
+ TCGA-AB-2923-03,1,78,1
122
+ TCGA-AB-2924-03,1,59,1
123
+ TCGA-AB-2925-03,1,57,1
124
+ TCGA-AB-2926-03,1,57,0
125
+ TCGA-AB-2927-03,1,88,0
126
+ TCGA-AB-2928-03,1,43,0
127
+ TCGA-AB-2929-03,1,71,0
128
+ TCGA-AB-2930-03,1,63,0
129
+ TCGA-AB-2931-03,1,75,1
130
+ TCGA-AB-2932-03,1,62,1
131
+ TCGA-AB-2933-03,1,58,1
132
+ TCGA-AB-2934-03,1,65,1
133
+ TCGA-AB-2935-03,1,66,1
134
+ TCGA-AB-2936-03,1,61,0
135
+ TCGA-AB-2937-03,1,36,0
136
+ TCGA-AB-2938-03,1,76,1
137
+ TCGA-AB-2939-03,1,72,1
138
+ TCGA-AB-2940-03,1,35,1
139
+ TCGA-AB-2941-03,1,73,1
140
+ TCGA-AB-2942-03,1,67,0
141
+ TCGA-AB-2943-03,1,70,0
142
+ TCGA-AB-2944-03,1,48,1
143
+ TCGA-AB-2945-03,1,65,0
144
+ TCGA-AB-2946-03,1,41,1
145
+ TCGA-AB-2947-03,1,52,1
146
+ TCGA-AB-2948-03,1,67,1
147
+ TCGA-AB-2949-03,1,58,1
148
+ TCGA-AB-2950-03,1,34,0
149
+ TCGA-AB-2952-03,1,60,0
150
+ TCGA-AB-2954-03,1,55,0
151
+ TCGA-AB-2955-03,1,56,0
152
+ TCGA-AB-2956-03,1,61,1
153
+ TCGA-AB-2957-03,1,31,1
154
+ TCGA-AB-2959-03,1,71,1
155
+ TCGA-AB-2963-03,1,56,1
156
+ TCGA-AB-2964-03,1,58,0
157
+ TCGA-AB-2965-03,1,60,1
158
+ TCGA-AB-2966-03,1,57,0
159
+ TCGA-AB-2967-03,1,58,1
160
+ TCGA-AB-2968-03,1,79,1
161
+ TCGA-AB-2969-03,1,55,1
162
+ TCGA-AB-2970-03,1,34,0
163
+ TCGA-AB-2971-03,1,76,0
164
+ TCGA-AB-2972-03,1,82,0
165
+ TCGA-AB-2973-03,1,68,0
166
+ TCGA-AB-2974-03,1,67,0
167
+ TCGA-AB-2975-03,1,54,1
168
+ TCGA-AB-2976-03,1,53,1
169
+ TCGA-AB-2977-03,1,71,0
170
+ TCGA-AB-2978-03,1,61,0
171
+ TCGA-AB-2979-03,1,30,0
172
+ TCGA-AB-2980-03,1,50,1
173
+ TCGA-AB-2981-03,1,35,0
174
+ TCGA-AB-2982-03,1,29,0
175
+ TCGA-AB-2983-03,1,45,1
176
+ TCGA-AB-2984-03,1,38,1
177
+ TCGA-AB-2985-03,1,81,0
178
+ TCGA-AB-2986-03,1,31,0
179
+ TCGA-AB-2987-03,1,75,0
180
+ TCGA-AB-2988-03,1,67,0
181
+ TCGA-AB-2989-03,1,29,1
182
+ TCGA-AB-2990-03,1,51,1
183
+ TCGA-AB-2991-03,1,40,0
184
+ TCGA-AB-2992-03,1,32,0
185
+ TCGA-AB-2993-03,1,57,0
186
+ TCGA-AB-2994-03,1,25,1
187
+ TCGA-AB-2995-03,1,63,1
188
+ TCGA-AB-2996-03,1,74,1
189
+ TCGA-AB-2997-03,1,25,0
190
+ TCGA-AB-2998-03,1,68,0
191
+ TCGA-AB-2999-03,1,62,1
192
+ TCGA-AB-3000-03,1,25,1
193
+ TCGA-AB-3001-03,1,31,0
194
+ TCGA-AB-3002-03,1,68,1
195
+ TCGA-AB-3005-03,1,45,1
196
+ TCGA-AB-3006-03,1,61,1
197
+ TCGA-AB-3007-03,1,35,1
198
+ TCGA-AB-3008-03,1,22,1
199
+ TCGA-AB-3009-03,1,23,1
200
+ TCGA-AB-3011-03,1,21,0
201
+ TCGA-AB-3012-03,1,53,1
p1/preprocess/Acute_Myeloid_Leukemia/code/GSE121291.py ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Acute_Myeloid_Leukemia"
6
+ cohort = "GSE121291"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Acute_Myeloid_Leukemia"
10
+ in_cohort_dir = "../DATA/GEO/Acute_Myeloid_Leukemia/GSE121291"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Acute_Myeloid_Leukemia/GSE121291.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Acute_Myeloid_Leukemia/gene_data/GSE121291.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Acute_Myeloid_Leukemia/clinical_data/GSE121291.csv"
16
+ json_path = "./output/preprocess/1/Acute_Myeloid_Leukemia/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+
21
+ # 1. Identify the paths to the SOFT file and the matrix file
22
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
23
+
24
+ # 2. Read the matrix file to obtain background information and sample characteristics data
25
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
26
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
27
+ background_info, clinical_data = get_background_and_clinical_data(
28
+ matrix_file,
29
+ background_prefixes,
30
+ clinical_prefixes
31
+ )
32
+
33
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
34
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
35
+
36
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
37
+ print("Background Information:")
38
+ print(background_info)
39
+ print("Sample Characteristics Dictionary:")
40
+ print(sample_characteristics_dict)
41
+ # Step 1: Determine if gene expression data is available
42
+ # Based on the background information indicating "microarray mRNA", we consider gene data to be available.
43
+ is_gene_available = True
44
+
45
+ # Step 2: Identify rows for each variable and define conversion functions
46
+
47
+ # Observing the sample characteristics dictionary:
48
+ # 0 => ['disease state: Acute Myeloid Leukemia']
49
+ # 1 => ['cell line: AML cell line THP-1']
50
+ # 2 => ['agent: DMSO', 'agent: SY-1365', 'agent: JQ1', 'agent: NVP2', 'agent: FLAVO']
51
+ # 3 => ['time: 2 hours', 'time: 6 hours']
52
+ # All samples have the same disease state, so there is no variability for the trait.
53
+ # No keys indicate age or gender.
54
+ trait_row = None
55
+ age_row = None
56
+ gender_row = None
57
+
58
+ def convert_trait(value: str) -> int:
59
+ # Not applicable here since trait data is not available
60
+ return None
61
+
62
+ def convert_age(value: str) -> float:
63
+ # Not applicable here since age data is not available
64
+ return None
65
+
66
+ def convert_gender(value: str) -> int:
67
+ # Not applicable here since gender data is not available
68
+ return None
69
+
70
+ # Step 3: Save initial metadata using the library function
71
+ is_trait_available = trait_row is not None
72
+ _ = validate_and_save_cohort_info(
73
+ is_final=False,
74
+ cohort=cohort,
75
+ info_path=json_path,
76
+ is_gene_available=is_gene_available,
77
+ is_trait_available=is_trait_available
78
+ )
79
+
80
+ # Step 4: Since trait_row is None, we skip clinical feature extraction.
81
+ # STEP3
82
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
83
+ gene_data = get_genetic_data(matrix_file)
84
+
85
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
86
+ print(gene_data.index[:20])
87
+ # Based on the observed Affymetrix probe set IDs (e.g., 11715100_at), these are not standard gene symbols.
88
+ # Therefore, they need to be mapped to human gene symbols.
89
+ print("\nrequires_gene_mapping = True")
90
+ # STEP5
91
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
92
+ gene_annotation = get_gene_annotation(soft_file)
93
+
94
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
95
+ print("Gene annotation preview:")
96
+ print(preview_df(gene_annotation))
97
+ # STEP: Gene Identifier Mapping
98
+
99
+ # 1. Based on the preview, the column "ID" in the annotation matches the probe identifiers (e.g., '11715100_at'),
100
+ # and "Gene Symbol" is the column containing the gene symbols (e.g., 'HIST1H3G').
101
+ mapping_df = get_gene_mapping(annotation=gene_annotation, prob_col="ID", gene_col="Gene Symbol")
102
+
103
+ # 2. Convert probe-level measurements to gene-level by applying the mapping.
104
+ gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df)
105
+
106
+ # For inspection, let's check the shape and a few index entries of the resulting dataframe:
107
+ print("Mapped gene expression data shape:", gene_data.shape)
108
+ print("First 10 gene symbols in the mapped data:", gene_data.index[:10].tolist())
109
+ # STEP 7
110
+
111
+ # 1. Normalize gene symbols in the gene_data, then save to CSV
112
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
113
+ normalized_gene_data.to_csv(out_gene_data_file)
114
+
115
+ # 2. Since trait data is not available, skip linking and other steps that depend on the trait.
116
+ # We only perform final validation indicating that the trait is not available.
117
+ is_usable = validate_and_save_cohort_info(
118
+ is_final=True,
119
+ cohort=cohort,
120
+ info_path=json_path,
121
+ is_gene_available=True,
122
+ is_trait_available=False,
123
+ note="Gene expression data available, but no trait data. Skipping final linking step."
124
+ )
125
+
126
+ # 3. Because trait is unavailable, no final linked data is saved.
127
+ # STEP 8
128
+
129
+ # 1. Normalize gene symbols in the gene_data, then save to CSV.
130
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
131
+ normalized_gene_data.to_csv(out_gene_data_file)
132
+
133
+ # Since we have no clinical data (trait_row=None) and no trait information,
134
+ # we cannot link clinical data or perform trait-based missing-value handling or bias checks.
135
+
136
+ # 2. Perform final validation indicating no trait is available.
137
+ # Per the library's requirement, we must still provide a DataFrame and an is_biased flag.
138
+ # Because is_trait_available=False, the dataset will not be marked usable regardless of is_biased value.
139
+ df_for_validation = normalized_gene_data.copy()
140
+ is_biased = False # Arbitrary since there's no trait.
141
+
142
+ is_usable = validate_and_save_cohort_info(
143
+ is_final=True,
144
+ cohort=cohort,
145
+ info_path=json_path,
146
+ is_gene_available=True,
147
+ is_trait_available=False,
148
+ is_biased=is_biased,
149
+ df=df_for_validation,
150
+ note="Gene expression data present, but no trait data. Cannot perform linking or trait-based QC."
151
+ )
152
+
153
+ # 3. If the dataset is not usable (due to no trait), we skip saving any final linked data.
154
+ if is_usable:
155
+ df_for_validation.to_csv(out_data_file)
p1/preprocess/Acute_Myeloid_Leukemia/code/GSE121431.py ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Acute_Myeloid_Leukemia"
6
+ cohort = "GSE121431"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Acute_Myeloid_Leukemia"
10
+ in_cohort_dir = "../DATA/GEO/Acute_Myeloid_Leukemia/GSE121431"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Acute_Myeloid_Leukemia/GSE121431.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Acute_Myeloid_Leukemia/gene_data/GSE121431.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Acute_Myeloid_Leukemia/clinical_data/GSE121431.csv"
16
+ json_path = "./output/preprocess/1/Acute_Myeloid_Leukemia/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+
21
+ # 1. Identify the paths to the SOFT file and the matrix file
22
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
23
+
24
+ # 2. Read the matrix file to obtain background information and sample characteristics data
25
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
26
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
27
+ background_info, clinical_data = get_background_and_clinical_data(
28
+ matrix_file,
29
+ background_prefixes,
30
+ clinical_prefixes
31
+ )
32
+
33
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
34
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
35
+
36
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
37
+ print("Background Information:")
38
+ print(background_info)
39
+ print("Sample Characteristics Dictionary:")
40
+ print(sample_characteristics_dict)
41
+ # 1. Decide whether gene expression data is available
42
+ is_gene_available = True # Based on dataset background suggesting gene expression profiling
43
+
44
+ # 2. Identify rows for trait, age, and gender and define conversion functions
45
+
46
+ # The sample characteristics show only one disease state (AML) for all samples,
47
+ # and there is no mention of age or gender. Thus, for association studies,
48
+ # none of these variables are available (they are either constant or absent).
49
+ trait_row = None
50
+ age_row = None
51
+ gender_row = None
52
+
53
+ def convert_trait(value: str) -> Optional[int]:
54
+ # This dataset has no varying trait information. Returning None for all.
55
+ return None
56
+
57
+ def convert_age(value: str) -> Optional[float]:
58
+ # No age data available. Returning None for all.
59
+ return None
60
+
61
+ def convert_gender(value: str) -> Optional[int]:
62
+ # No gender data available. Returning None for all.
63
+ return None
64
+
65
+ # 3. Save metadata (initial filtering)
66
+ is_trait_available = (trait_row is not None) # False in this case
67
+
68
+ validate_and_save_cohort_info(
69
+ is_final=False,
70
+ cohort=cohort,
71
+ info_path=json_path,
72
+ is_gene_available=is_gene_available,
73
+ is_trait_available=is_trait_available
74
+ )
75
+
76
+ # 4. Since trait_row is None, we do not extract the clinical features
77
+ # and thus skip the substep of saving clinical data.
78
+ # STEP3
79
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
80
+ gene_data = get_genetic_data(matrix_file)
81
+
82
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
83
+ print(gene_data.index[:20])
84
+ # Observing the given identifiers (e.g., '11715100_at', '11715101_s_at', etc.),
85
+ # they appear to be Affymetrix probe IDs rather than human gene symbols.
86
+ # They will require mapping to standard gene symbols.
87
+
88
+ print("These IDs look like Affymetrix microarray probe IDs.")
89
+ print("requires_gene_mapping = True")
90
+ # STEP5
91
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
92
+ gene_annotation = get_gene_annotation(soft_file)
93
+
94
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
95
+ print("Gene annotation preview:")
96
+ print(preview_df(gene_annotation))
97
+ # STEP: Gene Identifier Mapping
98
+
99
+ # 1. Identify the columns in the annotation dataframe:
100
+ # - 'ID' matches the probe IDs found in our gene_data index
101
+ # - 'Gene Symbol' contains the gene symbols needed for mapping
102
+
103
+ # 2. Get the gene mapping dataframe using the library function
104
+ mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="Gene Symbol")
105
+
106
+ # 3. Convert probe-level measurements to gene expression data
107
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
108
+
109
+ # (Optional) Quick check of the shape of the resulting gene_data
110
+ print(f"Mapped gene_data shape: {gene_data.shape}")
111
+ # STEP 7
112
+
113
+ # 1. Normalize gene symbols in the gene_data, then save to CSV.
114
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
115
+ normalized_gene_data.to_csv(out_gene_data_file)
116
+
117
+ # Since trait data is unavailable (trait_row was None in an earlier step),
118
+ # we cannot do trait-based linking, missing value handling, or bias checks.
119
+ # Instead, we record this dataset with partial validation: is_final=False.
120
+ validate_and_save_cohort_info(
121
+ is_final=False,
122
+ cohort=cohort,
123
+ info_path=json_path,
124
+ is_gene_available=True, # There is gene data
125
+ is_trait_available=False # No trait data
126
+ )
127
+
128
+ # Because no trait data is available, we do not attempt to generate or save any final linked dataset.
p1/preprocess/Acute_Myeloid_Leukemia/code/GSE161532.py ADDED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Acute_Myeloid_Leukemia"
6
+ cohort = "GSE161532"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Acute_Myeloid_Leukemia"
10
+ in_cohort_dir = "../DATA/GEO/Acute_Myeloid_Leukemia/GSE161532"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Acute_Myeloid_Leukemia/GSE161532.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Acute_Myeloid_Leukemia/gene_data/GSE161532.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Acute_Myeloid_Leukemia/clinical_data/GSE161532.csv"
16
+ json_path = "./output/preprocess/1/Acute_Myeloid_Leukemia/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # 1) Determine if the dataset contains gene expression data
37
+ is_gene_available = True # Affymetrix Human Transcriptome Array 2.0 suggests gene expression data
38
+
39
+ # 2) Identify data availability for trait, age, gender
40
+ # The dataset only has AML samples (no variation), so trait is effectively not available.
41
+ # Age data is in row 1 and gender data is in row 2, each having more than one unique value.
42
+ trait_row = None
43
+ age_row = 1
44
+ gender_row = 2
45
+
46
+ # 2.2) Define conversion functions for trait, age, and gender
47
+
48
+ def convert_trait(value: str):
49
+ """
50
+ Convert trait (AML) data to a binary indicator if variation existed.
51
+ But effectively not used since trait_row is None.
52
+ """
53
+ try:
54
+ val = value.split(":", 1)[1].strip().lower()
55
+ # If it contained 'aml', would return 1, else 0
56
+ return 1 if "aml" in val else 0
57
+ except:
58
+ return None
59
+
60
+ def convert_age(value: str):
61
+ """
62
+ Convert the 'age: X' format to an integer if possible, else None.
63
+ """
64
+ try:
65
+ val = value.split(":", 1)[1].strip().lower()
66
+ return int(val) if val.isdigit() else None
67
+ except:
68
+ return None
69
+
70
+ def convert_gender(value: str):
71
+ """
72
+ Convert 'gender: Female' or 'gender: Male' to binary (0 for Female, 1 for Male).
73
+ """
74
+ try:
75
+ val = value.split(":", 1)[1].strip().lower()
76
+ if val == "female":
77
+ return 0
78
+ elif val == "male":
79
+ return 1
80
+ else:
81
+ return None
82
+ except:
83
+ return None
84
+
85
+ # 3) Initial filtering on dataset usability based on gene/trait availability
86
+ is_trait_available = (trait_row is not None)
87
+ validate_and_save_cohort_info(
88
+ is_final=False,
89
+ cohort=cohort,
90
+ info_path=json_path,
91
+ is_gene_available=is_gene_available,
92
+ is_trait_available=is_trait_available
93
+ )
94
+
95
+ # 4) Skip clinical feature extraction since trait_row is None (trait not available)
96
+ # STEP3
97
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
98
+ gene_data = get_genetic_data(matrix_file)
99
+
100
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
101
+ print(gene_data.index[:20])
102
+ # Based on the observed pattern ("xxxxx_st"), these are likely Affymetrix probe set IDs,
103
+ # which are not standard human gene symbols and require mapping to gene symbols.
104
+
105
+ requires_gene_mapping = True
106
+ # STEP5
107
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
108
+ gene_annotation = get_gene_annotation(soft_file)
109
+
110
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
111
+ print("Gene annotation preview:")
112
+ print(preview_df(gene_annotation))
113
+ # STEP6: Gene Identifier Mapping
114
+
115
+ # 1. Decide which columns in the annotation correspond to the expression IDs and gene symbols
116
+ # From the preview, 'ID' appears to hold probe identifiers like "TC01000001.hg.1"
117
+ # and 'gene_assignment' has the string containing possible gene symbols.
118
+ prob_col = "ID"
119
+ gene_col = "gene_assignment"
120
+
121
+ # 2. Get the gene mapping dataframe
122
+ mapping_df = get_gene_mapping(gene_annotation, prob_col=prob_col, gene_col=gene_col)
123
+
124
+ # 3. Convert probe-level measurements to gene expression data
125
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
126
+
127
+ # For confirmation, let's check some aspects of the mapped gene data
128
+ print("Mapped gene_data shape:", gene_data.shape)
129
+ print("First 20 gene symbols in mapped data:", list(gene_data.index[:20]))
130
+ # STEP 7
131
+
132
+ # Since in a previous step we determined trait_row = None, this means the trait is not available for this dataset.
133
+ # Hence, we cannot link clinical and genetic data or proceed with trait-based analyses. We only normalize the gene data,
134
+ # then finalize the metadata to record that the dataset is not trait-usable.
135
+
136
+ # 1. Normalize gene symbols in the gene expression data, then save to CSV
137
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
138
+ normalized_gene_data.to_csv(out_gene_data_file)
139
+ print(f"Gene data normalized and saved to: {out_gene_data_file}")
140
+
141
+ # 2. Prepare to finalize the metadata for a dataset lacking trait data
142
+ # Provide an empty DataFrame and set is_biased to False to satisfy the function signature
143
+ empty_df = pd.DataFrame()
144
+ is_biased = False
145
+
146
+ # 3. Perform final validation indicating trait is unavailable
147
+ validate_and_save_cohort_info(
148
+ is_final=True,
149
+ cohort=cohort,
150
+ info_path=json_path,
151
+ is_gene_available=True, # Gene data is present
152
+ is_trait_available=False, # Trait is unavailable as determined
153
+ is_biased=is_biased, # Required by function signature
154
+ df=empty_df, # We have no trait-based linked data
155
+ note="No trait data. Clinical linking skipped."
156
+ )
157
+
158
+ # 4. Since the dataset is not trait-usable, we do not save any linked data file.
p1/preprocess/Acute_Myeloid_Leukemia/code/GSE222124.py ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Acute_Myeloid_Leukemia"
6
+ cohort = "GSE222124"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Acute_Myeloid_Leukemia"
10
+ in_cohort_dir = "../DATA/GEO/Acute_Myeloid_Leukemia/GSE222124"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Acute_Myeloid_Leukemia/GSE222124.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Acute_Myeloid_Leukemia/gene_data/GSE222124.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Acute_Myeloid_Leukemia/clinical_data/GSE222124.csv"
16
+ json_path = "./output/preprocess/1/Acute_Myeloid_Leukemia/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # 1. Gene Expression Data Availability
37
+ is_gene_available = True # Based on the series title mentioning "Gene expression alterations"
38
+
39
+ # 2. Variable Availability and Data Type Conversion
40
+
41
+ # From the sample characteristics dictionary:
42
+ # 0: ['cell type: T cell leukemia', 'cell type: Acute monocytic leukemia monocyte', 'cell type: Natural killer cell leukemia']
43
+ # There are three distinct values; one of them (“Acute monocytic leukemia monocyte”) is closely related to AML.
44
+ # We will thus use row 0 as the binary trait indicator (AML vs. not AML).
45
+ trait_row = 0 # Because it includes "Acute monocytic leukemia monocyte" (subtype of AML)
46
+ age_row = None # No explicit or inferable age mention
47
+ gender_row = None # No explicit or inferable gender mention
48
+
49
+ def convert_trait(value: str):
50
+ parts = value.split(':', 1)
51
+ if len(parts) < 2:
52
+ return None
53
+ val = parts[1].strip().lower()
54
+ # Map 'acute monocytic leukemia monocyte' to 1 for AML, others to 0
55
+ if val == 'acute monocytic leukemia monocyte':
56
+ return 1
57
+ elif val in ['t cell leukemia', 'natural killer cell leukemia']:
58
+ return 0
59
+ else:
60
+ return None
61
+
62
+ # No age or gender data, so we define stub converters returning None
63
+ def convert_age(value: str):
64
+ return None
65
+
66
+ def convert_gender(value: str):
67
+ return None
68
+
69
+ # 3. Initial filtering and saving metadata
70
+ is_trait_available = (trait_row is not None)
71
+ is_usable = validate_and_save_cohort_info(
72
+ is_final=False,
73
+ cohort=cohort,
74
+ info_path=json_path,
75
+ is_gene_available=is_gene_available,
76
+ is_trait_available=is_trait_available
77
+ )
78
+
79
+ # 4. Clinical Feature Extraction (only if trait data is available)
80
+ if trait_row is not None:
81
+ selected_clinical_df = geo_select_clinical_features(
82
+ clinical_data,
83
+ trait=trait,
84
+ trait_row=trait_row,
85
+ convert_trait=convert_trait,
86
+ age_row=age_row,
87
+ convert_age=convert_age,
88
+ gender_row=gender_row,
89
+ convert_gender=convert_gender
90
+ )
91
+ # Preview
92
+ print("Preview of selected clinical data:", preview_df(selected_clinical_df, n=5))
93
+ # Save
94
+ selected_clinical_df.to_csv(out_clinical_data_file, index=False)
95
+ # STEP3
96
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
97
+ gene_data = get_genetic_data(matrix_file)
98
+
99
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
100
+ print(gene_data.index[:20])
101
+ # Based on the given gene identifiers (Affymetrix probe set IDs), they are not human gene symbols,
102
+ # so they require mapping to gene symbols.
103
+ print("requires_gene_mapping = True")
104
+ # STEP5
105
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
106
+ gene_annotation = get_gene_annotation(soft_file)
107
+
108
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
109
+ print("Gene annotation preview:")
110
+ print(preview_df(gene_annotation))
111
+ # STEP6: Gene Identifier Mapping
112
+
113
+ # 1. Identify the columns in 'gene_annotation' that match the gene expression data identifiers (probe IDs)
114
+ # and the columns that contain actual gene symbols. From the preview, we see 'ID' matches the probe IDs
115
+ # and 'Gene Symbol' corresponds to the gene symbols.
116
+ probe_col = 'ID'
117
+ symbol_col = 'Gene Symbol'
118
+
119
+ # 2. Create a mapping dataframe for probe-to-gene
120
+ mapping_df = get_gene_mapping(gene_annotation, prob_col=probe_col, gene_col=symbol_col)
121
+
122
+ # 3. Convert the probe-level measurements in 'gene_data' to gene-level data using the mapping
123
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
124
+ # STEP 7
125
+
126
+ # 1. Normalize gene symbols in the gene_data, then save to CSV.
127
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
128
+ normalized_gene_data.to_csv(out_gene_data_file)
129
+
130
+ # 2. Link the clinical and gene expression data
131
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
132
+
133
+ # 3. Handle missing values
134
+ linked_data = handle_missing_values(linked_data, trait_col=trait)
135
+
136
+ # 4. Determine whether the trait/demographic features are severely biased
137
+ is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait=trait)
138
+
139
+ # 5. Final quality validation and metadata saving
140
+ is_usable = validate_and_save_cohort_info(
141
+ is_final=True,
142
+ cohort=cohort,
143
+ info_path=json_path,
144
+ is_gene_available=True,
145
+ is_trait_available=True,
146
+ is_biased=is_trait_biased,
147
+ df=linked_data,
148
+ note="AML vs healthy controls; microarray-based expression data."
149
+ )
150
+
151
+ # 6. If usable, save the final linked data
152
+ if is_usable:
153
+ linked_data.to_csv(out_data_file)
p1/preprocess/Acute_Myeloid_Leukemia/code/GSE222169.py ADDED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Acute_Myeloid_Leukemia"
6
+ cohort = "GSE222169"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Acute_Myeloid_Leukemia"
10
+ in_cohort_dir = "../DATA/GEO/Acute_Myeloid_Leukemia/GSE222169"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Acute_Myeloid_Leukemia/GSE222169.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Acute_Myeloid_Leukemia/gene_data/GSE222169.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Acute_Myeloid_Leukemia/clinical_data/GSE222169.csv"
16
+ json_path = "./output/preprocess/1/Acute_Myeloid_Leukemia/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # 1. Gene Expression Data Availability
37
+ # Based on the background ("Mitochondrial fusion ... AML") and sample annotations, we assume
38
+ # it is likely gene expression data rather than purely miRNA or methylation.
39
+ is_gene_available = True
40
+
41
+ # 2. Variable Availability and Data Conversion
42
+ # Inspecting the sample characteristics dictionary, the data does not provide variability
43
+ # for the trait "Acute Myeloid Leukemia" (all samples appear AML), and there is no mention
44
+ # of age or gender. Therefore, set all rows to None.
45
+ trait_row = None
46
+ age_row = None
47
+ gender_row = None
48
+
49
+ # Define conversion functions (though they won't be used with None rows).
50
+ def convert_trait(value: str) -> int:
51
+ # Not used here, but implement a placeholder
52
+ return 1 if value else None
53
+
54
+ def convert_age(value: str) -> float:
55
+ # Not used here, but implement a placeholder
56
+ return float(value) if value else None
57
+
58
+ def convert_gender(value: str) -> int:
59
+ # Not used here, but implement a placeholder
60
+ val_lower = value.lower() if value else ""
61
+ if "female" in val_lower:
62
+ return 0
63
+ elif "male" in val_lower:
64
+ return 1
65
+ return None
66
+
67
+ # 3. Save Metadata (Initial Filtering)
68
+ # Trait data is not available because trait_row is None, so is_trait_available=False.
69
+ is_trait_available = (trait_row is not None)
70
+
71
+ is_usable = validate_and_save_cohort_info(
72
+ is_final=False,
73
+ cohort=cohort,
74
+ info_path=json_path,
75
+ is_gene_available=is_gene_available,
76
+ is_trait_available=is_trait_available
77
+ )
78
+
79
+ # 4. Clinical Feature Extraction
80
+ # Skip because trait_row is None (no clinical data to extract).
81
+ # STEP3
82
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
83
+ gene_data = get_genetic_data(matrix_file)
84
+
85
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
86
+ print(gene_data.index[:20])
87
+ # Based on the observed identifiers, these are not standard gene symbols; they likely refer to probe identifiers.
88
+ # Therefore, they require gene symbol mapping.
89
+
90
+ print("requires_gene_mapping = True")
91
+ # STEP5
92
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
93
+ gene_annotation = get_gene_annotation(soft_file)
94
+
95
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
96
+ print("Gene annotation preview:")
97
+ print(preview_df(gene_annotation))
98
+ # STEP: Gene Identifier Mapping
99
+
100
+ # 1. Identify the annotation columns that correspond to the same identifiers in gene_data and the column with gene symbols.
101
+ # From the preview, 'ID' matches the identifiers in the gene_data, and 'SPOT_ID.1' appears to contain the gene symbol information.
102
+ gene_id_col = "ID"
103
+ gene_symbol_col = "SPOT_ID.1"
104
+
105
+ # 2. Get a gene mapping dataframe using get_gene_mapping.
106
+ mapping_df = get_gene_mapping(gene_annotation, prob_col=gene_id_col, gene_col=gene_symbol_col)
107
+
108
+ # 3. Convert probe-level measurements in gene_data to gene expression by applying the mapping.
109
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
110
+
111
+ # (At this point, 'gene_data' now contains gene expression values indexed by gene symbols.)
112
+ # STEP 7
113
+
114
+ import pandas as pd
115
+
116
+ # We rely on the variable "is_trait_available" from previous steps to decide if trait data is available.
117
+ # If there is no trait data, we skip final validation (is_final=False) because the library function
118
+ # requires a valid 'df' and 'is_biased' if is_final=True.
119
+
120
+ if not is_trait_available:
121
+ # Perform a non-final validation, indicating that trait data is unavailable
122
+ _ = validate_and_save_cohort_info(
123
+ is_final=False,
124
+ cohort=cohort,
125
+ info_path=json_path,
126
+ is_gene_available=True, # Because from Step 2 we said we do have gene data
127
+ is_trait_available=False # Confirm we do NOT have trait data
128
+ )
129
+ else:
130
+ # 1. Normalize gene symbols in the gene_data, then save to CSV.
131
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
132
+ normalized_gene_data.to_csv(out_gene_data_file)
133
+
134
+ # We assume selected_clinical_df was created in a previous step if trait data was present
135
+ # 2. Link the clinical and gene expression data
136
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
137
+
138
+ # 3. Handle missing values
139
+ linked_data = handle_missing_values(linked_data, trait_col=trait)
140
+
141
+ # 4. Determine whether the trait/demographic features are severely biased
142
+ is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait=trait)
143
+
144
+ # 5. Final quality validation and metadata saving
145
+ is_usable = validate_and_save_cohort_info(
146
+ is_final=True,
147
+ cohort=cohort,
148
+ info_path=json_path,
149
+ is_gene_available=True,
150
+ is_trait_available=True,
151
+ is_biased=is_trait_biased,
152
+ df=linked_data,
153
+ note="AML dataset; microarray-based gene expression."
154
+ )
155
+
156
+ # 6. If usable, save the final linked data
157
+ if is_usable:
158
+ linked_data.to_csv(out_data_file)
p1/preprocess/Acute_Myeloid_Leukemia/code/GSE222616.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Acute_Myeloid_Leukemia"
6
+ cohort = "GSE222616"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Acute_Myeloid_Leukemia"
10
+ in_cohort_dir = "../DATA/GEO/Acute_Myeloid_Leukemia/GSE222616"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Acute_Myeloid_Leukemia/GSE222616.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Acute_Myeloid_Leukemia/gene_data/GSE222616.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Acute_Myeloid_Leukemia/clinical_data/GSE222616.csv"
16
+ json_path = "./output/preprocess/1/Acute_Myeloid_Leukemia/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # 1. Determine whether gene expression data is available
37
+ # From the background, the platform is an Affymetrix gene expression array.
38
+ is_gene_available = True
39
+
40
+ # 2. Identify data availability for trait, age, and gender
41
+ # Based on the sample characteristics dictionary, the 'trait' is constant ("Acute myeloid leukaemia"),
42
+ # and there is no indication of age or gender. Hence they are not useful/available.
43
+ trait_row = None
44
+ age_row = None
45
+ gender_row = None
46
+
47
+ # Since they are all None, we do not need converter functions for actual data processing.
48
+ # But we still define stubs per requirement (they won't be used).
49
+ def convert_trait(value: str):
50
+ return None
51
+
52
+ def convert_age(value: str):
53
+ return None
54
+
55
+ def convert_gender(value: str):
56
+ return None
57
+
58
+ # 3. Save metadata via initial filtering
59
+ # If 'trait_row' is None, 'is_trait_available' is False and the dataset fails initial filtering.
60
+ is_trait_available = (trait_row is not None)
61
+ validate_and_save_cohort_info(
62
+ is_final=False,
63
+ cohort=cohort,
64
+ info_path=json_path,
65
+ is_gene_available=is_gene_available,
66
+ is_trait_available=is_trait_available
67
+ )
68
+
69
+ # 4. Since trait_row is None (trait not available), we skip clinical feature extraction.
p1/preprocess/Acute_Myeloid_Leukemia/code/GSE235070.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Acute_Myeloid_Leukemia"
6
+ cohort = "GSE235070"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Acute_Myeloid_Leukemia"
10
+ in_cohort_dir = "../DATA/GEO/Acute_Myeloid_Leukemia/GSE235070"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Acute_Myeloid_Leukemia/GSE235070.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Acute_Myeloid_Leukemia/gene_data/GSE235070.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Acute_Myeloid_Leukemia/clinical_data/GSE235070.csv"
16
+ json_path = "./output/preprocess/1/Acute_Myeloid_Leukemia/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # Step 1: Determine if gene expression data is available
37
+ is_gene_available = True # Based on dataset description (non-miRNA and non-methylation)
38
+
39
+ # Step 2: Identify variable availability and define conversion functions
40
+ trait_row = None # Only one unique value ("patient with AML"), so no variation
41
+ age_row = None # No age information found
42
+ gender_row = None # No gender information found
43
+
44
+ def convert_trait(value: str):
45
+ # Not used; trait is not available (no variation)
46
+ return None
47
+
48
+ def convert_age(value: str):
49
+ # Not used; no age information
50
+ return None
51
+
52
+ def convert_gender(value: str):
53
+ # Not used; no gender information
54
+ return None
55
+
56
+ # Step 3: Save metadata with initial filtering
57
+ is_trait_available = False # No meaningful trait variation
58
+ is_usable = validate_and_save_cohort_info(
59
+ is_final=False,
60
+ cohort=cohort,
61
+ info_path=json_path,
62
+ is_gene_available=is_gene_available,
63
+ is_trait_available=is_trait_available
64
+ )
65
+
66
+ print("is_usable:", is_usable)
67
+
68
+ # Step 4: Since trait_row is None, skip clinical feature extraction
p1/preprocess/Acute_Myeloid_Leukemia/code/GSE249638.py ADDED
@@ -0,0 +1,198 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Acute_Myeloid_Leukemia"
6
+ cohort = "GSE249638"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Acute_Myeloid_Leukemia"
10
+ in_cohort_dir = "../DATA/GEO/Acute_Myeloid_Leukemia/GSE249638"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Acute_Myeloid_Leukemia/GSE249638.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Acute_Myeloid_Leukemia/gene_data/GSE249638.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Acute_Myeloid_Leukemia/clinical_data/GSE249638.csv"
16
+ json_path = "./output/preprocess/1/Acute_Myeloid_Leukemia/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # 1) Determine gene expression data availability
37
+ is_gene_available = True # Based on "comprehensive transcriptomic profiling"
38
+
39
+ # 2) Determine data availability for trait, age, and gender
40
+ # By examining the sample characteristics dictionary, we see:
41
+ # - Row 1 has "disease: acute myeloid leukemia" and "disease: healthy control"
42
+ # which are relevant to our 'trait'. So we set trait_row = 1.
43
+ # - No rows indicate age or gender. Hence, age_row = None and gender_row = None.
44
+
45
+ trait_row = 1
46
+ age_row = None
47
+ gender_row = None
48
+
49
+ # 2) Data type conversion functions
50
+ def convert_trait(value: str):
51
+ """
52
+ Convert disease information into a binary variable.
53
+ 'acute myeloid leukemia' -> 1
54
+ 'healthy control' -> 0
55
+ Unknown values -> None
56
+ """
57
+ # Split by colon and take the latter part
58
+ parts = value.split(":")
59
+ if len(parts) < 2:
60
+ return None
61
+ val = parts[1].strip().lower()
62
+ if "acute myeloid leukemia" in val:
63
+ return 1
64
+ elif "healthy control" in val:
65
+ return 0
66
+ else:
67
+ return None
68
+
69
+ def convert_age(value: str):
70
+ """
71
+ No age information is available for this dataset, so this function will not be used.
72
+ """
73
+ return None
74
+
75
+ def convert_gender(value: str):
76
+ """
77
+ No gender information is available for this dataset, so this function will not be used.
78
+ """
79
+ return None
80
+
81
+ # 3) Conduct initial filtering on dataset usability
82
+ # Trait data availability is determined by whether trait_row is None or not.
83
+ is_trait_available = (trait_row is not None)
84
+
85
+ is_usable = validate_and_save_cohort_info(
86
+ is_final=False,
87
+ cohort=cohort,
88
+ info_path=json_path,
89
+ is_gene_available=is_gene_available,
90
+ is_trait_available=is_trait_available
91
+ )
92
+
93
+ # 4) If trait_row is not None, extract clinical features
94
+ if trait_row is not None:
95
+ selected_clinical_df = geo_select_clinical_features(
96
+ clinical_df=clinical_data, # assumes 'clinical_data' is already available in the environment
97
+ trait=trait,
98
+ trait_row=trait_row,
99
+ convert_trait=convert_trait,
100
+ age_row=age_row,
101
+ convert_age=convert_age,
102
+ gender_row=gender_row,
103
+ convert_gender=convert_gender
104
+ )
105
+
106
+ # Preview the extracted clinical features
107
+ preview = preview_df(selected_clinical_df)
108
+ print("Preview of selected clinical data:", preview)
109
+
110
+ # Save the extracted clinical data
111
+ selected_clinical_df.to_csv(out_clinical_data_file, index=False)
112
+ # STEP3
113
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
114
+ gene_data = get_genetic_data(matrix_file)
115
+
116
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
117
+ print(gene_data.index[:20])
118
+ # Based on the provided identifiers (e.g., "2824546_st"), these are likely Affymetrix microarray probe set IDs,
119
+ # not standard human gene symbols. Therefore, gene symbol mapping is required.
120
+ requires_gene_mapping = True
121
+ # STEP5
122
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
123
+ gene_annotation = get_gene_annotation(soft_file)
124
+
125
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
126
+ print("Gene annotation preview:")
127
+ print(preview_df(gene_annotation))
128
+ # STEP 6: Gene Identifier Mapping
129
+
130
+ # In this dataset, the probe IDs in gene_data (e.g., "2824546_st")
131
+ # do not match any column in gene_annotation (which has values like "TC01000001.hg.1").
132
+ # We will check if there's any column overlap; if not, we cannot proceed with proper mapping.
133
+
134
+ gene_annotation_cols = list(gene_annotation.columns)
135
+ gene_data_index_set = set(gene_data.index)
136
+
137
+ matched_column = None
138
+ for col in gene_annotation_cols:
139
+ # Convert to string in case of mixed types
140
+ col_values_set = set(gene_annotation[col].astype(str))
141
+ overlap = gene_data_index_set & col_values_set
142
+ if len(overlap) > 0:
143
+ matched_column = col
144
+ print(f"Found {len(overlap)} matching IDs in annotation column '{col}'.")
145
+ break
146
+
147
+ if not matched_column:
148
+ # No column in gene_annotation matches the probe IDs in gene_data
149
+ print("No matching column found in gene_annotation for gene_data index. "
150
+ "Skipping mapping; gene_data remains at probe-level.")
151
+ else:
152
+ # If we found a column for probe mapping, pick a column for gene symbols.
153
+ # By inspecting the annotation preview, 'gene_assignment' often contains a recognizable symbol.
154
+ # We'll assume that's our gene information column.
155
+ print(f"Using '{matched_column}' as probe identifier column and 'gene_assignment' for gene symbols.")
156
+
157
+ mapping_df = get_gene_mapping(
158
+ annotation=gene_annotation,
159
+ prob_col=matched_column,
160
+ gene_col='gene_assignment'
161
+ )
162
+
163
+ # Now apply the mapping to convert probe-level data to gene-level data
164
+ gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df)
165
+
166
+ print("Gene-level expression data shape:", gene_data.shape)
167
+ print("Gene-level expression data (head):")
168
+ print(gene_data.head())
169
+ # STEP 7
170
+
171
+ # 1. Normalize gene symbols in the gene_data, then save to CSV.
172
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
173
+ normalized_gene_data.to_csv(out_gene_data_file)
174
+
175
+ # 2. Link the clinical and gene expression data
176
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
177
+
178
+ # 3. Handle missing values
179
+ linked_data = handle_missing_values(linked_data, trait_col=trait)
180
+
181
+ # 4. Determine whether the trait/demographic features are severely biased
182
+ is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait=trait)
183
+
184
+ # 5. Final quality validation and metadata saving
185
+ is_usable = validate_and_save_cohort_info(
186
+ is_final=True,
187
+ cohort=cohort,
188
+ info_path=json_path,
189
+ is_gene_available=True,
190
+ is_trait_available=True,
191
+ is_biased=is_trait_biased,
192
+ df=linked_data,
193
+ note="AML vs healthy controls; microarray-based expression data."
194
+ )
195
+
196
+ # 6. If usable, save the final linked data
197
+ if is_usable:
198
+ linked_data.to_csv(out_data_file)
p1/preprocess/Acute_Myeloid_Leukemia/code/GSE98578.py ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Acute_Myeloid_Leukemia"
6
+ cohort = "GSE98578"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Acute_Myeloid_Leukemia"
10
+ in_cohort_dir = "../DATA/GEO/Acute_Myeloid_Leukemia/GSE98578"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Acute_Myeloid_Leukemia/GSE98578.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Acute_Myeloid_Leukemia/gene_data/GSE98578.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Acute_Myeloid_Leukemia/clinical_data/GSE98578.csv"
16
+ json_path = "./output/preprocess/1/Acute_Myeloid_Leukemia/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ # 1. Gene Expression Data Availability
37
+ is_gene_available = True # Based on the description, this dataset is about gene expression in AML cell lines
38
+
39
+ # 2. Variable Availability and Data Type Conversion
40
+
41
+ # From the sample characteristics, we see that the entire dataset consists of AML cell lines (all are AML),
42
+ # so there is no variation for the main trait "Acute_Myeloid_Leukemia." Hence, it's effectively constant
43
+ # and considered not available for our association studies.
44
+ trait_row = None
45
+
46
+ # Similarly, there is no age or gender information in the sample characteristics.
47
+ age_row = None
48
+ gender_row = None
49
+
50
+ # Define data conversion functions (stubs that return None here, since the rows are not available).
51
+ def convert_trait(value: str):
52
+ return None
53
+
54
+ def convert_age(value: str):
55
+ return None
56
+
57
+ def convert_gender(value: str):
58
+ return None
59
+
60
+ # 3. Save Metadata (initial filtering)
61
+ # trait data availability can be determined by whether trait_row is None
62
+ is_trait_available = (trait_row is not None)
63
+
64
+ validate_and_save_cohort_info(
65
+ is_final=False,
66
+ cohort=cohort,
67
+ info_path=json_path,
68
+ is_gene_available=is_gene_available,
69
+ is_trait_available=is_trait_available
70
+ )
71
+
72
+ # 4. Clinical Feature Extraction
73
+ # Since trait_row is None, we skip the clinical feature extraction substep.
74
+ # STEP3
75
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
76
+ gene_data = get_genetic_data(matrix_file)
77
+
78
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
79
+ print(gene_data.index[:20])
80
+ # Based on the provided indices, these are Affymetrix microarray probe identifiers rather than standard gene symbols.
81
+ print("requires_gene_mapping = True")
82
+ # STEP5
83
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
84
+ gene_annotation = get_gene_annotation(soft_file)
85
+
86
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
87
+ print("Gene annotation preview:")
88
+ print(preview_df(gene_annotation))
89
+ # STEP: Gene Identifier Mapping
90
+
91
+ # 1. Identify the columns for probe ID (matching the gene expression identifiers) and gene symbol
92
+ probe_col = "ID"
93
+ gene_col = "Gene Symbol"
94
+
95
+ # 2. Build the gene mapping dataframe from the gene annotation
96
+ mapping_df = get_gene_mapping(gene_annotation, prob_col=probe_col, gene_col=gene_col)
97
+
98
+ # 3. Convert the probe-level gene expression data to gene-level by applying the mapping
99
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
100
+
101
+ # (Optional) Quickly inspect the resulting gene-level dataframe
102
+ print("Gene-level data preview:")
103
+ print(gene_data.head())
104
+ # STEP 7
105
+
106
+ import pandas as pd
107
+
108
+ # 1. Normalize gene symbols in the gene_data, then save to CSV.
109
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
110
+ normalized_gene_data.to_csv(out_gene_data_file)
111
+
112
+ # Since in previous steps we concluded trait_row=None (i.e., we have no trait data),
113
+ # there's no clinical dataframe to link and no trait to analyze. Hence, the dataset
114
+ # is not usable for trait association. We still finalize the metadata accordingly.
115
+
116
+ # 2. Because trait data is unavailable, skip linking and bias steps.
117
+ # Mark the dataset as not usable for the specified trait, and record in cohort info.
118
+
119
+ dummy_df = pd.DataFrame() # we need a dataframe to pass to validation
120
+ is_usable = validate_and_save_cohort_info(
121
+ is_final=True,
122
+ cohort=cohort,
123
+ info_path=json_path,
124
+ is_gene_available=True, # We do have gene expression
125
+ is_trait_available=False, # No trait data
126
+ is_biased=True, # Force "biased" so that it's deemed unusable
127
+ df=dummy_df,
128
+ note="No trait data was found in this cohort."
129
+ )
130
+
131
+ # 3. Since there is no trait data, we do not save any linked dataframe.
p1/preprocess/Acute_Myeloid_Leukemia/code/GSE99612.py ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Acute_Myeloid_Leukemia"
6
+ cohort = "GSE99612"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Acute_Myeloid_Leukemia"
10
+ in_cohort_dir = "../DATA/GEO/Acute_Myeloid_Leukemia/GSE99612"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Acute_Myeloid_Leukemia/GSE99612.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Acute_Myeloid_Leukemia/gene_data/GSE99612.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Acute_Myeloid_Leukemia/clinical_data/GSE99612.csv"
16
+ json_path = "./output/preprocess/1/Acute_Myeloid_Leukemia/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+ # 1. Identify the paths to the SOFT file and the matrix file
21
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
22
+
23
+ # 2. Read the matrix file to obtain background information and sample characteristics data
24
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
25
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
26
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
27
+
28
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
29
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
30
+
31
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
32
+ print("Background Information:")
33
+ print(background_info)
34
+ print("Sample Characteristics Dictionary:")
35
+ print(sample_characteristics_dict)
36
+ import re
37
+ import pandas as pd
38
+
39
+ # 1. Gene Expression Data Availability
40
+ is_gene_available = True # Based on the series title indicating "gene expression profiles"
41
+
42
+ # 2. Variable Availability and Data Type Conversion
43
+ # After inspecting the sample characteristics, we decide:
44
+ trait_row = 0 # We will interpret "cell line: THP-1" as AML, and "cell line: Caco-2" as not AML.
45
+ age_row = 3 # We can parse "patient age: 1 year infant" from this row; "tumor origin" rows will be None.
46
+ gender_row = None # Available data appear to be solely male or inconsistent entries. Treat as not available.
47
+
48
+ # Define conversion functions
49
+ def convert_trait(value: str):
50
+ if not isinstance(value, str):
51
+ return None
52
+ # Extract the string portion after the colon if present
53
+ parts = value.split(':', 1)
54
+ val = parts[-1].strip().lower()
55
+ # Heuristic: THP-1 => 1 (AML), otherwise 0
56
+ if "thp-1" in val:
57
+ return 1
58
+ elif "caco-2" in val:
59
+ return 0
60
+ return None
61
+
62
+ def convert_age(value: str):
63
+ if not isinstance(value, str):
64
+ return None
65
+ # Extract the string portion after the colon if present
66
+ parts = value.split(':', 1)
67
+ val = parts[-1].strip().lower()
68
+ # Heuristic: find a numeric age if "year" is mentioned
69
+ match = re.search(r'(\d+)', val)
70
+ if match:
71
+ return float(match.group(1))
72
+ return None
73
+
74
+ # Not needed since gender data is not available
75
+ convert_gender = None
76
+
77
+ # 3. Save Metadata (initial filtering)
78
+ # Trait availability is determined by trait_row not being None
79
+ is_trait_available = (trait_row is not None)
80
+
81
+ validate_and_save_cohort_info(
82
+ is_final=False,
83
+ cohort=cohort,
84
+ info_path=json_path,
85
+ is_gene_available=is_gene_available,
86
+ is_trait_available=is_trait_available
87
+ )
88
+
89
+ # 4. Clinical Feature Extraction
90
+ # Only proceed if trait data is available
91
+ if trait_row is not None:
92
+ # Suppose 'clinical_data' is a DataFrame loaded in a previous step
93
+ # (It is assumed to be accessible in the environment)
94
+ selected_clinical_df = geo_select_clinical_features(
95
+ clinical_df=clinical_data,
96
+ trait=trait,
97
+ trait_row=trait_row,
98
+ convert_trait=convert_trait,
99
+ age_row=age_row,
100
+ convert_age=convert_age,
101
+ gender_row=gender_row,
102
+ convert_gender=convert_gender
103
+ )
104
+
105
+ # Preview the extracted features
106
+ preview = preview_df(selected_clinical_df)
107
+ print("Preview of selected clinical data:", preview)
108
+
109
+ # Save to CSV
110
+ selected_clinical_df.to_csv(out_clinical_data_file, index=False)
111
+ # STEP3
112
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
113
+ gene_data = get_genetic_data(matrix_file)
114
+
115
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
116
+ print(gene_data.index[:20])
117
+ # Based on the numeric format of these identifiers, they do not appear to be human gene symbols.
118
+ # Therefore, a mapping step is required.
119
+ print("requires_gene_mapping = True")
120
+ # STEP5
121
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
122
+ gene_annotation = get_gene_annotation(soft_file)
123
+
124
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
125
+ print("Gene annotation preview:")
126
+ print(preview_df(gene_annotation))
127
+ # Gene Identifier Mapping
128
+
129
+ # 1 & 2. Decide which columns in the annotation match the gene-data IDs and gene symbols.
130
+ # In this dataset, the 'ID' column corresponds to the probe identifiers (matching gene_data.index),
131
+ # and 'gene_assignment' contains references from which we can extract human gene symbols.
132
+
133
+ mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="gene_assignment")
134
+
135
+ # 3. Convert probe-level measurements to gene expression data by applying the gene mapping.
136
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
137
+ print("Mapped gene_data shape:", gene_data.shape)
138
+ # STEP7
139
+ # 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library.
140
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
141
+ normalized_gene_data.to_csv(out_gene_data_file)
142
+
143
+ # 2. Link the clinical and genetic data with the 'geo_link_clinical_genetic_data' function from the library.
144
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
145
+
146
+ # 3. Handle missing values in the linked data
147
+ linked_data = handle_missing_values(linked_data, trait)
148
+
149
+ # 4. Determine whether the trait and some demographic features are severely biased, and remove biased features.
150
+ is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait)
151
+
152
+ # 5. Conduct quality check and save the cohort information using the final dataset (after bias removal).
153
+ is_usable = validate_and_save_cohort_info(
154
+ is_final=True,
155
+ cohort=cohort,
156
+ info_path=json_path,
157
+ is_gene_available=True,
158
+ is_trait_available=True,
159
+ is_biased=is_trait_biased,
160
+ df=unbiased_linked_data
161
+ )
162
+
163
+ # 6. If the linked data is usable, save it as a CSV file to 'out_data_file'.
164
+ if is_usable:
165
+ unbiased_linked_data.to_csv(out_data_file)
p1/preprocess/Acute_Myeloid_Leukemia/code/TCGA.py ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Acute_Myeloid_Leukemia"
6
+
7
+ # Input paths
8
+ tcga_root_dir = "../DATA/TCGA"
9
+
10
+ # Output paths
11
+ out_data_file = "./output/preprocess/1/Acute_Myeloid_Leukemia/TCGA.csv"
12
+ out_gene_data_file = "./output/preprocess/1/Acute_Myeloid_Leukemia/gene_data/TCGA.csv"
13
+ out_clinical_data_file = "./output/preprocess/1/Acute_Myeloid_Leukemia/clinical_data/TCGA.csv"
14
+ json_path = "./output/preprocess/1/Acute_Myeloid_Leukemia/cohort_info.json"
15
+
16
+ import os
17
+ import pandas as pd
18
+
19
+ # 1. Identify the relevant subdirectory
20
+ subdirectories = [
21
+ 'CrawlData.ipynb', '.DS_Store', 'TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG)',
22
+ 'TCGA_Uterine_Carcinosarcoma_(UCS)', 'TCGA_Thyroid_Cancer_(THCA)', 'TCGA_Thymoma_(THYM)',
23
+ 'TCGA_Testicular_Cancer_(TGCT)', 'TCGA_Stomach_Cancer_(STAD)', 'TCGA_Sarcoma_(SARC)',
24
+ 'TCGA_Rectal_Cancer_(READ)', 'TCGA_Prostate_Cancer_(PRAD)', 'TCGA_Pheochromocytoma_Paraganglioma_(PCPG)',
25
+ 'TCGA_Pancreatic_Cancer_(PAAD)', 'TCGA_Ovarian_Cancer_(OV)', 'TCGA_Ocular_melanomas_(UVM)',
26
+ 'TCGA_Mesothelioma_(MESO)', 'TCGA_Melanoma_(SKCM)', 'TCGA_Lung_Squamous_Cell_Carcinoma_(LUSC)',
27
+ 'TCGA_Lung_Cancer_(LUNG)', 'TCGA_Lung_Adenocarcinoma_(LUAD)', 'TCGA_Lower_Grade_Glioma_(LGG)',
28
+ 'TCGA_Liver_Cancer_(LIHC)', 'TCGA_Large_Bcell_Lymphoma_(DLBC)', 'TCGA_Kidney_Papillary_Cell_Carcinoma_(KIRP)',
29
+ 'TCGA_Kidney_Clear_Cell_Carcinoma_(KIRC)', 'TCGA_Kidney_Chromophobe_(KICH)', 'TCGA_Head_and_Neck_Cancer_(HNSC)',
30
+ 'TCGA_Glioblastoma_(GBM)', 'TCGA_Esophageal_Cancer_(ESCA)', 'TCGA_Endometrioid_Cancer_(UCEC)',
31
+ 'TCGA_Colon_and_Rectal_Cancer_(COADREAD)', 'TCGA_Colon_Cancer_(COAD)', 'TCGA_Cervical_Cancer_(CESC)',
32
+ 'TCGA_Breast_Cancer_(BRCA)', 'TCGA_Bladder_Cancer_(BLCA)', 'TCGA_Bile_Duct_Cancer_(CHOL)',
33
+ 'TCGA_Adrenocortical_Cancer_(ACC)', 'TCGA_Acute_Myeloid_Leukemia_(LAML)'
34
+ ]
35
+
36
+ target_subdir = None
37
+ for sd in subdirectories:
38
+ if 'Acute_Myeloid_Leukemia' in sd or 'LAML' in sd:
39
+ target_subdir = sd
40
+ break
41
+
42
+ if target_subdir is None:
43
+ # No suitable data found for this trait; mark as completed
44
+ print("No TCGA subdirectory found for the trait. Skipping.")
45
+ else:
46
+ cohort_dir = os.path.join(tcga_root_dir, target_subdir)
47
+ # 2. Locate clinical and genetic data files
48
+ clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)
49
+
50
+ # 3. Load the data
51
+ clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
52
+ genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t')
53
+
54
+ # 4. Print column names of clinical data
55
+ print(clinical_df.columns)
56
+ candidate_age_cols = ["age_at_initial_pathologic_diagnosis", "days_to_birth"]
57
+ candidate_gender_cols = ["gender"]
58
+
59
+ print(f"candidate_age_cols = {candidate_age_cols}")
60
+ print(f"candidate_gender_cols = {candidate_gender_cols}")
61
+
62
+ age_data = clinical_df[candidate_age_cols] if candidate_age_cols else pd.DataFrame()
63
+ gender_data = clinical_df[candidate_gender_cols] if candidate_gender_cols else pd.DataFrame()
64
+
65
+ print(preview_df(age_data))
66
+ print(preview_df(gender_data))
67
+ # Step: Select Demographic Features
68
+
69
+ # 1. Decide the best columns for age and gender based on the candidate dictionaries
70
+ age_col = "age_at_initial_pathologic_diagnosis"
71
+ gender_col = "gender"
72
+
73
+ # 2. Print out the chosen columns
74
+ print("Chosen column for age_col:", age_col)
75
+ print("Chosen column for gender_col:", gender_col)
76
+ # 1. Extract and standardize the clinical features
77
+ selected_clinical_df = tcga_select_clinical_features(
78
+ clinical_df=clinical_df,
79
+ trait=trait,
80
+ age_col=age_col,
81
+ gender_col=gender_col
82
+ )
83
+
84
+ # (Optional) Save the selected clinical data
85
+ selected_clinical_df.to_csv(out_clinical_data_file)
86
+
87
+ # 2. Normalize gene symbols in the genetic data
88
+ normalized_gene_df = normalize_gene_symbols_in_index(genetic_df)
89
+ normalized_gene_df.to_csv(out_gene_data_file)
90
+
91
+ # 3. Link the clinical and genetic data on sample IDs
92
+ linked_data = selected_clinical_df.join(normalized_gene_df.T, how="inner")
93
+
94
+ # 4. Handle missing values
95
+ cleaned_df = handle_missing_values(linked_data, trait)
96
+
97
+ # 5. Determine if the trait or demographic features are biased
98
+ is_biased, final_df = judge_and_remove_biased_features(cleaned_df, trait)
99
+
100
+ # 6. Final quality validation
101
+ is_gene_available = not normalized_gene_df.empty
102
+ is_trait_available = trait in final_df.columns
103
+ is_usable = validate_and_save_cohort_info(
104
+ is_final=True,
105
+ cohort="TCGA",
106
+ info_path=json_path,
107
+ is_gene_available=is_gene_available,
108
+ is_trait_available=is_trait_available,
109
+ is_biased=is_biased,
110
+ df=final_df,
111
+ note=""
112
+ )
113
+
114
+ # 7. If the dataset is usable, save the final dataframe
115
+ if is_usable:
116
+ final_df.to_csv(out_data_file)
p1/preprocess/Acute_Myeloid_Leukemia/cohort_info.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"GSE99612": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": false, "has_gender": false, "sample_size": 48, "note": ""}, "GSE98578": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "No trait data was found in this cohort."}, "GSE249638": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": false, "has_gender": false, "sample_size": 37, "note": "AML vs healthy controls; microarray-based expression data."}, "GSE235070": {"is_usable": false, "is_gene_available": true, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": null}, "GSE222616": {"is_usable": false, "is_gene_available": true, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": null}, "GSE222169": {"is_usable": false, "is_gene_available": true, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": null}, "GSE222124": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": false, "has_gender": false, "sample_size": 70, "note": "AML vs healthy controls; microarray-based expression data."}, "GSE161532": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "No trait data. Clinical linking skipped."}, "GSE121431": {"is_usable": false, "is_gene_available": true, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": null}, "GSE121291": {"is_usable": false, "is_gene_available": true, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "Gene expression data present, but no trait data. Cannot perform linking or trait-based QC."}, "TCGA": {"is_usable": false, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": true, "has_age": true, "has_gender": true, "sample_size": 173, "note": ""}}
p1/preprocess/Acute_Myeloid_Leukemia/gene_data/GSE121291.csv ADDED
The diff for this file is too large to render. See raw diff
 
p1/preprocess/Acute_Myeloid_Leukemia/gene_data/GSE121431.csv ADDED
The diff for this file is too large to render. See raw diff
 
p1/preprocess/Acute_Myeloid_Leukemia/gene_data/GSE161532.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae094fd44ffdb2064749e93c9c255eccc2b693de639f51192307937aa3f633a9
3
+ size 21846516
p1/preprocess/Acute_Myeloid_Leukemia/gene_data/GSE222124.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6319bb65acae88602deba7d1071159a0063a8285cba179bce5e69266084b9ad6
3
+ size 13764911
p1/preprocess/Acute_Myeloid_Leukemia/gene_data/GSE222169.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f5bf77b5f865b1a36b64d02b6b2e0229ec0aa0541e888db4ff14e1e70fb0fee2
3
+ size 13872362
p1/preprocess/Acute_Myeloid_Leukemia/gene_data/GSE249638.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:beb01a1b4d6ce6bfe33f9527b86089b96c1ac7097d853640fab00e39553857d2
3
+ size 11134286
p1/preprocess/Acute_Myeloid_Leukemia/gene_data/GSE98578.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fae270923854acd2f88d5d6400c735f3de856d961d4845b203a4b2a0caeaf12b
3
+ size 12728359
p1/preprocess/Acute_Myeloid_Leukemia/gene_data/GSE99612.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:129f90c5436b013818b7c3159de5abc8ad9769ea8258c61872a72381e06ed10e
3
+ size 11929857
p1/preprocess/Adrenocortical_Cancer/GSE75415.csv ADDED
The diff for this file is too large to render. See raw diff
 
p1/preprocess/Adrenocortical_Cancer/GSE90713.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e0c16ee650e3fb8152630597741cf4feeffde26b7480a972d0d87021efc26232
3
+ size 16454332
p1/preprocess/Adrenocortical_Cancer/clinical_data/GSE68950.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ GSM1687570,GSM1687571,GSM1687572,GSM1687573,GSM1687574,GSM1687575,GSM1687576,GSM1687577,GSM1687578,GSM1687579,GSM1687580,GSM1687581,GSM1687582,GSM1687583,GSM1687584,GSM1687585,GSM1687586,GSM1687587,GSM1687588,GSM1687589,GSM1687590,GSM1687591,GSM1687592,GSM1687593,GSM1687594,GSM1687595,GSM1687596,GSM1687597,GSM1687598,GSM1687599,GSM1687600,GSM1687601,GSM1687602,GSM1687603,GSM1687604,GSM1687605,GSM1687606,GSM1687607,GSM1687608,GSM1687609,GSM1687610,GSM1687611,GSM1687612,GSM1687613,GSM1687614,GSM1687615,GSM1687616,GSM1687617,GSM1687618,GSM1687619,GSM1687620,GSM1687621,GSM1687622,GSM1687623,GSM1687624,GSM1687625,GSM1687626,GSM1687627,GSM1687628,GSM1687629,GSM1687630,GSM1687631,GSM1687632,GSM1687633,GSM1687634,GSM1687635,GSM1687636,GSM1687637,GSM1687638,GSM1687639,GSM1687640,GSM1687641,GSM1687642,GSM1687643,GSM1687644,GSM1687645,GSM1687646,GSM1687647,GSM1687648,GSM1687649,GSM1687650,GSM1687651,GSM1687652,GSM1687653,GSM1687654,GSM1687655,GSM1687656,GSM1687657,GSM1687658,GSM1687659,GSM1687660,GSM1687661,GSM1687662,GSM1687663,GSM1687664,GSM1687665,GSM1687666,GSM1687667,GSM1687668,GSM1687669,GSM1687670,GSM1687671,GSM1687672,GSM1687673,GSM1687674,GSM1687675,GSM1687676,GSM1687677,GSM1687678,GSM1687679,GSM1687680,GSM1687681,GSM1687682,GSM1687683,GSM1687684,GSM1687685,GSM1687686,GSM1687687,GSM1687688,GSM1687689,GSM1687690,GSM1687691,GSM1687692,GSM1687693,GSM1687694,GSM1687695,GSM1687696,GSM1687697,GSM1687698,GSM1687699,GSM1687700,GSM1687701,GSM1687702,GSM1687703,GSM1687704,GSM1687705,GSM1687706,GSM1687707,GSM1687708,GSM1687709,GSM1687710,GSM1687711,GSM1687712,GSM1687713,GSM1687714,GSM1687715,GSM1687716,GSM1687717,GSM1687718,GSM1687719,GSM1687720,GSM1687721,GSM1687722,GSM1687723,GSM1687724,GSM1687725,GSM1687726,GSM1687727,GSM1687728,GSM1687729,GSM1687730,GSM1687731,GSM1687732,GSM1687733,GSM1687734,GSM1687735,GSM1687736,GSM1687737,GSM1687738,GSM1687739,GSM1687740,GSM1687741,GSM1687742,GSM1687743,GSM1687744,GSM1687745,GSM1687746,GSM1687747,GSM1687748,GSM1687749,GSM1687750,GSM1687751,GSM1687752,GSM1687753,GSM1687754,GSM1687755,GSM1687756,GSM1687757,GSM1687758,GSM1687759,GSM1687760,GSM1687761,GSM1687762,GSM1687763,GSM1687764,GSM1687765,GSM1687766,GSM1687767,GSM1687768,GSM1687769,GSM1687770,GSM1687771,GSM1687772,GSM1687773,GSM1687774,GSM1687775,GSM1687776,GSM1687777,GSM1687778,GSM1687779,GSM1687780,GSM1687781,GSM1687782,GSM1687783,GSM1687784,GSM1687785,GSM1687786,GSM1687787,GSM1687788,GSM1687789,GSM1687790,GSM1687791,GSM1687792,GSM1687793,GSM1687794,GSM1687795,GSM1687796,GSM1687797,GSM1687798,GSM1687799,GSM1687800,GSM1687801,GSM1687802,GSM1687803,GSM1687804,GSM1687805,GSM1687806,GSM1687807,GSM1687808,GSM1687809,GSM1687810,GSM1687811,GSM1687812,GSM1687813,GSM1687814,GSM1687815,GSM1687816,GSM1687817,GSM1687818,GSM1687819,GSM1687820,GSM1687821,GSM1687822,GSM1687823,GSM1687824,GSM1687825,GSM1687826,GSM1687827,GSM1687828,GSM1687829,GSM1687830,GSM1687831,GSM1687832,GSM1687833,GSM1687834,GSM1687835,GSM1687836,GSM1687837,GSM1687838,GSM1687839,GSM1687840,GSM1687841,GSM1687842,GSM1687843,GSM1687844,GSM1687845,GSM1687846,GSM1687847,GSM1687848,GSM1687849,GSM1687850,GSM1687851,GSM1687852,GSM1687853,GSM1687854,GSM1687855,GSM1687856,GSM1687857,GSM1687858,GSM1687859,GSM1687860,GSM1687861,GSM1687862,GSM1687863,GSM1687864,GSM1687865,GSM1687866,GSM1687867,GSM1687868,GSM1687869,GSM1687870,GSM1687871,GSM1687872,GSM1687873,GSM1687874,GSM1687875,GSM1687876,GSM1687877,GSM1687878,GSM1687879,GSM1687880,GSM1687881,GSM1687882,GSM1687883,GSM1687884,GSM1687885,GSM1687886,GSM1687887,GSM1687888,GSM1687889,GSM1687890,GSM1687891,GSM1687892,GSM1687893,GSM1687894,GSM1687895,GSM1687896,GSM1687897,GSM1687898,GSM1687899,GSM1687900,GSM1687901,GSM1687902,GSM1687903,GSM1687904,GSM1687905,GSM1687906,GSM1687907,GSM1687908,GSM1687909,GSM1687910,GSM1687911,GSM1687912,GSM1687913,GSM1687914,GSM1687915,GSM1687916,GSM1687917,GSM1687918,GSM1687919,GSM1687920,GSM1687921,GSM1687922,GSM1687923,GSM1687924,GSM1687925,GSM1687926,GSM1687927,GSM1687928,GSM1687929,GSM1687930,GSM1687931,GSM1687932,GSM1687933,GSM1687934,GSM1687935,GSM1687936,GSM1687937,GSM1687938,GSM1687939,GSM1687940,GSM1687941,GSM1687942,GSM1687943,GSM1687944,GSM1687945,GSM1687946,GSM1687947,GSM1687948,GSM1687949,GSM1687950,GSM1687951,GSM1687952,GSM1687953,GSM1687954,GSM1687955,GSM1687956,GSM1687957,GSM1687958,GSM1687959,GSM1687960,GSM1687961,GSM1687962,GSM1687963,GSM1687964,GSM1687965,GSM1687966,GSM1687967,GSM1687968,GSM1687969,GSM1687970,GSM1687971,GSM1687972,GSM1687973,GSM1687974,GSM1687975,GSM1687976,GSM1687977,GSM1687978,GSM1687979,GSM1687980,GSM1687981,GSM1687982,GSM1687983,GSM1687984,GSM1687985,GSM1687986,GSM1687987,GSM1687988,GSM1687989,GSM1687990,GSM1687991,GSM1687992,GSM1687993,GSM1687994,GSM1687995,GSM1687996,GSM1687997,GSM1687998,GSM1687999,GSM1688000,GSM1688001,GSM1688002,GSM1688003,GSM1688004,GSM1688005,GSM1688006,GSM1688007,GSM1688008,GSM1688009,GSM1688010,GSM1688011,GSM1688012,GSM1688013,GSM1688014,GSM1688015,GSM1688016,GSM1688017,GSM1688018,GSM1688019,GSM1688020,GSM1688021,GSM1688022,GSM1688023,GSM1688024,GSM1688025,GSM1688026,GSM1688027,GSM1688028,GSM1688029,GSM1688030,GSM1688031,GSM1688032,GSM1688033,GSM1688034,GSM1688035,GSM1688036,GSM1688037,GSM1688038,GSM1688039,GSM1688040,GSM1688041,GSM1688042,GSM1688043,GSM1688044,GSM1688045,GSM1688046,GSM1688047,GSM1688048,GSM1688049,GSM1688050,GSM1688051,GSM1688052,GSM1688053,GSM1688054,GSM1688055,GSM1688056,GSM1688057,GSM1688058,GSM1688059,GSM1688060,GSM1688061,GSM1688062,GSM1688063,GSM1688064,GSM1688065,GSM1688066,GSM1688067,GSM1688068,GSM1688069,GSM1688070,GSM1688071,GSM1688072,GSM1688073,GSM1688074,GSM1688075,GSM1688076,GSM1688077,GSM1688078,GSM1688079,GSM1688080,GSM1688081,GSM1688082,GSM1688083,GSM1688084,GSM1688085,GSM1688086,GSM1688087,GSM1688088,GSM1688089,GSM1688090,GSM1688091,GSM1688092,GSM1688093,GSM1688094,GSM1688095,GSM1688096,GSM1688097,GSM1688098,GSM1688099,GSM1688100,GSM1688101,GSM1688102,GSM1688103,GSM1688104,GSM1688105,GSM1688106,GSM1688107,GSM1688108,GSM1688109,GSM1688110,GSM1688111,GSM1688112,GSM1688113,GSM1688114,GSM1688115,GSM1688116,GSM1688117,GSM1688118,GSM1688119,GSM1688120,GSM1688121,GSM1688122,GSM1688123,GSM1688124,GSM1688125,GSM1688126,GSM1688127,GSM1688128,GSM1688129,GSM1688130,GSM1688131,GSM1688132,GSM1688133,GSM1688134,GSM1688135,GSM1688136,GSM1688137,GSM1688138,GSM1688139,GSM1688140,GSM1688141,GSM1688142,GSM1688143,GSM1688144,GSM1688145,GSM1688146,GSM1688147,GSM1688148,GSM1688149,GSM1688150,GSM1688151,GSM1688152,GSM1688153,GSM1688154,GSM1688155,GSM1688156,GSM1688157,GSM1688158,GSM1688159,GSM1688160,GSM1688161,GSM1688162,GSM1688163,GSM1688164,GSM1688165,GSM1688166,GSM1688167,GSM1688168,GSM1688169,GSM1688170,GSM1688171,GSM1688172,GSM1688173,GSM1688174,GSM1688175,GSM1688176,GSM1688177,GSM1688178,GSM1688179,GSM1688180,GSM1688181,GSM1688182,GSM1688183,GSM1688184,GSM1688185,GSM1688186,GSM1688187,GSM1688188,GSM1688189,GSM1688190,GSM1688191,GSM1688192,GSM1688193,GSM1688194,GSM1688195,GSM1688196,GSM1688197,GSM1688198,GSM1688199,GSM1688200,GSM1688201,GSM1688202,GSM1688203,GSM1688204,GSM1688205,GSM1688206,GSM1688207,GSM1688208,GSM1688209,GSM1688210,GSM1688211,GSM1688212,GSM1688213,GSM1688214,GSM1688215,GSM1688216,GSM1688217,GSM1688218,GSM1688219,GSM1688220,GSM1688221,GSM1688222,GSM1688223,GSM1688224,GSM1688225,GSM1688226,GSM1688227,GSM1688228,GSM1688229,GSM1688230,GSM1688231,GSM1688232,GSM1688233,GSM1688234,GSM1688235,GSM1688236,GSM1688237,GSM1688238,GSM1688239,GSM1688240,GSM1688241,GSM1688242,GSM1688243,GSM1688244,GSM1688245,GSM1688246,GSM1688247,GSM1688248,GSM1688249,GSM1688250,GSM1688251,GSM1688252,GSM1688253,GSM1688254,GSM1688255,GSM1688256,GSM1688257,GSM1688258,GSM1688259,GSM1688260,GSM1688261,GSM1688262,GSM1688263,GSM1688264,GSM1688265,GSM1688266,GSM1688267,GSM1688268,GSM1688269,GSM1688270,GSM1688271,GSM1688272,GSM1688273,GSM1688274,GSM1688275,GSM1688276,GSM1688277,GSM1688278,GSM1688279,GSM1688280,GSM1688281,GSM1688282,GSM1688283,GSM1688284,GSM1688285,GSM1688286,GSM1688287,GSM1688288,GSM1688289,GSM1688290,GSM1688291,GSM1688292,GSM1688293,GSM1688294,GSM1688295,GSM1688296,GSM1688297,GSM1688298,GSM1688299,GSM1688300,GSM1688301,GSM1688302,GSM1688303,GSM1688304,GSM1688305,GSM1688306,GSM1688307,GSM1688308,GSM1688309,GSM1688310,GSM1688311,GSM1688312,GSM1688313,GSM1688314,GSM1688315,GSM1688316,GSM1688317,GSM1688318,GSM1688319,GSM1688320,GSM1688321,GSM1688322,GSM1688323,GSM1688324,GSM1688325,GSM1688326,GSM1688327,GSM1688328,GSM1688329,GSM1688330,GSM1688331,GSM1688332,GSM1688333,GSM1688334,GSM1688335,GSM1688336,GSM1688337,GSM1688338,GSM1688339,GSM1688340,GSM1688341,GSM1688342,GSM1688343,GSM1688344,GSM1688345,GSM1688346,GSM1688347,GSM1688348,GSM1688349,GSM1688350,GSM1688351,GSM1688352,GSM1688353,GSM1688354,GSM1688355,GSM1688356,GSM1688357,GSM1688358,GSM1688359,GSM1688360,GSM1688361,GSM1688362,GSM1688363,GSM1688364,GSM1688365,GSM1688366,GSM1688367
2
+ 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
p1/preprocess/Adrenocortical_Cancer/clinical_data/GSE75415.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ GSM1954726,GSM1954727,GSM1954728,GSM1954729,GSM1954730,GSM1954731,GSM1954732,GSM1954733,GSM1954734,GSM1954735,GSM1954736,GSM1954737,GSM1954738,GSM1954739,GSM1954740,GSM1954741,GSM1954742,GSM1954743,GSM1954744,GSM1954745,GSM1954746,GSM1954747,GSM1954748,GSM1954749,GSM1954750,GSM1954751,GSM1954752,GSM1954753,GSM1954754,GSM1954755,GSM1954756
2
+ 0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,,0.0,0.0,0.0,0.0,0.0,0.0,0.0
3
+ 0.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,,,,,,,,
p1/preprocess/Adrenocortical_Cancer/clinical_data/GSE90713.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ GSM2411058,GSM2411059,GSM2411060,GSM2411061,GSM2411062,GSM2411063,GSM2411064,GSM2411065,GSM2411066,GSM2411067,GSM2411068,GSM2411069,GSM2411070,GSM2411071,GSM2411072,GSM2411073,GSM2411074,GSM2411075,GSM2411076,GSM2411077,GSM2411078,GSM2411079,GSM2411080,GSM2411081,GSM2411082,GSM2411083,GSM2411084,GSM2411085,GSM2411086,GSM2411087,GSM2411088,GSM2411089,GSM2411090,GSM2411091,GSM2411092,GSM2411093,GSM2411094,GSM2411095,GSM2411096,GSM2411097,GSM2411098,GSM2411099,GSM2411100,GSM2411101,GSM2411102,GSM2411103,GSM2411104,GSM2411105,GSM2411106,GSM2411107,GSM2411108,GSM2411109,GSM2411110,GSM2411111,GSM2411112,GSM2411113,GSM2411114,GSM2411115,GSM2411116,GSM2411117,GSM2411118,GSM2411119,GSM2411120
2
+ 1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
p1/preprocess/Adrenocortical_Cancer/clinical_data/TCGA.csv ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ sampleID,Adrenocortical_Cancer,Age
2
+ TCGA-OR-A5J1-01,1,58
3
+ TCGA-OR-A5J2-01,1,44
4
+ TCGA-OR-A5J3-01,1,23
5
+ TCGA-OR-A5J4-01,1,23
6
+ TCGA-OR-A5J5-01,1,30
7
+ TCGA-OR-A5J6-01,1,29
8
+ TCGA-OR-A5J7-01,1,30
9
+ TCGA-OR-A5J8-01,1,66
10
+ TCGA-OR-A5J9-01,1,22
11
+ TCGA-OR-A5JA-01,1,53
12
+ TCGA-OR-A5JB-01,1,52
13
+ TCGA-OR-A5JC-01,1,37
14
+ TCGA-OR-A5JD-01,1,57
15
+ TCGA-OR-A5JE-01,1,17
16
+ TCGA-OR-A5JF-01,1,69
17
+ TCGA-OR-A5JG-01,1,61
18
+ TCGA-OR-A5JH-01,1,32
19
+ TCGA-OR-A5JI-01,1,22
20
+ TCGA-OR-A5JJ-01,1,65
21
+ TCGA-OR-A5JK-01,1,49
22
+ TCGA-OR-A5JL-01,1,36
23
+ TCGA-OR-A5JM-01,1,25
24
+ TCGA-OR-A5JO-01,1,26
25
+ TCGA-OR-A5JP-01,1,40
26
+ TCGA-OR-A5JQ-01,1,26
27
+ TCGA-OR-A5JR-01,1,45
28
+ TCGA-OR-A5JS-01,1,65
29
+ TCGA-OR-A5JT-01,1,65
30
+ TCGA-OR-A5JU-01,1,58
31
+ TCGA-OR-A5JV-01,1,55
32
+ TCGA-OR-A5JW-01,1,47
33
+ TCGA-OR-A5JX-01,1,50
34
+ TCGA-OR-A5JY-01,1,68
35
+ TCGA-OR-A5JZ-01,1,60
36
+ TCGA-OR-A5K0-01,1,69
37
+ TCGA-OR-A5K1-01,1,48
38
+ TCGA-OR-A5K2-01,1,32
39
+ TCGA-OR-A5K3-01,1,53
40
+ TCGA-OR-A5K4-01,1,64
41
+ TCGA-OR-A5K5-01,1,59
42
+ TCGA-OR-A5K6-01,1,56
43
+ TCGA-OR-A5K8-01,1,39
44
+ TCGA-OR-A5K9-01,1,61
45
+ TCGA-OR-A5KB-01,1,61
46
+ TCGA-OR-A5KO-01,1,39
47
+ TCGA-OR-A5KP-01,1,45
48
+ TCGA-OR-A5KQ-01,1,20
49
+ TCGA-OR-A5KS-01,1,72
50
+ TCGA-OR-A5KT-01,1,44
51
+ TCGA-OR-A5KU-01,1,37
52
+ TCGA-OR-A5KV-01,1,17
53
+ TCGA-OR-A5KW-01,1,55
54
+ TCGA-OR-A5KX-01,1,25
55
+ TCGA-OR-A5KY-01,1,23
56
+ TCGA-OR-A5KZ-01,1,42
57
+ TCGA-OR-A5L1-01,1,37
58
+ TCGA-OR-A5L2-01,1,83
59
+ TCGA-OR-A5L3-01,1,67
60
+ TCGA-OR-A5L4-01,1,48
61
+ TCGA-OR-A5L5-01,1,77
62
+ TCGA-OR-A5L6-01,1,60
63
+ TCGA-OR-A5L8-01,1,36
64
+ TCGA-OR-A5L9-01,1,53
65
+ TCGA-OR-A5LA-01,1,52
66
+ TCGA-OR-A5LB-01,1,59
67
+ TCGA-OR-A5LC-01,1,71
68
+ TCGA-OR-A5LD-01,1,52
69
+ TCGA-OR-A5LE-01,1,14
70
+ TCGA-OR-A5LF-01,1,74
71
+ TCGA-OR-A5LG-01,1,46
72
+ TCGA-OR-A5LH-01,1,36
73
+ TCGA-OR-A5LI-01,1,42
74
+ TCGA-OR-A5LJ-01,1,54
75
+ TCGA-OR-A5LK-01,1,62
76
+ TCGA-OR-A5LL-01,1,75
77
+ TCGA-OR-A5LM-01,1,23
78
+ TCGA-OR-A5LN-01,1,31
79
+ TCGA-OR-A5LO-01,1,61
80
+ TCGA-OR-A5LP-01,1,37
81
+ TCGA-OR-A5LR-01,1,30
82
+ TCGA-OR-A5LS-01,1,34
83
+ TCGA-OR-A5LT-01,1,57
84
+ TCGA-OU-A5PI-01,1,53
85
+ TCGA-P6-A5OF-01,1,55
86
+ TCGA-P6-A5OG-01,1,45
87
+ TCGA-P6-A5OH-01,1,59
88
+ TCGA-PA-A5YG-01,1,51
89
+ TCGA-PK-A5H8-01,1,42
90
+ TCGA-PK-A5H9-01,1,27
91
+ TCGA-PK-A5HA-01,1,63
92
+ TCGA-PK-A5HB-01,1,63
93
+ TCGA-PK-A5HC-01,1,44
p1/preprocess/Adrenocortical_Cancer/code/GSE108088.py ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Adrenocortical_Cancer"
6
+ cohort = "GSE108088"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Adrenocortical_Cancer"
10
+ in_cohort_dir = "../DATA/GEO/Adrenocortical_Cancer/GSE108088"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Adrenocortical_Cancer/GSE108088.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Adrenocortical_Cancer/gene_data/GSE108088.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Adrenocortical_Cancer/clinical_data/GSE108088.csv"
16
+ json_path = "./output/preprocess/1/Adrenocortical_Cancer/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+
21
+ # 1. Identify the paths to the SOFT file and the matrix file
22
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
23
+
24
+ # 2. Read the matrix file to obtain background information and sample characteristics data
25
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
26
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
27
+ background_info, clinical_data = get_background_and_clinical_data(
28
+ matrix_file,
29
+ background_prefixes,
30
+ clinical_prefixes
31
+ )
32
+
33
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
34
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
35
+
36
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
37
+ print("Background Information:")
38
+ print(background_info)
39
+ print("Sample Characteristics Dictionary:")
40
+ print(sample_characteristics_dict)
41
+ import pandas as pd
42
+ import numpy as np
43
+
44
+ # 1. Determine gene expression availability
45
+ # Based on the background info "comprehensive molecular profiling," we assume it includes gene expression data.
46
+ is_gene_available = True
47
+
48
+ # 2. Identify the keys for trait, age, and gender
49
+ # After examining the sample characteristics dictionary, there's no direct or inferred "Adrenocortical_Cancer,"
50
+ # no age info, and no gender info. Hence, we set them all to None.
51
+ trait_row = None
52
+ age_row = None
53
+ gender_row = None
54
+
55
+ # 2.1 and 2.2: Data type conversion functions
56
+ def convert_trait(raw_value: str):
57
+ # This function would parse the raw_value and return 0 or 1 if the trait is binary,
58
+ # or a float if continuous. Here, we have no trait data, so it's a placeholder.
59
+ # If used, ensure to handle unknown or malformed entries by returning None.
60
+ # We split by 'colon' if needed, but since trait_row is None, we won't use it.
61
+ return None
62
+
63
+ def convert_age(raw_value: str):
64
+ # Sample placeholder function. No age data is found, so it returns None.
65
+ return None
66
+
67
+ def convert_gender(raw_value: str):
68
+ # Sample placeholder function. No gender data is found, so it returns None.
69
+ return None
70
+
71
+ # 3. Conduct initial filtering on dataset usability, saving relevant metadata
72
+ # Trait data availability is determined by whether trait_row is None.
73
+ is_trait_available = (trait_row is not None)
74
+
75
+ _ = validate_and_save_cohort_info(
76
+ is_final=False,
77
+ cohort=cohort,
78
+ info_path=json_path,
79
+ is_gene_available=is_gene_available,
80
+ is_trait_available=is_trait_available
81
+ )
82
+
83
+ # 4. Clinical feature extraction
84
+ # We only proceed if trait_row is not None.
85
+ # Since trait_row is None, we skip this substep.
86
+ # STEP3
87
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
88
+ gene_data = get_genetic_data(matrix_file)
89
+
90
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
91
+ print(gene_data.index[:20])
92
+ # Based on the given identifiers (e.g., "1007_s_at", "1053_at", etc.), these are Affymetrix probe IDs,
93
+ # not human gene symbols. Therefore, further mapping is required to convert them into gene symbols.
94
+
95
+ print("requires_gene_mapping = True")
96
+ # STEP5
97
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
98
+ gene_annotation = get_gene_annotation(soft_file)
99
+
100
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
101
+ print("Gene annotation preview:")
102
+ print(preview_df(gene_annotation))
103
+ # STEP6: Gene Identifier Mapping
104
+
105
+ # 1. Identify which columns in the annotation dataframe correspond to the probe IDs and gene symbols.
106
+ prob_col = "ID"
107
+ gene_col = "Gene Symbol"
108
+
109
+ # 2. Obtain the gene mapping dataframe.
110
+ mapping_df = get_gene_mapping(gene_annotation, prob_col, gene_col)
111
+
112
+ # 3. Convert probe-level expression data to gene-level expression data by applying the mapping.
113
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
114
+
115
+ # Let's inspect the shape and a quick preview of the mapped gene expression data.
116
+ print("Gene data shape after mapping:", gene_data.shape)
117
+ print("Gene data preview:")
118
+ print(preview_df(gene_data, n=5))
119
+ # STEP 7: Data Normalization and Linking
120
+
121
+ # In this dataset, we determined in Step 2 that trait data is not available (trait_row = None).
122
+ # Therefore, we cannot link clinical and genetic data or perform trait-based processing.
123
+ # Nonetheless, we can still normalize probe-level data to standard gene symbols and finalize validation.
124
+
125
+ # 1. Normalize gene symbols in the obtained gene expression data
126
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
127
+ normalized_gene_data.to_csv(out_gene_data_file, index=True)
128
+
129
+ # 2. Since trait data is missing, skip linking clinical and genetic data,
130
+ # skip missing-value handling and bias detection for the trait.
131
+
132
+ # 3. Conduct final validation and record info.
133
+ # Since trait data is unavailable, set is_trait_available=False,
134
+ # pass a dummy/empty DataFrame and is_biased=False (it won't be used).
135
+ dummy_df = pd.DataFrame()
136
+ is_usable = validate_and_save_cohort_info(
137
+ is_final=True,
138
+ cohort=cohort,
139
+ info_path=json_path,
140
+ is_gene_available=True,
141
+ is_trait_available=False,
142
+ is_biased=False,
143
+ df=dummy_df,
144
+ note="No trait data found; skipped clinical-linking steps."
145
+ )
146
+
147
+ # 4. If the dataset were usable, save. In this scenario, it's not usable due to missing trait data.
148
+ if is_usable:
149
+ dummy_df.to_csv(out_data_file, index=True)
p1/preprocess/Adrenocortical_Cancer/code/GSE143383.py ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Adrenocortical_Cancer"
6
+ cohort = "GSE143383"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Adrenocortical_Cancer"
10
+ in_cohort_dir = "../DATA/GEO/Adrenocortical_Cancer/GSE143383"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Adrenocortical_Cancer/GSE143383.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Adrenocortical_Cancer/gene_data/GSE143383.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Adrenocortical_Cancer/clinical_data/GSE143383.csv"
16
+ json_path = "./output/preprocess/1/Adrenocortical_Cancer/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+
21
+ # 1. Identify the paths to the SOFT file and the matrix file
22
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
23
+
24
+ # 2. Read the matrix file to obtain background information and sample characteristics data
25
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
26
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
27
+ background_info, clinical_data = get_background_and_clinical_data(
28
+ matrix_file,
29
+ background_prefixes,
30
+ clinical_prefixes
31
+ )
32
+
33
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
34
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
35
+
36
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
37
+ print("Background Information:")
38
+ print(background_info)
39
+ print("Sample Characteristics Dictionary:")
40
+ print(sample_characteristics_dict)
41
+ # 1. Gene Expression Data Availability
42
+ is_gene_available = True # Based on "gene expression analysis" and Affymetrix platform info.
43
+
44
+ # 2. Variable Availability and Data Type Conversion
45
+ # 2.1 Identify rows for trait, age, and gender
46
+ trait_row = None # No variable in the dictionary indicates a differing trait (likely constant or not listed).
47
+ age_row = None # No row found for age in the sample characteristics.
48
+ gender_row = 0 # Row 0 contains 'gender: X'.
49
+
50
+ # 2.2 Define the conversion functions
51
+ def convert_trait(x: str) -> Optional[float]:
52
+ """Not applicable here because trait_row is None. This is a placeholder."""
53
+ return None
54
+
55
+ def convert_age(x: str) -> Optional[float]:
56
+ """Not applicable here because age_row is None. This is a placeholder."""
57
+ return None
58
+
59
+ def convert_gender(x: str) -> Optional[int]:
60
+ """
61
+ Convert 'gender: X' to binary.
62
+ 'F' -> 0, 'M' -> 1, anything else -> None.
63
+ """
64
+ parts = x.split(':')
65
+ if len(parts) < 2:
66
+ return None
67
+ val = parts[1].strip().lower()
68
+ if val == 'f':
69
+ return 0
70
+ elif val == 'm':
71
+ return 1
72
+ else:
73
+ return None
74
+
75
+ # 3. Save Metadata - initial filtering
76
+ # Trait data availability depends on whether trait_row is None.
77
+ is_trait_available = (trait_row is not None)
78
+
79
+ is_usable = validate_and_save_cohort_info(
80
+ is_final=False,
81
+ cohort=cohort,
82
+ info_path=json_path,
83
+ is_gene_available=is_gene_available,
84
+ is_trait_available=is_trait_available
85
+ )
86
+
87
+ # 4. Clinical Feature Extraction
88
+ # Skip if trait_row is None.
89
+ if trait_row is not None:
90
+ # Assuming `clinical_data` is the dataframe for sample characteristics
91
+ selected_clinical_df = geo_select_clinical_features(
92
+ clinical_df=clinical_data,
93
+ trait=trait, # 'Adrenocortical_Cancer'
94
+ trait_row=trait_row,
95
+ convert_trait=convert_trait,
96
+ age_row=age_row,
97
+ convert_age=convert_age,
98
+ gender_row=gender_row,
99
+ convert_gender=convert_gender
100
+ )
101
+ # Preview and save
102
+ print("Clinical features preview:", preview_df(selected_clinical_df, n=5))
103
+ selected_clinical_df.to_csv(out_clinical_data_file)
104
+ # STEP3
105
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
106
+ gene_data = get_genetic_data(matrix_file)
107
+
108
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
109
+ print(gene_data.index[:20])
110
+ # Based on the listed identifiers (e.g., "11715100_at"), they appear to be Affymetrix probe set IDs, not human gene symbols.
111
+ # Hence, gene mapping is required.
112
+
113
+ print("requires_gene_mapping = True")
114
+ # STEP5
115
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
116
+ gene_annotation = get_gene_annotation(soft_file)
117
+
118
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
119
+ print("Gene annotation preview:")
120
+ print(preview_df(gene_annotation))
121
+ # STEP: Gene Identifier Mapping
122
+
123
+ # 1. Identify the columns in the gene_annotation dataframe that correspond to the probe IDs and gene symbols.
124
+ # From the preview, "ID" matches the probe identifiers in gene_data, and "Gene Symbol" contains the gene symbols.
125
+
126
+ # 2. Create a gene mapping dataframe using the relevant columns.
127
+ mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="Gene Symbol")
128
+
129
+ # 3. Convert probe-level measurements in gene_data to gene-level data.
130
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
131
+
132
+ # Print a quick preview of the resulting gene_data
133
+ print("Mapped gene_data preview:")
134
+ print(gene_data.head(5))
135
+ # STEP 7: Data Normalization and Linking
136
+
137
+ # In this dataset, we determined in Step 2 that trait data is not available (trait_row = None).
138
+ # Therefore, we cannot link clinical and genetic data or perform trait-based processing.
139
+ # Nonetheless, we can still normalize probe-level data to standard gene symbols and finalize validation.
140
+
141
+ # 1. Normalize gene symbols in the obtained gene expression data
142
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
143
+ normalized_gene_data.to_csv(out_gene_data_file, index=True)
144
+
145
+ # 2. Since trait data is missing, skip linking clinical and genetic data,
146
+ # skip missing-value handling and bias detection for the trait.
147
+
148
+ # 3. Conduct final validation and record info.
149
+ # Since trait data is unavailable, set is_trait_available=False,
150
+ # pass a dummy/empty DataFrame and is_biased=False (it won't be used).
151
+ dummy_df = pd.DataFrame()
152
+ is_usable = validate_and_save_cohort_info(
153
+ is_final=True,
154
+ cohort=cohort,
155
+ info_path=json_path,
156
+ is_gene_available=True,
157
+ is_trait_available=False,
158
+ is_biased=False,
159
+ df=dummy_df,
160
+ note="No trait data found; skipped clinical-linking steps."
161
+ )
162
+
163
+ # 4. If the dataset were usable, save. In this scenario, it's not usable due to missing trait data.
164
+ if is_usable:
165
+ dummy_df.to_csv(out_data_file, index=True)
p1/preprocess/Adrenocortical_Cancer/code/GSE19776.py ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Adrenocortical_Cancer"
6
+ cohort = "GSE19776"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Adrenocortical_Cancer"
10
+ in_cohort_dir = "../DATA/GEO/Adrenocortical_Cancer/GSE19776"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Adrenocortical_Cancer/GSE19776.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Adrenocortical_Cancer/gene_data/GSE19776.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Adrenocortical_Cancer/clinical_data/GSE19776.csv"
16
+ json_path = "./output/preprocess/1/Adrenocortical_Cancer/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+
21
+ # 1. Identify the paths to the SOFT file and the matrix file
22
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
23
+
24
+ # 2. Read the matrix file to obtain background information and sample characteristics data
25
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
26
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
27
+ background_info, clinical_data = get_background_and_clinical_data(
28
+ matrix_file,
29
+ background_prefixes,
30
+ clinical_prefixes
31
+ )
32
+
33
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
34
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
35
+
36
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
37
+ print("Background Information:")
38
+ print(background_info)
39
+ print("Sample Characteristics Dictionary:")
40
+ print(sample_characteristics_dict)
41
+ # Step 1: Decide if the dataset contains gene expression data
42
+ # Based on the series title "Adrenocortical Carcinoma Gene Expression Profiling",
43
+ # we conclude that it is likely to contain gene expression data.
44
+ is_gene_available = True
45
+
46
+ # Step 2: Variable Availability and Data Type Conversion
47
+
48
+ # 2.1 Identify Rows
49
+ # - trait: We see only "tissue: adrenocortical carcinoma" under key 0. This is a single unique value,
50
+ # which is uninformative for association. Hence treat it as not available for the trait.
51
+ trait_row = None
52
+
53
+ # - age: Found under key 5 (multiple distinct values, some are "age: Unknown").
54
+ age_row = 5
55
+
56
+ # - gender: Found under key 4 (M/F). Multiple values, not constant.
57
+ gender_row = 4
58
+
59
+ # 2.2 Define Conversion Functions
60
+ def convert_trait(x: str) -> int:
61
+ """
62
+ Returns None because trait is not available (single unique value in dataset).
63
+ This function is a placeholder to adhere to the required interface.
64
+ """
65
+ return None
66
+
67
+ def convert_age(x: str) -> float:
68
+ """
69
+ Convert the substring after 'age:' to float if possible.
70
+ If it's 'Unknown' or non-parsable, return None.
71
+ """
72
+ val = x.split(':')[-1].strip()
73
+ if val.lower() == "unknown":
74
+ return None
75
+ try:
76
+ return float(val)
77
+ except ValueError:
78
+ return None
79
+
80
+ def convert_gender(x: str) -> int:
81
+ """
82
+ Convert 'gender: F' -> 0, 'gender: M' -> 1.
83
+ If the value is unknown or doesn't match, return None.
84
+ """
85
+ val = x.split(':')[-1].strip().upper()
86
+ if val == 'F':
87
+ return 0
88
+ elif val == 'M':
89
+ return 1
90
+ return None
91
+
92
+ # Step 3: Save initial filtering metadata
93
+ # Trait data is not available if trait_row is None
94
+ is_trait_available = (trait_row is not None)
95
+
96
+ is_usable = validate_and_save_cohort_info(
97
+ is_final=False,
98
+ cohort=cohort,
99
+ info_path=json_path,
100
+ is_gene_available=is_gene_available,
101
+ is_trait_available=is_trait_available
102
+ )
103
+
104
+ # Step 4: Extract clinical features only if trait_row is not None
105
+ # Since trait_row = None, we skip clinical feature extraction.
106
+ # STEP3
107
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
108
+ gene_data = get_genetic_data(matrix_file)
109
+
110
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
111
+ print(gene_data.index[:20])
112
+ # The provided gene identifiers are all numeric, which are not standard human gene symbols.
113
+ # They likely refer to probe IDs or some other numeric format.
114
+ # Therefore, gene mapping to human gene symbols is required.
115
+
116
+ requires_gene_mapping = True
117
+ # STEP5
118
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
119
+ gene_annotation = get_gene_annotation(soft_file)
120
+
121
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
122
+ print("Gene annotation preview:")
123
+ print(preview_df(gene_annotation))
124
+ # STEP6: Gene Identifier Mapping
125
+
126
+ # Reviewer feedback indicates a mismatch between the numeric row IDs in the gene expression dataframe
127
+ # (e.g., "3", "4", "5") and the probe IDs in the annotation file (e.g., "1007_s_at", "1053_at").
128
+ # Because there is no overlap, a direct mapping is not possible with the provided annotation.
129
+ # We'll demonstrate a fallback approach: we attempt to match, but if no overlap is found, we skip mapping.
130
+
131
+ # 1. Decide which columns in the annotation *would* store the probe IDs and gene symbols if they matched.
132
+ probe_col = "ID"
133
+ gene_col = "Gene Symbol"
134
+
135
+ # 2. Extract the potential mapping dataframe.
136
+ mapping_df = get_gene_mapping(gene_annotation, prob_col=probe_col, gene_col=gene_col)
137
+
138
+ # 3. Check for any intersection in identifiers before applying the mapping.
139
+ common_ids = set(gene_data.index).intersection(mapping_df['ID'])
140
+ if len(common_ids) == 0:
141
+ print("No matching identifiers found between gene expression data and annotation. Skipping gene mapping.")
142
+ else:
143
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
144
+ print("Gene mapping applied successfully.")
145
+ # STEP 7: Data Normalization and Linking
146
+
147
+ # In this dataset, we determined in Step 2 that trait data is not available (trait_row = None).
148
+ # Therefore, we cannot link clinical and genetic data or perform trait-based processing.
149
+ # Nonetheless, we can still normalize probe-level data to standard gene symbols and finalize validation.
150
+
151
+ # 1. Normalize gene symbols in the obtained gene expression data
152
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
153
+ normalized_gene_data.to_csv(out_gene_data_file, index=True)
154
+
155
+ # 2. Since trait data is missing, skip linking clinical and genetic data,
156
+ # skip missing-value handling and bias detection for the trait.
157
+
158
+ # 3. Conduct final validation and record info.
159
+ # Since trait data is unavailable, set is_trait_available=False,
160
+ # pass a dummy/empty DataFrame and is_biased=False (it won't be used).
161
+ dummy_df = pd.DataFrame()
162
+ is_usable = validate_and_save_cohort_info(
163
+ is_final=True,
164
+ cohort=cohort,
165
+ info_path=json_path,
166
+ is_gene_available=True,
167
+ is_trait_available=False,
168
+ is_biased=False,
169
+ df=dummy_df,
170
+ note="No trait data found; skipped clinical-linking steps."
171
+ )
172
+
173
+ # 4. If the dataset were usable, save. In this scenario, it's not usable due to missing trait data.
174
+ if is_usable:
175
+ dummy_df.to_csv(out_data_file, index=True)
p1/preprocess/Adrenocortical_Cancer/code/GSE49278.py ADDED
@@ -0,0 +1,152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Adrenocortical_Cancer"
6
+ cohort = "GSE49278"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Adrenocortical_Cancer"
10
+ in_cohort_dir = "../DATA/GEO/Adrenocortical_Cancer/GSE49278"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Adrenocortical_Cancer/GSE49278.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Adrenocortical_Cancer/gene_data/GSE49278.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Adrenocortical_Cancer/clinical_data/GSE49278.csv"
16
+ json_path = "./output/preprocess/1/Adrenocortical_Cancer/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+
21
+ # 1. Identify the paths to the SOFT file and the matrix file
22
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
23
+
24
+ # 2. Read the matrix file to obtain background information and sample characteristics data
25
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
26
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
27
+ background_info, clinical_data = get_background_and_clinical_data(
28
+ matrix_file,
29
+ background_prefixes,
30
+ clinical_prefixes
31
+ )
32
+
33
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
34
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
35
+
36
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
37
+ print("Background Information:")
38
+ print(background_info)
39
+ print("Sample Characteristics Dictionary:")
40
+ print(sample_characteristics_dict)
41
+ # 1. Gene Expression Data Availability
42
+ is_gene_available = True # Based on the background info: "Expression profiling by array ..."
43
+
44
+ # 2. Variable Availability and Data Type Conversion
45
+ # Observing the sample characteristics, key=2 has only one unique value (Adrenocortical carcinoma),
46
+ # so that is constant and not useful for association analyses, thus trait_row = None.
47
+ trait_row = None
48
+
49
+ # key=0 shows multiple age values => available
50
+ age_row = 0
51
+
52
+ # key=1 shows two gender values => available
53
+ gender_row = 1
54
+
55
+ # Define conversion functions
56
+ def convert_trait(value: str):
57
+ # Since trait data is effectively not available (constant),
58
+ # this function returns None
59
+ return None
60
+
61
+ def convert_age(value: str):
62
+ # Typical format: "age (years): 70"
63
+ # Convert the part after the colon to a numeric type
64
+ try:
65
+ val_str = value.split(':', 1)[1].strip()
66
+ return float(val_str)
67
+ except:
68
+ return None
69
+
70
+ def convert_gender(value: str):
71
+ # Typical format: "gender: F" or "gender: M"
72
+ # Convert F -> 0, M -> 1
73
+ try:
74
+ val_str = value.split(':', 1)[1].strip().upper()
75
+ if val_str == 'F':
76
+ return 0
77
+ elif val_str == 'M':
78
+ return 1
79
+ else:
80
+ return None
81
+ except:
82
+ return None
83
+
84
+ # 3. Save Metadata (initial filtering)
85
+ is_trait_available = (trait_row is not None)
86
+ _ = validate_and_save_cohort_info(
87
+ is_final=False,
88
+ cohort=cohort,
89
+ info_path=json_path,
90
+ is_gene_available=is_gene_available,
91
+ is_trait_available=is_trait_available
92
+ )
93
+
94
+ # 4. Clinical Feature Extraction
95
+ # Skip this step because trait_row is None (no trait data available).
96
+ # STEP3
97
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
98
+ gene_data = get_genetic_data(matrix_file)
99
+
100
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
101
+ print(gene_data.index[:20])
102
+ print("requires_gene_mapping = True")
103
+ # STEP5
104
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
105
+ gene_annotation = get_gene_annotation(soft_file)
106
+
107
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
108
+ print("Gene annotation preview:")
109
+ print(preview_df(gene_annotation))
110
+ # STEP6: Gene Identifier Mapping
111
+
112
+ # After reviewing the annotation DataFrame columns:
113
+ # ['ID', 'RANGE_STRAND', 'RANGE_START', 'RANGE_END', 'total_probes', 'GB_ACC', 'SPOT_ID', 'RANGE_GB']
114
+ # we see that 'GB_ACC' usually contains "NR_" transcripts and 'SPOT_ID' has genomic coordinates. Neither appear to provide
115
+ # valid gene symbols recognizable by extract_human_gene_symbols (which filters out NR_, XR_, LOC, etc.).
116
+ # Therefore, mapping to standard gene symbols is not possible here.
117
+ # We'll retain the original probe-level data without attempting gene-level aggregation.
118
+
119
+ print("No suitable gene symbol column found. Proceeding with probe-level data only.")
120
+ # The 'gene_data' DataFrame remains as probe-level data.
121
+ # No further action is required for mapping in this dataset.
122
+ # STEP 7: Data Normalization and Linking
123
+
124
+ # In this dataset, we determined in Step 2 that trait data is not available (trait_row = None).
125
+ # Therefore, we cannot link clinical and genetic data or perform trait-based processing.
126
+ # Nonetheless, we can still normalize probe-level data to standard gene symbols and finalize validation.
127
+
128
+ # 1. Normalize gene symbols in the obtained gene expression data
129
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
130
+ normalized_gene_data.to_csv(out_gene_data_file, index=True)
131
+
132
+ # 2. Since trait data is missing, skip linking clinical and genetic data,
133
+ # skip missing-value handling and bias detection for the trait.
134
+
135
+ # 3. Conduct final validation and record info.
136
+ # Since trait data is unavailable, set is_trait_available=False,
137
+ # pass a dummy/empty DataFrame and is_biased=False (it won't be used).
138
+ dummy_df = pd.DataFrame()
139
+ is_usable = validate_and_save_cohort_info(
140
+ is_final=True,
141
+ cohort=cohort,
142
+ info_path=json_path,
143
+ is_gene_available=True,
144
+ is_trait_available=False,
145
+ is_biased=False,
146
+ df=dummy_df,
147
+ note="No trait data found; skipped clinical-linking steps."
148
+ )
149
+
150
+ # 4. If the dataset were usable, save. In this scenario, it's not usable due to missing trait data.
151
+ if is_usable:
152
+ dummy_df.to_csv(out_data_file, index=True)
p1/preprocess/Adrenocortical_Cancer/code/GSE67766.py ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Adrenocortical_Cancer"
6
+ cohort = "GSE67766"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Adrenocortical_Cancer"
10
+ in_cohort_dir = "../DATA/GEO/Adrenocortical_Cancer/GSE67766"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Adrenocortical_Cancer/GSE67766.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Adrenocortical_Cancer/gene_data/GSE67766.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Adrenocortical_Cancer/clinical_data/GSE67766.csv"
16
+ json_path = "./output/preprocess/1/Adrenocortical_Cancer/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+
21
+ # 1. Identify the paths to the SOFT file and the matrix file
22
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
23
+
24
+ # 2. Read the matrix file to obtain background information and sample characteristics data
25
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
26
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
27
+ background_info, clinical_data = get_background_and_clinical_data(
28
+ matrix_file,
29
+ background_prefixes,
30
+ clinical_prefixes
31
+ )
32
+
33
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
34
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
35
+
36
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
37
+ print("Background Information:")
38
+ print(background_info)
39
+ print("Sample Characteristics Dictionary:")
40
+ print(sample_characteristics_dict)
41
+ # 1. Determine if gene expression data is available
42
+ is_gene_available = True # Based on background context, we assume gene expression data is present
43
+
44
+ # 2. Determine availability for trait, age, and gender from the sample characteristics dictionary
45
+ # Given the dictionary: {0: ['cell line: SW-13']}, there is no variation or explicit mention
46
+ # of trait, age, or gender. Hence, they are all considered unavailable.
47
+ trait_row = None
48
+ age_row = None
49
+ gender_row = None
50
+
51
+ # 2.2 Define data type conversion functions
52
+ def convert_trait(x: str):
53
+ # No trait data available. Return None for any input.
54
+ return None
55
+
56
+ def convert_age(x: str):
57
+ # No age data available. Return None for any input.
58
+ return None
59
+
60
+ def convert_gender(x: str):
61
+ # No gender data available. Return None for any input.
62
+ return None
63
+
64
+ # 3. Save Metadata (initial filtering)
65
+ # 'is_trait_available' is False because 'trait_row' is None
66
+ is_trait_available = (trait_row is not None)
67
+
68
+ is_usable = validate_and_save_cohort_info(
69
+ is_final=False,
70
+ cohort=cohort,
71
+ info_path=json_path,
72
+ is_gene_available=is_gene_available,
73
+ is_trait_available=is_trait_available
74
+ )
75
+
76
+ # 4. Clinical Feature Extraction
77
+ # Since 'trait_row' is None, we skip this step (no clinical data to extract).
78
+ # STEP3
79
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
80
+ gene_data = get_genetic_data(matrix_file)
81
+
82
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
83
+ print(gene_data.index[:20])
84
+ # These gene identifiers ('ILMN_...') are Illumina probe IDs rather than standard human gene symbols.
85
+ # Hence, gene mapping to official symbols is required.
86
+ print("requires_gene_mapping = True")
87
+ # STEP5
88
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
89
+ gene_annotation = get_gene_annotation(soft_file)
90
+
91
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
92
+ print("Gene annotation preview:")
93
+ print(preview_df(gene_annotation))
94
+ # STEP: Gene Identifier Mapping
95
+
96
+ # 1) Identify the columns for gene identifier and gene symbol based on the annotation preview.
97
+ probe_col = "ID"
98
+ symbol_col = "Symbol"
99
+
100
+ # 2) Build the gene mapping dataframe from the annotation dataframe.
101
+ mapping_df = get_gene_mapping(gene_annotation, probe_col, symbol_col)
102
+
103
+ # 3) Apply the mapping to convert probe-level expression to gene-level expression.
104
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
105
+ # STEP 7: Data Normalization and Linking
106
+
107
+ # 1. Normalize gene symbols in the obtained gene expression data
108
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
109
+ normalized_gene_data.to_csv(out_gene_data_file, index=True)
110
+
111
+ # Since trait data is unavailable (trait_row = None), we cannot link or analyze trait/demographic features.
112
+ # We must finalize this dataset as unusable for downstream analysis.
113
+
114
+ # Provide a dummy dataframe and a boolean for is_biased to satisfy the library requirements.
115
+ import pandas as pd
116
+ empty_df = pd.DataFrame()
117
+
118
+ # 5. Perform final quality validation and save cohort info.
119
+ # We set is_biased=False to fulfill the function parameters; it will still result in is_usable=False
120
+ # because is_trait_available=False.
121
+ is_usable = validate_and_save_cohort_info(
122
+ is_final=True,
123
+ cohort=cohort,
124
+ info_path=json_path,
125
+ is_gene_available=True,
126
+ is_trait_available=False,
127
+ is_biased=False,
128
+ df=empty_df,
129
+ note="No trait data available for this cohort."
130
+ )
131
+
132
+ # 6. Since no trait data is available, is_usable must be False, so we skip saving the final linked data.
p1/preprocess/Adrenocortical_Cancer/code/GSE68606.py ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Adrenocortical_Cancer"
6
+ cohort = "GSE68606"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Adrenocortical_Cancer"
10
+ in_cohort_dir = "../DATA/GEO/Adrenocortical_Cancer/GSE68606"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Adrenocortical_Cancer/GSE68606.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Adrenocortical_Cancer/gene_data/GSE68606.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Adrenocortical_Cancer/clinical_data/GSE68606.csv"
16
+ json_path = "./output/preprocess/1/Adrenocortical_Cancer/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+
21
+ # 1. Identify the paths to the SOFT file and the matrix file
22
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
23
+
24
+ # 2. Read the matrix file to obtain background information and sample characteristics data
25
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
26
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
27
+ background_info, clinical_data = get_background_and_clinical_data(
28
+ matrix_file,
29
+ background_prefixes,
30
+ clinical_prefixes
31
+ )
32
+
33
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
34
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
35
+
36
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
37
+ print("Background Information:")
38
+ print(background_info)
39
+ print("Sample Characteristics Dictionary:")
40
+ print(sample_characteristics_dict)
41
+ # 1) Gene Expression Data Availability
42
+ # Based on the "Assay Type: Gene Expression" and "Affymetrix Human Genome U133A arrays" in the metadata,
43
+ # we conclude that this dataset likely contains gene expression data.
44
+ is_gene_available = True
45
+
46
+ # 2) Variable Availability and Data Type Conversion
47
+
48
+ # 2.1 Identify availability of 'trait', 'age', and 'gender' by looking at the Sample Characteristics Dictionary
49
+ # We did not find "Adrenocortical_Cancer" or an equivalent entry in any row,
50
+ # so trait data is considered not available.
51
+ trait_row = None
52
+
53
+ # Age data is present in row 6 with multiple unique numeric values.
54
+ age_row = 6
55
+
56
+ # Gender data is present in row 5 (female/male).
57
+ gender_row = 5
58
+
59
+ # 2.2 Define conversion functions for each variable
60
+
61
+ def convert_trait(x: str):
62
+ # Trait data is not available in this dataset, return None for all inputs.
63
+ return None
64
+
65
+ def convert_age(x: str):
66
+ # Extract the substring after the colon and strip whitespace
67
+ val = x.split(":", 1)[-1].strip()
68
+ # Convert to integer if possible, otherwise None
69
+ return int(val) if val.isdigit() else None
70
+
71
+ def convert_gender(x: str):
72
+ # Extract the substring after the colon and strip whitespace
73
+ val = x.split(":", 1)[-1].strip().lower()
74
+ if val == "female":
75
+ return 0
76
+ elif val == "male":
77
+ return 1
78
+ else:
79
+ return None
80
+
81
+ # 3) Save Metadata (Initial Filtering)
82
+
83
+ is_trait_available = (trait_row is not None) # False in this case
84
+ validate_and_save_cohort_info(
85
+ is_final=False,
86
+ cohort=cohort,
87
+ info_path=json_path,
88
+ is_gene_available=is_gene_available,
89
+ is_trait_available=is_trait_available
90
+ )
91
+
92
+ # 4) Clinical Feature Extraction
93
+ # Skip this step because trait_row is None (no trait data available).
94
+ # STEP3
95
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
96
+ gene_data = get_genetic_data(matrix_file)
97
+
98
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
99
+ print(gene_data.index[:20])
100
+ # These identifiers (e.g., '1007_s_at', '1053_at') are Affymetrix probe set IDs, not human gene symbols.
101
+ # Therefore, they require mapping to gene symbols.
102
+ print("requires_gene_mapping = True")
103
+ # STEP5
104
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
105
+ gene_annotation = get_gene_annotation(soft_file)
106
+
107
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
108
+ print("Gene annotation preview:")
109
+ print(preview_df(gene_annotation))
110
+ # STEP: Gene Identifier Mapping
111
+
112
+ # 1) The key for the probe identifiers in the gene annotation is "ID",
113
+ # and the key for the gene symbols is "Gene Symbol".
114
+
115
+ # 2) Build a gene mapping dataframe using those two columns.
116
+ gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')
117
+
118
+ # 3) Apply the mapping to convert probe-level measurements to gene expression data.
119
+ gene_data = apply_gene_mapping(gene_data, gene_mapping)
120
+ # STEP 7: Data Normalization and Linking
121
+
122
+ # Even though we lack trait data, it's still valuable to finalize gene-level data.
123
+ # 1. Normalize gene symbols and save the normalized gene data
124
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
125
+ normalized_gene_data.to_csv(out_gene_data_file, index=True)
126
+
127
+ # Since trait_row = None, there's no trait data to link or analyze.
128
+ # We cannot produce a linked dataset or evaluate trait bias in a meaningful way.
129
+ # However, the task instructions request a "final" validation.
130
+
131
+ import pandas as pd
132
+
133
+ # Provide a dummy DataFrame and set is_biased to False
134
+ # so that validate_and_save_cohort_info can finalize and mark this dataset as unusable for trait analysis.
135
+ empty_df = pd.DataFrame()
136
+ is_biased = False
137
+
138
+ is_usable = validate_and_save_cohort_info(
139
+ is_final=True,
140
+ cohort=cohort,
141
+ info_path=json_path,
142
+ is_gene_available=True, # We do have gene data
143
+ is_trait_available=False, # But no trait data
144
+ is_biased=is_biased, # Arbitrarily set to False since no trait is present
145
+ df=empty_df, # An empty DataFrame to satisfy the function's requirements
146
+ note="No trait data available, so no final linked dataset can be produced."
147
+ )
148
+
149
+ # 6. Because the dataset is not usable for trait-based analysis, we do not save a final linked dataset.
p1/preprocess/Adrenocortical_Cancer/code/GSE68950.py ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Adrenocortical_Cancer"
6
+ cohort = "GSE68950"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Adrenocortical_Cancer"
10
+ in_cohort_dir = "../DATA/GEO/Adrenocortical_Cancer/GSE68950"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Adrenocortical_Cancer/GSE68950.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Adrenocortical_Cancer/gene_data/GSE68950.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Adrenocortical_Cancer/clinical_data/GSE68950.csv"
16
+ json_path = "./output/preprocess/1/Adrenocortical_Cancer/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+
21
+ # 1. Identify the paths to the SOFT file and the matrix file
22
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
23
+
24
+ # 2. Read the matrix file to obtain background information and sample characteristics data
25
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
26
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
27
+ background_info, clinical_data = get_background_and_clinical_data(
28
+ matrix_file,
29
+ background_prefixes,
30
+ clinical_prefixes
31
+ )
32
+
33
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
34
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
35
+
36
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
37
+ print("Background Information:")
38
+ print(background_info)
39
+ print("Sample Characteristics Dictionary:")
40
+ print(sample_characteristics_dict)
41
+ # 1. Gene Expression Data Availability
42
+ is_gene_available = True # "Assay Type: Gene Expression" indicates gene expression data.
43
+
44
+ # 2.1 Variable Availability
45
+ # The term "adrenal cortical carcinoma" is present in the "disease state" field (row 1),
46
+ # matching our trait "Adrenocortical_Cancer." Hence, trait_row = 1.
47
+ trait_row = 1
48
+ age_row = None
49
+ gender_row = None
50
+
51
+ # 2.2 Data Type Conversions
52
+ def convert_trait(value: str):
53
+ """
54
+ Convert 'disease state' to a binary trait:
55
+ 1 for 'adrenal cortical carcinoma',
56
+ 0 for anything else.
57
+ """
58
+ label = value.split(":", 1)[-1].strip().lower()
59
+ if "adrenal cortical carcinoma" in label:
60
+ return 1
61
+ else:
62
+ return 0
63
+
64
+ def convert_age(value: str):
65
+ return None # Age data not available
66
+
67
+ def convert_gender(value: str):
68
+ return None # Gender data not available
69
+
70
+ # 3. Save Metadata with initial filtering
71
+ is_trait_available = (trait_row is not None)
72
+ validate_and_save_cohort_info(
73
+ is_final=False,
74
+ cohort=cohort,
75
+ info_path=json_path,
76
+ is_gene_available=is_gene_available,
77
+ is_trait_available=is_trait_available
78
+ )
79
+
80
+ # 4. Clinical Feature Extraction (only if trait_row is not None)
81
+ if trait_row is not None:
82
+ selected_clinical_df = geo_select_clinical_features(
83
+ clinical_data,
84
+ trait=trait, # "Adrenocortical_Cancer"
85
+ trait_row=trait_row,
86
+ convert_trait=convert_trait,
87
+ age_row=age_row,
88
+ convert_age=convert_age,
89
+ gender_row=gender_row,
90
+ convert_gender=convert_gender
91
+ )
92
+ # Preview the selected clinical features
93
+ print(preview_df(selected_clinical_df))
94
+ # Save the extracted clinical data
95
+ selected_clinical_df.to_csv(out_clinical_data_file, index=False)
96
+ # STEP3
97
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
98
+ gene_data = get_genetic_data(matrix_file)
99
+
100
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
101
+ print(gene_data.index[:20])
102
+ # The gene identifiers shown (e.g., "1007_s_at", "1053_at") are Affymetrix probe set IDs
103
+ # rather than standard human gene symbols, so they require mapping.
104
+ requires_gene_mapping = True
105
+ # STEP5
106
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
107
+ gene_annotation = get_gene_annotation(soft_file)
108
+
109
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
110
+ print("Gene annotation preview:")
111
+ print(preview_df(gene_annotation))
112
+ # STEP: Gene Identifier Mapping
113
+
114
+ # 1. Identify the columns for gene identifier and gene symbol in the annotation dataframe
115
+ probe_col = "ID"
116
+ symbol_col = "Gene Symbol"
117
+
118
+ # 2. Get the mapping dataframe
119
+ mapping_df = get_gene_mapping(gene_annotation, prob_col=probe_col, gene_col=symbol_col)
120
+
121
+ # 3. Map probe-level expression to gene-level expression
122
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
123
+ # STEP 7: Data Normalization and Linking
124
+
125
+ # 1. Normalize gene symbols and save the normalized gene data
126
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
127
+ normalized_gene_data.to_csv(out_gene_data_file, index=True)
128
+
129
+ # 2. Link clinical and genetic data on sample IDs
130
+ # "selected_clinical_df" was defined in a previous step, so we can use it directly.
131
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
132
+
133
+ # 3. Handle missing values systematically
134
+ processed_data = handle_missing_values(linked_data, trait)
135
+
136
+ # 4. Determine whether the trait or demographic features are severely biased
137
+ trait_biased, processed_data = judge_and_remove_biased_features(processed_data, trait)
138
+
139
+ # 5. Final quality validation and save cohort info
140
+ is_usable = validate_and_save_cohort_info(
141
+ is_final=True,
142
+ cohort=cohort,
143
+ info_path=json_path,
144
+ is_gene_available=True,
145
+ is_trait_available=True,
146
+ is_biased=trait_biased,
147
+ df=processed_data,
148
+ note="Trait data present and mapped from step 2."
149
+ )
150
+
151
+ # 6. Save the final linked data only if usable
152
+ if is_usable:
153
+ processed_data.to_csv(out_data_file, index=True)
p1/preprocess/Adrenocortical_Cancer/code/GSE75415.py ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Adrenocortical_Cancer"
6
+ cohort = "GSE75415"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Adrenocortical_Cancer"
10
+ in_cohort_dir = "../DATA/GEO/Adrenocortical_Cancer/GSE75415"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Adrenocortical_Cancer/GSE75415.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Adrenocortical_Cancer/gene_data/GSE75415.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Adrenocortical_Cancer/clinical_data/GSE75415.csv"
16
+ json_path = "./output/preprocess/1/Adrenocortical_Cancer/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+
21
+ # 1. Identify the paths to the SOFT file and the matrix file
22
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
23
+
24
+ # 2. Read the matrix file to obtain background information and sample characteristics data
25
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
26
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
27
+ background_info, clinical_data = get_background_and_clinical_data(
28
+ matrix_file,
29
+ background_prefixes,
30
+ clinical_prefixes
31
+ )
32
+
33
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
34
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
35
+
36
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
37
+ print("Background Information:")
38
+ print(background_info)
39
+ print("Sample Characteristics Dictionary:")
40
+ print(sample_characteristics_dict)
41
+ # 1. Determine if gene expression data is available
42
+ is_gene_available = True # Based on the series title/summary indicating gene expression microarray data.
43
+
44
+ # 2. Identify rows and define conversion functions for trait, age, and gender.
45
+ trait_row = 1 # "histologic type: ..." key
46
+ age_row = None # No age info found
47
+ gender_row = 0 # "gender: ..." key
48
+
49
+ def convert_trait(value: str):
50
+ """
51
+ Convert histologic type to a binary variable:
52
+ 1 => adrenocortical carcinoma
53
+ 0 => adenoma or normal
54
+ None => unknown
55
+ """
56
+ parts = value.split(':', 1)
57
+ if len(parts) == 2:
58
+ val = parts[1].strip().lower()
59
+ if 'carcinoma' in val:
60
+ return 1
61
+ elif 'adenoma' in val or 'normal' in val:
62
+ return 0
63
+ elif 'unknown' in val:
64
+ return None
65
+ return None
66
+
67
+ def convert_age(value: str):
68
+ """
69
+ Age data is not available, so return None.
70
+ """
71
+ return None
72
+
73
+ def convert_gender(value: str):
74
+ """
75
+ Convert gender to binary:
76
+ 0 => female
77
+ 1 => male
78
+ None => unknown
79
+ """
80
+ parts = value.split(':', 1)
81
+ if len(parts) == 2:
82
+ val = parts[1].strip().lower()
83
+ if val == 'female':
84
+ return 0
85
+ elif val == 'male':
86
+ return 1
87
+ return None
88
+
89
+ # 3. Conduct initial filtering and save metadata
90
+ is_trait_available = (trait_row is not None)
91
+ validate_and_save_cohort_info(
92
+ is_final=False,
93
+ cohort=cohort,
94
+ info_path=json_path,
95
+ is_gene_available=is_gene_available,
96
+ is_trait_available=is_trait_available
97
+ )
98
+
99
+ # 4. Extract clinical features if trait data is available
100
+ if trait_row is not None:
101
+ selected_clinical_df = geo_select_clinical_features(
102
+ clinical_data, # Assuming clinical_data is the DataFrame with sample characteristics
103
+ trait=trait,
104
+ trait_row=trait_row,
105
+ convert_trait=convert_trait,
106
+ age_row=age_row,
107
+ convert_age=convert_age,
108
+ gender_row=gender_row,
109
+ convert_gender=convert_gender
110
+ )
111
+ # Preview and save
112
+ previewed = preview_df(selected_clinical_df)
113
+ print("Selected Clinical Features Preview:", previewed)
114
+ selected_clinical_df.to_csv(out_clinical_data_file, index=False)
115
+ # STEP3
116
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
117
+ gene_data = get_genetic_data(matrix_file)
118
+
119
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
120
+ print(gene_data.index[:20])
121
+ # Observing the provided list of identifiers (e.g., "1007_s_at", "1053_at"), they are Affymetrix probe set IDs.
122
+ # These are not standard human gene symbols; hence they do require mapping.
123
+ print("requires_gene_mapping = True")
124
+ # STEP5
125
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
126
+ gene_annotation = get_gene_annotation(soft_file)
127
+
128
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
129
+ print("Gene annotation preview:")
130
+ print(preview_df(gene_annotation))
131
+ # STEP: Gene Identifier Mapping
132
+
133
+ # 1. Based on the annotation preview, the column "ID" in 'gene_annotation' matches the probe identifiers
134
+ # in the gene expression data (also labeled "ID"). The column "Gene Symbol" contains the actual gene symbols.
135
+ # 2. Extract the two columns from the gene annotation dataframe, "ID" (probe ID) and "Gene Symbol" (gene symbol),
136
+ # to create the mapping dataframe.
137
+ mapping_df = get_gene_mapping(gene_annotation, "ID", "Gene Symbol")
138
+
139
+ # 3. Convert probe-level measurements to gene-level expression data using the mapping.
140
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
141
+
142
+ # (Optional) Print the resulting dataframe shape and some rows to verify.
143
+ print("Gene expression data shape after mapping:", gene_data.shape)
144
+ print(gene_data.head())
145
+ # STEP 7: Data Normalization and Linking
146
+
147
+ # 1. Normalize gene symbols and save the normalized gene data
148
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
149
+ normalized_gene_data.to_csv(out_gene_data_file, index=True)
150
+
151
+ # 2. Link clinical and genetic data on sample IDs
152
+ # "selected_clinical_df" was defined in a previous step, so we can use it directly.
153
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
154
+
155
+ # 3. Handle missing values systematically
156
+ processed_data = handle_missing_values(linked_data, trait)
157
+
158
+ # 4. Determine whether the trait or demographic features are severely biased
159
+ trait_biased, processed_data = judge_and_remove_biased_features(processed_data, trait)
160
+
161
+ # 5. Final quality validation and save cohort info
162
+ is_usable = validate_and_save_cohort_info(
163
+ is_final=True,
164
+ cohort=cohort,
165
+ info_path=json_path,
166
+ is_gene_available=True,
167
+ is_trait_available=True,
168
+ is_biased=trait_biased,
169
+ df=processed_data,
170
+ note="Trait data present and mapped from step 2."
171
+ )
172
+
173
+ # 6. Save the final linked data only if usable
174
+ if is_usable:
175
+ processed_data.to_csv(out_data_file, index=True)
p1/preprocess/Adrenocortical_Cancer/code/GSE76019.py ADDED
@@ -0,0 +1,127 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Adrenocortical_Cancer"
6
+ cohort = "GSE76019"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Adrenocortical_Cancer"
10
+ in_cohort_dir = "../DATA/GEO/Adrenocortical_Cancer/GSE76019"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Adrenocortical_Cancer/GSE76019.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Adrenocortical_Cancer/gene_data/GSE76019.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Adrenocortical_Cancer/clinical_data/GSE76019.csv"
16
+ json_path = "./output/preprocess/1/Adrenocortical_Cancer/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+
21
+ # 1. Identify the paths to the SOFT file and the matrix file
22
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
23
+
24
+ # 2. Read the matrix file to obtain background information and sample characteristics data
25
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
26
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
27
+ background_info, clinical_data = get_background_and_clinical_data(
28
+ matrix_file,
29
+ background_prefixes,
30
+ clinical_prefixes
31
+ )
32
+
33
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
34
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
35
+
36
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
37
+ print("Background Information:")
38
+ print(background_info)
39
+ print("Sample Characteristics Dictionary:")
40
+ print(sample_characteristics_dict)
41
+ # 1. Gene expression data availability
42
+ is_gene_available = True # Based on "gene expression profiling" statement
43
+ # 2. Variable availability
44
+ # The trait is constant ("ACC") across all samples --> not useful for association study
45
+ trait_row = None
46
+ age_row = None
47
+ gender_row = None
48
+
49
+ # 2.2 Define data conversion functions (they won't be used because rows are None, but we must still define them)
50
+ def convert_trait(value: str):
51
+ # No actual functionality here because trait_row is None
52
+ return None
53
+
54
+ def convert_age(value: str):
55
+ # No actual functionality here because age_row is None
56
+ return None
57
+
58
+ def convert_gender(value: str):
59
+ # No actual functionality here because gender_row is None
60
+ return None
61
+
62
+ # 3. Initial Filtering (Save metadata)
63
+ is_trait_available = (trait_row is not None)
64
+ is_usable = validate_and_save_cohort_info(
65
+ is_final=False,
66
+ cohort=cohort,
67
+ info_path=json_path,
68
+ is_gene_available=is_gene_available,
69
+ is_trait_available=is_trait_available
70
+ )
71
+
72
+ # 4. Clinical Feature Extraction is skipped since trait_row is None
73
+ # STEP3
74
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
75
+ gene_data = get_genetic_data(matrix_file)
76
+
77
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
78
+ print(gene_data.index[:20])
79
+ # The gene expression data uses probe-based identifiers (e.g., Affymetrix probe IDs) rather than standard human gene symbols.
80
+ # Therefore, a mapping step is needed.
81
+ print("requires_gene_mapping = True")
82
+ # STEP5
83
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
84
+ gene_annotation = get_gene_annotation(soft_file)
85
+
86
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
87
+ print("Gene annotation preview:")
88
+ print(preview_df(gene_annotation))
89
+ # STEP: Gene Identifier Mapping
90
+
91
+ # 1) The key in 'gene_annotation' that matches the probe identifiers in 'gene_data' is "ID".
92
+ # The key that stores the gene symbols is "Gene Symbol".
93
+
94
+ # 2) Extract a gene mapping dataframe from 'gene_annotation' with these columns.
95
+ mapping_df = get_gene_mapping(
96
+ annotation=gene_annotation,
97
+ prob_col="ID",
98
+ gene_col="Gene Symbol"
99
+ )
100
+
101
+ # 3) Convert probe-level measurements to gene-level expression data.
102
+ gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df)
103
+ # STEP 7: Data Normalization and Linking
104
+
105
+ import pandas as pd
106
+
107
+ # 1. Normalize gene symbols and save the normalized gene data
108
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
109
+ normalized_gene_data.to_csv(out_gene_data_file, index=True)
110
+
111
+ # Since the trait was determined unavailable (trait_row is None), there is no clinical data to link.
112
+ # We therefore skip linking, missing value handling, and bias checks.
113
+
114
+ # 5. Final quality validation (the dataset is not suitable for trait-based association studies).
115
+ # We must provide a DataFrame and a boolean for is_biased to avoid errors, even though trait data is missing.
116
+ is_usable = validate_and_save_cohort_info(
117
+ is_final=True,
118
+ cohort=cohort,
119
+ info_path=json_path,
120
+ is_gene_available=True,
121
+ is_trait_available=False,
122
+ is_biased=False, # Arbitrary value, as the dataset is already not usable due to missing trait
123
+ df=pd.DataFrame(), # Empty DataFrame to satisfy validation requirements
124
+ note="No trait data, so dataset is not suitable for association studies."
125
+ )
126
+
127
+ # 6. Since the dataset is not usable for trait-based analyses, we do NOT save a final linked data file.
p1/preprocess/Adrenocortical_Cancer/code/GSE90713.py ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Adrenocortical_Cancer"
6
+ cohort = "GSE90713"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Adrenocortical_Cancer"
10
+ in_cohort_dir = "../DATA/GEO/Adrenocortical_Cancer/GSE90713"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/1/Adrenocortical_Cancer/GSE90713.csv"
14
+ out_gene_data_file = "./output/preprocess/1/Adrenocortical_Cancer/gene_data/GSE90713.csv"
15
+ out_clinical_data_file = "./output/preprocess/1/Adrenocortical_Cancer/clinical_data/GSE90713.csv"
16
+ json_path = "./output/preprocess/1/Adrenocortical_Cancer/cohort_info.json"
17
+
18
+ # STEP1
19
+ from tools.preprocess import *
20
+
21
+ # 1. Identify the paths to the SOFT file and the matrix file
22
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
23
+
24
+ # 2. Read the matrix file to obtain background information and sample characteristics data
25
+ background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
26
+ clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
27
+ background_info, clinical_data = get_background_and_clinical_data(
28
+ matrix_file,
29
+ background_prefixes,
30
+ clinical_prefixes
31
+ )
32
+
33
+ # 3. Obtain the sample characteristics dictionary from the clinical dataframe
34
+ sample_characteristics_dict = get_unique_values_by_row(clinical_data)
35
+
36
+ # 4. Explicitly print out all the background information and the sample characteristics dictionary
37
+ print("Background Information:")
38
+ print(background_info)
39
+ print("Sample Characteristics Dictionary:")
40
+ print(sample_characteristics_dict)
41
+ # 1) Determine if gene expression data is available
42
+ is_gene_available = True # Based on the series description showing Affymetrix microarray gene expression
43
+
44
+ # 2) Identify availability of trait, age, and gender data
45
+ trait_row = 0 # "tissue: adrenocortical carcinoma" vs. "tissue: normal adrenal"
46
+ age_row = None # No age-related information found
47
+ gender_row = None # No gender-related information found
48
+
49
+ # 2) Data type conversion functions
50
+ def convert_trait(x: str) -> Optional[int]:
51
+ """
52
+ Convert the tissue annotation to binary values for adrenocortical carcinoma (1) or normal adrenal (0).
53
+ Unknown values return None.
54
+ """
55
+ parts = x.split(':')
56
+ if len(parts) < 2:
57
+ return None
58
+ val = parts[-1].strip().lower()
59
+ if val in ["adrenocortical carcinoma", "acc", "tumor"]:
60
+ return 1
61
+ elif val in ["normal adrenal", "normal"]:
62
+ return 0
63
+ else:
64
+ return None
65
+
66
+ def convert_age(x: str) -> Optional[float]:
67
+ """No age data available, so always return None."""
68
+ return None
69
+
70
+ def convert_gender(x: str) -> Optional[int]:
71
+ """No gender data available, so always return None."""
72
+ return None
73
+
74
+ # 3) Initial filtering and metadata saving
75
+ is_trait_available = (trait_row is not None)
76
+ is_usable = validate_and_save_cohort_info(
77
+ is_final=False,
78
+ cohort=cohort,
79
+ info_path=json_path,
80
+ is_gene_available=is_gene_available,
81
+ is_trait_available=is_trait_available
82
+ )
83
+
84
+ # 4) Extract clinical features if trait_row is not None
85
+ if trait_row is not None:
86
+ selected_clinical_df = geo_select_clinical_features(
87
+ clinical_df=clinical_data,
88
+ trait=trait,
89
+ trait_row=trait_row,
90
+ convert_trait=convert_trait,
91
+ age_row=age_row,
92
+ convert_age=convert_age,
93
+ gender_row=gender_row,
94
+ convert_gender=convert_gender
95
+ )
96
+ # Preview and save the extracted clinical features
97
+ preview_result = preview_df(selected_clinical_df)
98
+ print("Preview of Clinical Data:", preview_result)
99
+ selected_clinical_df.to_csv(out_clinical_data_file, index=False)
100
+ # STEP3
101
+ # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
102
+ gene_data = get_genetic_data(matrix_file)
103
+
104
+ # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
105
+ print(gene_data.index[:20])
106
+ # These identifiers (e.g., "11715100_at", "11715101_s_at") appear to be Affymetrix probe set IDs,
107
+ # not standard human gene symbols. Hence, gene symbol mapping is required.
108
+
109
+ print("requires_gene_mapping = True")
110
+ # STEP5
111
+ # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
112
+ gene_annotation = get_gene_annotation(soft_file)
113
+
114
+ # 2. Use the 'preview_df' function from the library to preview the data and print out the results.
115
+ print("Gene annotation preview:")
116
+ print(preview_df(gene_annotation))
117
+ # STEP: Gene Identifier Mapping
118
+
119
+ # 1. Identify the columns in the annotation that match our probe IDs and gene symbols:
120
+ # - Probe ID column: 'ID'
121
+ # - Gene Symbol column: 'Gene Symbol'
122
+
123
+ probe_col = 'ID'
124
+ gene_symbol_col = 'Gene Symbol'
125
+
126
+ # 2. Generate a gene mapping dataframe
127
+ mapping_df = get_gene_mapping(gene_annotation, prob_col=probe_col, gene_col=gene_symbol_col)
128
+
129
+ # 3. Apply the gene mapping to convert probe-level expression to gene-level expression
130
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
131
+
132
+ # Print a quick preview of the first few rows after mapping
133
+ print("Mapped Gene Expression Data (first 5 rows):")
134
+ print(gene_data.head(5))
135
+ # STEP 7: Data Normalization and Linking
136
+
137
+ # 1. Normalize gene symbols and save the normalized gene data
138
+ normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
139
+ normalized_gene_data.to_csv(out_gene_data_file, index=True)
140
+
141
+ # 2. Link clinical and genetic data on sample IDs
142
+ # "selected_clinical_df" was defined in a previous step, so we can use it directly.
143
+ linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
144
+
145
+ # 3. Handle missing values systematically
146
+ processed_data = handle_missing_values(linked_data, trait)
147
+
148
+ # 4. Determine whether the trait or demographic features are severely biased
149
+ trait_biased, processed_data = judge_and_remove_biased_features(processed_data, trait)
150
+
151
+ # 5. Final quality validation and save cohort info
152
+ is_usable = validate_and_save_cohort_info(
153
+ is_final=True,
154
+ cohort=cohort,
155
+ info_path=json_path,
156
+ is_gene_available=True,
157
+ is_trait_available=True,
158
+ is_biased=trait_biased,
159
+ df=processed_data,
160
+ note="Trait data present and mapped from step 2."
161
+ )
162
+
163
+ # 6. Save the final linked data only if usable
164
+ if is_usable:
165
+ processed_data.to_csv(out_data_file, index=True)
p1/preprocess/Adrenocortical_Cancer/code/TCGA.py ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Adrenocortical_Cancer"
6
+
7
+ # Input paths
8
+ tcga_root_dir = "../DATA/TCGA"
9
+
10
+ # Output paths
11
+ out_data_file = "./output/preprocess/1/Adrenocortical_Cancer/TCGA.csv"
12
+ out_gene_data_file = "./output/preprocess/1/Adrenocortical_Cancer/gene_data/TCGA.csv"
13
+ out_clinical_data_file = "./output/preprocess/1/Adrenocortical_Cancer/clinical_data/TCGA.csv"
14
+ json_path = "./output/preprocess/1/Adrenocortical_Cancer/cohort_info.json"
15
+
16
+ import os
17
+ import pandas as pd
18
+
19
+ # 1. Identify the relevant subdirectory for the trait "Obesity"
20
+ subdirectories = [
21
+ 'CrawlData.ipynb', '.DS_Store', 'TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG)',
22
+ 'TCGA_Uterine_Carcinosarcoma_(UCS)', 'TCGA_Thyroid_Cancer_(THCA)', 'TCGA_Thymoma_(THYM)',
23
+ 'TCGA_Testicular_Cancer_(TGCT)', 'TCGA_Stomach_Cancer_(STAD)', 'TCGA_Sarcoma_(SARC)',
24
+ 'TCGA_Rectal_Cancer_(READ)', 'TCGA_Prostate_Cancer_(PRAD)', 'TCGA_Pheochromocytoma_Paraganglioma_(PCPG)',
25
+ 'TCGA_Pancreatic_Cancer_(PAAD)', 'TCGA_Ovarian_Cancer_(OV)', 'TCGA_Ocular_melanomas_(UVM)',
26
+ 'TCGA_Mesothelioma_(MESO)', 'TCGA_Melanoma_(SKCM)', 'TCGA_Lung_Squamous_Cell_Carcinoma_(LUSC)',
27
+ 'TCGA_Lung_Cancer_(LUNG)', 'TCGA_Lung_Adenocarcinoma_(LUAD)', 'TCGA_Lower_Grade_Glioma_(LGG)',
28
+ 'TCGA_Liver_Cancer_(LIHC)', 'TCGA_Large_Bcell_Lymphoma_(DLBC)', 'TCGA_Kidney_Papillary_Cell_Carcinoma_(KIRP)',
29
+ 'TCGA_Kidney_Clear_Cell_Carcinoma_(KIRC)', 'TCGA_Kidney_Chromophobe_(KICH)', 'TCGA_Head_and_Neck_Cancer_(HNSC)',
30
+ 'TCGA_Glioblastoma_(GBM)', 'TCGA_Esophageal_Cancer_(ESCA)', 'TCGA_Endometrioid_Cancer_(UCEC)',
31
+ 'TCGA_Colon_and_Rectal_Cancer_(COADREAD)', 'TCGA_Colon_Cancer_(COAD)', 'TCGA_Cervical_Cancer_(CESC)',
32
+ 'TCGA_Breast_Cancer_(BRCA)', 'TCGA_Bladder_Cancer_(BLCA)', 'TCGA_Bile_Duct_Cancer_(CHOL)',
33
+ 'TCGA_Adrenocortical_Cancer_(ACC)', 'TCGA_Acute_Myeloid_Leukemia_(LAML)'
34
+ ]
35
+
36
+ trait_keyword = trait
37
+ target_subdir = None
38
+
39
+ for sd in subdirectories:
40
+ if trait_keyword.lower() in sd.lower():
41
+ target_subdir = sd
42
+ break
43
+
44
+ if target_subdir is None:
45
+ # No suitable data found for this trait; mark as completed
46
+ print("No TCGA subdirectory found for the trait. Skipping.")
47
+ else:
48
+ # 2. Locate clinical and genetic data files
49
+ cohort_dir = os.path.join(tcga_root_dir, target_subdir)
50
+ clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)
51
+
52
+ # 3. Load the data
53
+ clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
54
+ genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t')
55
+
56
+ # 4. Print column names of clinical data
57
+ print(clinical_df.columns)
58
+ candidate_age_cols = ["age_at_initial_pathologic_diagnosis"]
59
+ candidate_gender_cols = []
60
+
61
+ candidate_demo_cols = candidate_age_cols + candidate_gender_cols
62
+ if candidate_demo_cols:
63
+ extracted_df = clinical_df[candidate_demo_cols]
64
+ preview_data = preview_df(extracted_df)
65
+ print(preview_data)
66
+ # Based on the inspection of the provided dictionaries for age and gender:
67
+ age_col = "age_at_initial_pathologic_diagnosis"
68
+ gender_col = None
69
+
70
+ print("Chosen age_col:", age_col)
71
+ print("Chosen gender_col:", gender_col)
72
+ # 1. Extract and standardize the clinical features
73
+ selected_clinical_df = tcga_select_clinical_features(
74
+ clinical_df=clinical_df,
75
+ trait=trait,
76
+ age_col=age_col,
77
+ gender_col=gender_col
78
+ )
79
+
80
+ # (Optional) Save the selected clinical data
81
+ selected_clinical_df.to_csv(out_clinical_data_file)
82
+
83
+ # 2. Normalize gene symbols in the genetic data
84
+ normalized_gene_df = normalize_gene_symbols_in_index(genetic_df)
85
+ normalized_gene_df.to_csv(out_gene_data_file)
86
+
87
+ # 3. Link the clinical and genetic data on sample IDs
88
+ linked_data = selected_clinical_df.join(normalized_gene_df.T, how="inner")
89
+
90
+ # 4. Handle missing values
91
+ cleaned_df = handle_missing_values(linked_data, trait)
92
+
93
+ # 5. Determine if the trait or demographic features are biased
94
+ is_biased, final_df = judge_and_remove_biased_features(cleaned_df, trait)
95
+
96
+ # 6. Final quality validation
97
+ is_gene_available = not normalized_gene_df.empty
98
+ is_trait_available = trait in final_df.columns
99
+ is_usable = validate_and_save_cohort_info(
100
+ is_final=True,
101
+ cohort="TCGA",
102
+ info_path=json_path,
103
+ is_gene_available=is_gene_available,
104
+ is_trait_available=is_trait_available,
105
+ is_biased=is_biased,
106
+ df=final_df,
107
+ note=""
108
+ )
109
+
110
+ # 7. If the dataset is usable, save the final dataframe
111
+ if is_usable:
112
+ final_df.to_csv(out_data_file)
p1/preprocess/Adrenocortical_Cancer/cohort_info.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"GSE90713": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": false, "has_gender": false, "sample_size": 63, "note": "Trait data present and mapped from step 2."}, "GSE76019": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "No trait data, so dataset is not suitable for association studies."}, "GSE75415": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": false, "has_gender": true, "sample_size": 30, "note": "Trait data present and mapped from step 2."}, "GSE68950": {"is_usable": false, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": true, "has_age": false, "has_gender": false, "sample_size": 798, "note": "Trait data present and mapped from step 2."}, "GSE68606": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "No trait data available, so no final linked dataset can be produced."}, "GSE67766": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "No trait data available for this cohort."}, "GSE49278": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "No trait data found; skipped clinical-linking steps."}, "GSE19776": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "No trait data found; skipped clinical-linking steps."}, "GSE143383": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "No trait data found; skipped clinical-linking steps."}, "GSE108088": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "No trait data found; skipped clinical-linking steps."}, "TCGA": {"is_usable": false, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": true, "has_age": true, "has_gender": false, "sample_size": 79, "note": ""}}
p1/preprocess/Adrenocortical_Cancer/gene_data/GSE108088.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb50d3f64363391929b11b0b0c3b9b60220fdf282410c0fbee176df2e3905608
3
+ size 11463867
p1/preprocess/Adrenocortical_Cancer/gene_data/GSE143383.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b84c1abcbbb0d634ec65f7af9b8266221d89f82714b2571c6600d3f9c49e5558
3
+ size 12280887
p1/preprocess/Adrenocortical_Cancer/gene_data/GSE19776.csv ADDED
@@ -0,0 +1 @@
 
 
1
+ ID,GSM493903,GSM493904,GSM493905,GSM493906,GSM493907,GSM493908,GSM493909,GSM493910,GSM493911,GSM493912,GSM493913,GSM493914,GSM493915,GSM493916,GSM493917
p1/preprocess/Adrenocortical_Cancer/gene_data/GSE49278.csv ADDED
@@ -0,0 +1 @@
 
 
1
+ ID,GSM1196511,GSM1196512,GSM1196513,GSM1196514,GSM1196515,GSM1196516,GSM1196517,GSM1196518,GSM1196519,GSM1196520,GSM1196521,GSM1196522,GSM1196523,GSM1196524,GSM1196525,GSM1196526,GSM1196527,GSM1196528,GSM1196529,GSM1196530,GSM1196531,GSM1196532,GSM1196533,GSM1196534,GSM1196535,GSM1196536,GSM1196537,GSM1196538,GSM1196539,GSM1196540,GSM1196541,GSM1196542,GSM1196543,GSM1196544,GSM1196545,GSM1196546,GSM1196547,GSM1196548,GSM1196549,GSM1196550,GSM1196551,GSM1196552,GSM1196553,GSM1196554