File size: 6,064 Bytes
ee94703
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Adrenocortical_Cancer"
cohort = "GSE108088"

# Input paths
in_trait_dir = "../DATA/GEO/Adrenocortical_Cancer"
in_cohort_dir = "../DATA/GEO/Adrenocortical_Cancer/GSE108088"

# Output paths
out_data_file = "./output/preprocess/1/Adrenocortical_Cancer/GSE108088.csv"
out_gene_data_file = "./output/preprocess/1/Adrenocortical_Cancer/gene_data/GSE108088.csv"
out_clinical_data_file = "./output/preprocess/1/Adrenocortical_Cancer/clinical_data/GSE108088.csv"
json_path = "./output/preprocess/1/Adrenocortical_Cancer/cohort_info.json"

# STEP1
from tools.preprocess import *

# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
    matrix_file, 
    background_prefixes, 
    clinical_prefixes
)

# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)

# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("Sample Characteristics Dictionary:")
print(sample_characteristics_dict)
import pandas as pd
import numpy as np

# 1. Determine gene expression availability
# Based on the background info "comprehensive molecular profiling," we assume it includes gene expression data.
is_gene_available = True

# 2. Identify the keys for trait, age, and gender
# After examining the sample characteristics dictionary, there's no direct or inferred "Adrenocortical_Cancer," 
# no age info, and no gender info. Hence, we set them all to None.
trait_row = None
age_row = None
gender_row = None

# 2.1 and 2.2: Data type conversion functions
def convert_trait(raw_value: str):
    # This function would parse the raw_value and return 0 or 1 if the trait is binary,
    # or a float if continuous. Here, we have no trait data, so it's a placeholder.
    # If used, ensure to handle unknown or malformed entries by returning None.
    # We split by 'colon' if needed, but since trait_row is None, we won't use it.
    return None

def convert_age(raw_value: str):
    # Sample placeholder function. No age data is found, so it returns None.
    return None

def convert_gender(raw_value: str):
    # Sample placeholder function. No gender data is found, so it returns None.
    return None

# 3. Conduct initial filtering on dataset usability, saving relevant metadata
# Trait data availability is determined by whether trait_row is None.
is_trait_available = (trait_row is not None)

_ = validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# 4. Clinical feature extraction
# We only proceed if trait_row is not None.
# Since trait_row is None, we skip this substep.
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)

# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# Based on the given identifiers (e.g., "1007_s_at", "1053_at", etc.), these are Affymetrix probe IDs,
# not human gene symbols. Therefore, further mapping is required to convert them into gene symbols.

print("requires_gene_mapping = True")
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)

# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP6: Gene Identifier Mapping

# 1. Identify which columns in the annotation dataframe correspond to the probe IDs and gene symbols.
prob_col = "ID"
gene_col = "Gene Symbol"

# 2. Obtain the gene mapping dataframe.
mapping_df = get_gene_mapping(gene_annotation, prob_col, gene_col)

# 3. Convert probe-level expression data to gene-level expression data by applying the mapping.
gene_data = apply_gene_mapping(gene_data, mapping_df)

# Let's inspect the shape and a quick preview of the mapped gene expression data.
print("Gene data shape after mapping:", gene_data.shape)
print("Gene data preview:")
print(preview_df(gene_data, n=5))
# STEP 7: Data Normalization and Linking

# In this dataset, we determined in Step 2 that trait data is not available (trait_row = None).
# Therefore, we cannot link clinical and genetic data or perform trait-based processing.
# Nonetheless, we can still normalize probe-level data to standard gene symbols and finalize validation.

# 1. Normalize gene symbols in the obtained gene expression data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file, index=True)

# 2. Since trait data is missing, skip linking clinical and genetic data, 
#    skip missing-value handling and bias detection for the trait.

# 3. Conduct final validation and record info.
#    Since trait data is unavailable, set is_trait_available=False, 
#    pass a dummy/empty DataFrame and is_biased=False (it won't be used).
dummy_df = pd.DataFrame()
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=False,
    is_biased=False,
    df=dummy_df,
    note="No trait data found; skipped clinical-linking steps."
)

# 4. If the dataset were usable, save. In this scenario, it's not usable due to missing trait data.
if is_usable:
    dummy_df.to_csv(out_data_file, index=True)