File size: 6,859 Bytes
187fbda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Arrhythmia"
cohort = "GSE136992"

# Input paths
in_trait_dir = "../DATA/GEO/Arrhythmia"
in_cohort_dir = "../DATA/GEO/Arrhythmia/GSE136992"

# Output paths
out_data_file = "./output/preprocess/1/Arrhythmia/GSE136992.csv"
out_gene_data_file = "./output/preprocess/1/Arrhythmia/gene_data/GSE136992.csv"
out_clinical_data_file = "./output/preprocess/1/Arrhythmia/clinical_data/GSE136992.csv"
json_path = "./output/preprocess/1/Arrhythmia/cohort_info.json"

# STEP 1

from tools.preprocess import *

# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
    matrix_file, 
    background_prefixes, 
    clinical_prefixes
)

# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)

# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("\nSample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1. Determine gene expression data availability
is_gene_available = True  # This dataset includes Illumina whole genome gene expression data

# 2.1 Determine data availability (keys for trait, age, gender)
trait_row = None  # No row found for "Arrhythmia" in the sample characteristics
age_row = 2       # Row 2 contains multiple distinct 'age' values
gender_row = 3    # Row 3 contains multiple distinct 'gender' values

# 2.2 Define data type conversions
def convert_trait(value: str):
    # Trait data is not available; return None
    return None

def convert_age(value: str):
    """Convert 'age: XX weeks' to a numeric type."""
    try:
        # Extract the substring after 'age:' and strip spaces
        raw = value.split(':', 1)[1].strip()
        # Remove the word 'weeks' if present
        raw = raw.lower().replace('weeks', '').strip()
        return float(raw)
    except:
        return None

def convert_gender(value: str):
    """Convert 'gender: male/female' to binary (0=female, 1=male)."""
    try:
        raw = value.split(':', 1)[1].strip().lower()
        if raw == 'male':
            return 1
        elif raw == 'female':
            return 0
        else:
            return None
    except:
        return None

# 3. Conduct initial filtering and save metadata
is_trait_available = (trait_row is not None)
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# 4. Skip clinical feature extraction, since trait_row is None
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)

# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# These identifiers, starting with "ILMN_", are Illumina probe IDs rather than standard gene symbols.
# Therefore, they need to be mapped to the corresponding human gene symbols.
print("requires_gene_mapping = True")
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)

# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP: Gene Identifier Mapping

# 1. Decide which columns hold the probe IDs (same as gene_data.index) and the gene symbols.
#    From the annotation preview, "ID" matches the probe IDs, and "Symbol" contains the gene symbols.

# 2. Get a gene mapping dataframe (probe ID -> gene symbol).
mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="Symbol")

# 3. Convert the probe-level expression data to gene-level data using the mapping.
gene_data = apply_gene_mapping(gene_data, mapping_df)
# STEP 7: Data Normalization and Linking

# First, check if trait data is available.
# From our previous steps, we know 'trait_row' was None, so trait data is not available.
# Hence, we skip linking, missing-value handling, and bias checks,
# but we still need to do final validation to mark it unusable.

if not is_trait_available:
    import pandas as pd

    print("Trait data is not available. Skipping link, missing-value handling, and bias checks.")
    # Provide a boolean for is_biased to avoid the ValueError in final validation.
    # The dataset is not usable because the trait is missing, so we can set is_biased=True.
    is_usable = validate_and_save_cohort_info(
        is_final=True,
        cohort=cohort,
        info_path=json_path,
        is_gene_available=True,     # gene data is available,
        is_trait_available=False,   # but trait data is missing
        is_biased=True,            # no valid trait -> not usable
        df=pd.DataFrame(),          # an empty DataFrame suffices here
        note="Trait data not found; dataset is not usable."
    )
    print("Dataset was not deemed usable due to missing trait data; final linked data not saved.")

else:
    # 1. Normalize gene symbols in the obtained gene expression data
    normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
    normalized_gene_data.to_csv(out_gene_data_file)
    print(f"Saved normalized gene data to {out_gene_data_file}")

    # 2. Link the clinical and genetic data on sample IDs (requires clinical data from step 2)
    linked_data = geo_link_clinical_genetic_data(selected_clinical_data, normalized_gene_data)

    # 3. Handle missing values in linked data
    linked_data = handle_missing_values(linked_data, trait_col=trait)

    # 4. Determine bias
    trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait=trait)

    # 5. Final validation
    is_usable = validate_and_save_cohort_info(
        is_final=True,
        cohort=cohort,
        info_path=json_path,
        is_gene_available=True,
        is_trait_available=True,
        is_biased=trait_biased,
        df=linked_data,
        note="Trait data and gene data successfully linked."
    )

    # 6. Save final linked data if usable
    if is_usable:
        linked_data.to_csv(out_data_file)
        print(f"Saved final linked data to {out_data_file}")
    else:
        print("Dataset was not deemed usable; final linked data not saved.")