File size: 6,556 Bytes
187fbda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Arrhythmia"
cohort = "GSE182600"
# Input paths
in_trait_dir = "../DATA/GEO/Arrhythmia"
in_cohort_dir = "../DATA/GEO/Arrhythmia/GSE182600"
# Output paths
out_data_file = "./output/preprocess/1/Arrhythmia/GSE182600.csv"
out_gene_data_file = "./output/preprocess/1/Arrhythmia/gene_data/GSE182600.csv"
out_clinical_data_file = "./output/preprocess/1/Arrhythmia/clinical_data/GSE182600.csv"
json_path = "./output/preprocess/1/Arrhythmia/cohort_info.json"
# STEP 1
from tools.preprocess import *
# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
matrix_file,
background_prefixes,
clinical_prefixes
)
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("\nSample Characteristics Dictionary:")
print(sample_characteristics_dict)
# Step 1: Determine if gene expression data is available
is_gene_available = True # Based on the background info describing "genome-wide gene expression"
# Step 2: Identify trait/age/gender rows and define data conversion functions
trait_row = 0 # Row containing disease states, including "Arrhythmia"
age_row = 1 # Row containing age
gender_row = 2 # Row containing gender
def convert_trait(value: str) -> int:
"""
Convert the 'disease state' string to a binary value.
1 if it indicates 'Arrhythmia', else 0.
"""
# Extract the part after "disease state:"
parts = value.split(":")
if len(parts) < 2:
return None
disease_str = parts[1].strip().lower()
return 1 if disease_str == "arrhythmia" else 0
def convert_age(value: str) -> float:
"""
Convert the 'age' string to a float.
Return None if conversion fails.
"""
parts = value.split(":")
if len(parts) < 2:
return None
try:
return float(parts[1].strip())
except ValueError:
return None
def convert_gender(value: str) -> int:
"""
Convert the 'gender' string to a binary value.
Female -> 0, Male -> 1, None if unknown.
"""
parts = value.split(":")
if len(parts) < 2:
return None
gender_str = parts[1].strip().lower()
if gender_str == "f":
return 0
elif gender_str == "m":
return 1
else:
return None
# Step 3: Determine if trait data is available
is_trait_available = (trait_row is not None)
# Perform initial filtering and save metadata
is_usable = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# Step 4: If trait is available, extract clinical features and save
if trait_row is not None:
# Assume 'clinical_data' is already loaded as a DataFrame in the environment
selected_clinical_df = geo_select_clinical_features(
clinical_data,
trait="Trait",
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
print("Preview of selected clinical dataframe:", preview_df(selected_clinical_df))
selected_clinical_df.to_csv(out_clinical_data_file, index=False)
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# The listed identifiers (e.g., "ILMN_...") are Illumina probe IDs, not standard human gene symbols.
# Therefore, they require mapping to gene symbols.
requires_gene_mapping = True
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP: Gene Identifier Mapping
# 1. Identify which columns from the gene_annotation match the gene expression IDs and the gene symbols
prob_col = "ID" # column in gene_annotation matching the probe ID (e.g., "ILMN_...")
symbol_col = "Symbol" # column in gene_annotation storing the gene symbol
# 2. Generate a mapping dataframe using the library function
mapping_df = get_gene_mapping(gene_annotation, prob_col=prob_col, gene_col=symbol_col)
# 3. Apply the mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(gene_data, mapping_df)
# STEP 7: Data Normalization and Linking
# 1. Normalize gene symbols in the obtained gene expression data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)
print(f"Saved normalized gene data to {out_gene_data_file}")
# 2. Link the clinical and genetic data on sample IDs
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
# 3. Handle missing values in the linked data
linked_data = handle_missing_values(linked_data, trait_col="Trait")
# 4. Determine whether the trait/demographic features are severely biased
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait="Trait")
# 5. Conduct final quality validation and save metadata
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="Trait data and gene data successfully linked."
)
# 6. If the dataset is deemed usable, save the final linked data as a CSV file
if is_usable:
linked_data.to_csv(out_data_file)
print(f"Saved final linked data to {out_data_file}")
else:
print("Dataset was not deemed usable; final linked data not saved.") |