File size: 6,556 Bytes
187fbda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Arrhythmia"
cohort = "GSE182600"

# Input paths
in_trait_dir = "../DATA/GEO/Arrhythmia"
in_cohort_dir = "../DATA/GEO/Arrhythmia/GSE182600"

# Output paths
out_data_file = "./output/preprocess/1/Arrhythmia/GSE182600.csv"
out_gene_data_file = "./output/preprocess/1/Arrhythmia/gene_data/GSE182600.csv"
out_clinical_data_file = "./output/preprocess/1/Arrhythmia/clinical_data/GSE182600.csv"
json_path = "./output/preprocess/1/Arrhythmia/cohort_info.json"

# STEP 1

from tools.preprocess import *

# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
    matrix_file, 
    background_prefixes, 
    clinical_prefixes
)

# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)

# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("\nSample Characteristics Dictionary:")
print(sample_characteristics_dict)
# Step 1: Determine if gene expression data is available
is_gene_available = True  # Based on the background info describing "genome-wide gene expression"

# Step 2: Identify trait/age/gender rows and define data conversion functions
trait_row = 0    # Row containing disease states, including "Arrhythmia"
age_row = 1      # Row containing age
gender_row = 2   # Row containing gender

def convert_trait(value: str) -> int:
    """
    Convert the 'disease state' string to a binary value.
    1 if it indicates 'Arrhythmia', else 0.
    """
    # Extract the part after "disease state:"
    parts = value.split(":")
    if len(parts) < 2:
        return None
    disease_str = parts[1].strip().lower()
    return 1 if disease_str == "arrhythmia" else 0

def convert_age(value: str) -> float:
    """
    Convert the 'age' string to a float. 
    Return None if conversion fails.
    """
    parts = value.split(":")
    if len(parts) < 2:
        return None
    try:
        return float(parts[1].strip())
    except ValueError:
        return None

def convert_gender(value: str) -> int:
    """
    Convert the 'gender' string to a binary value.
    Female -> 0, Male -> 1, None if unknown.
    """
    parts = value.split(":")
    if len(parts) < 2:
        return None
    gender_str = parts[1].strip().lower()
    if gender_str == "f":
        return 0
    elif gender_str == "m":
        return 1
    else:
        return None

# Step 3: Determine if trait data is available
is_trait_available = (trait_row is not None)

# Perform initial filtering and save metadata
is_usable = validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# Step 4: If trait is available, extract clinical features and save
if trait_row is not None:
    # Assume 'clinical_data' is already loaded as a DataFrame in the environment
    selected_clinical_df = geo_select_clinical_features(
        clinical_data,
        trait="Trait",
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    print("Preview of selected clinical dataframe:", preview_df(selected_clinical_df))
    selected_clinical_df.to_csv(out_clinical_data_file, index=False)
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)

# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# The listed identifiers (e.g., "ILMN_...") are Illumina probe IDs, not standard human gene symbols.
# Therefore, they require mapping to gene symbols.

requires_gene_mapping = True
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)

# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP: Gene Identifier Mapping

# 1. Identify which columns from the gene_annotation match the gene expression IDs and the gene symbols
prob_col = "ID"       # column in gene_annotation matching the probe ID (e.g., "ILMN_...")
symbol_col = "Symbol" # column in gene_annotation storing the gene symbol

# 2. Generate a mapping dataframe using the library function
mapping_df = get_gene_mapping(gene_annotation, prob_col=prob_col, gene_col=symbol_col)

# 3. Apply the mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(gene_data, mapping_df)
# STEP 7: Data Normalization and Linking

# 1. Normalize gene symbols in the obtained gene expression data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)
print(f"Saved normalized gene data to {out_gene_data_file}")

# 2. Link the clinical and genetic data on sample IDs
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)

# 3. Handle missing values in the linked data
linked_data = handle_missing_values(linked_data, trait_col="Trait")

# 4. Determine whether the trait/demographic features are severely biased
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait="Trait")

# 5. Conduct final quality validation and save metadata
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=trait_biased,
    df=linked_data,
    note="Trait data and gene data successfully linked."
)

# 6. If the dataset is deemed usable, save the final linked data as a CSV file
if is_usable:
    linked_data.to_csv(out_data_file)
    print(f"Saved final linked data to {out_data_file}")
else:
    print("Dataset was not deemed usable; final linked data not saved.")