File size: 7,030 Bytes
187fbda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Arrhythmia"
cohort = "GSE235307"
# Input paths
in_trait_dir = "../DATA/GEO/Arrhythmia"
in_cohort_dir = "../DATA/GEO/Arrhythmia/GSE235307"
# Output paths
out_data_file = "./output/preprocess/1/Arrhythmia/GSE235307.csv"
out_gene_data_file = "./output/preprocess/1/Arrhythmia/gene_data/GSE235307.csv"
out_clinical_data_file = "./output/preprocess/1/Arrhythmia/clinical_data/GSE235307.csv"
json_path = "./output/preprocess/1/Arrhythmia/cohort_info.json"
# STEP 1
from tools.preprocess import *
# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
matrix_file,
background_prefixes,
clinical_prefixes
)
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("\nSample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1. Gene Expression Data Availability
# Based on the series summary stating “Gene expression ...”, we set is_gene_available=True.
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Assign row keys if data is available and non-constant.
# Observing the sample characteristics, we identify:
# - trait_row: 5 (where we see "Atrial fibrillation" vs "Sinus rhythm")
# - age_row: 2 (ages vary)
# - gender_row: 1 (male/female are present)
trait_row = 5
age_row = 2
gender_row = 1
# 2.2 Define the conversion functions
def convert_trait(value: str) -> Optional[int]:
"""Convert 'cardiac rhythm after 1 year follow-up' to binary (0 or 1)."""
# Extract the substring after colon
parts = value.split(':', 1)
if len(parts) < 2:
return None
val = parts[1].strip().lower() # e.g. 'sinus rhythm', 'atrial fibrillation'
if val == 'sinus rhythm':
return 0
elif val == 'atrial fibrillation':
return 1
else:
return None
def convert_age(value: str) -> Optional[float]:
"""Convert the age string to float."""
parts = value.split(':', 1)
if len(parts) < 2:
return None
val = parts[1].strip()
try:
return float(val)
except ValueError:
return None
def convert_gender(value: str) -> Optional[int]:
"""Convert gender to binary (0 for Female, 1 for Male)."""
parts = value.split(':', 1)
if len(parts) < 2:
return None
val = parts[1].strip().lower()
if val == 'male':
return 1
elif val == 'female':
return 0
else:
return None
# 3. Save Metadata using initial filtering
is_trait_available = (trait_row is not None)
is_usable = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. Clinical Feature Extraction (only if trait_row is not None)
if trait_row is not None:
selected_clinical_df = geo_select_clinical_features(
clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the selected clinical features
preview_result = preview_df(selected_clinical_df)
print("Preview of selected clinical features:", preview_result)
# Save the clinical features to CSV
selected_clinical_df.to_csv(out_clinical_data_file, index=False)
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# Observing the given identifiers (e.g., '4', '5', '6', etc.), they do not match typical human gene symbols.
# Therefore, they likely need to be mapped to recognized gene symbols.
print("requires_gene_mapping = True")
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP: Gene Identifier Mapping
# 1. Identify columns in the gene_annotation dataframe corresponding to the probe IDs (matching gene_data.index)
# and the gene symbols.
probe_id_column = "ID"
gene_symbol_column = "GENE_SYMBOL"
# 2. Get a gene mapping dataframe from the gene annotation
mapping_df = get_gene_mapping(
gene_annotation,
prob_col=probe_id_column,
gene_col=gene_symbol_column
)
# 3. Convert probe-level measurements to gene-level expression data using the mapping
gene_data = apply_gene_mapping(gene_data, mapping_df)
import pandas as pd
# STEP 7: Data Normalization and Linking
# 1. Normalize gene symbols in the obtained gene expression data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)
print(f"Saved normalized gene data to {out_gene_data_file}")
# 2. Read the clinical DataFrame in a way that preserves the three rows (Arrhythmia, Age, Gender)
# and interprets the first CSV row as the sample ID columns.
clinical_df = pd.read_csv(out_clinical_data_file, header=0)
# We know there are exactly 3 rows of data: [0]: Arrhythmia, [1]: Age, [2]: Gender
clinical_df.index = [trait, "Age", "Gender"]
# 3. Link the clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_df, normalized_gene_data)
# 4. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 5. Check for bias in the trait and remove any biased demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 6. Perform final validation and save metadata
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="Trait data is available; completed linking and preprocessing."
)
# 7. If the dataset is usable, save the final linked data
if is_usable:
linked_data.to_csv(out_data_file, index=True)
print(f"Saved linked data to {out_data_file}")
else:
print("The dataset is not usable; skipping final data output.") |