File size: 7,030 Bytes
187fbda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Arrhythmia"
cohort = "GSE235307"

# Input paths
in_trait_dir = "../DATA/GEO/Arrhythmia"
in_cohort_dir = "../DATA/GEO/Arrhythmia/GSE235307"

# Output paths
out_data_file = "./output/preprocess/1/Arrhythmia/GSE235307.csv"
out_gene_data_file = "./output/preprocess/1/Arrhythmia/gene_data/GSE235307.csv"
out_clinical_data_file = "./output/preprocess/1/Arrhythmia/clinical_data/GSE235307.csv"
json_path = "./output/preprocess/1/Arrhythmia/cohort_info.json"

# STEP 1

from tools.preprocess import *

# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
    matrix_file, 
    background_prefixes, 
    clinical_prefixes
)

# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)

# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("\nSample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1. Gene Expression Data Availability
# Based on the series summary stating “Gene expression ...”, we set is_gene_available=True.
is_gene_available = True

# 2. Variable Availability and Data Type Conversion

# 2.1 Assign row keys if data is available and non-constant.
# Observing the sample characteristics, we identify:
#  - trait_row: 5 (where we see "Atrial fibrillation" vs "Sinus rhythm")
#  - age_row: 2 (ages vary)
#  - gender_row: 1 (male/female are present)

trait_row = 5
age_row = 2
gender_row = 1

# 2.2 Define the conversion functions

def convert_trait(value: str) -> Optional[int]:
    """Convert 'cardiac rhythm after 1 year follow-up' to binary (0 or 1)."""
    # Extract the substring after colon
    parts = value.split(':', 1)
    if len(parts) < 2:
        return None
    val = parts[1].strip().lower()  # e.g. 'sinus rhythm', 'atrial fibrillation'
    if val == 'sinus rhythm':
        return 0
    elif val == 'atrial fibrillation':
        return 1
    else:
        return None

def convert_age(value: str) -> Optional[float]:
    """Convert the age string to float."""
    parts = value.split(':', 1)
    if len(parts) < 2:
        return None
    val = parts[1].strip()
    try:
        return float(val)
    except ValueError:
        return None

def convert_gender(value: str) -> Optional[int]:
    """Convert gender to binary (0 for Female, 1 for Male)."""
    parts = value.split(':', 1)
    if len(parts) < 2:
        return None
    val = parts[1].strip().lower()
    if val == 'male':
        return 1
    elif val == 'female':
        return 0
    else:
        return None

# 3. Save Metadata using initial filtering
is_trait_available = (trait_row is not None)
is_usable = validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# 4. Clinical Feature Extraction (only if trait_row is not None)
if trait_row is not None:
    selected_clinical_df = geo_select_clinical_features(
        clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    # Preview the selected clinical features
    preview_result = preview_df(selected_clinical_df)
    print("Preview of selected clinical features:", preview_result)
    # Save the clinical features to CSV
    selected_clinical_df.to_csv(out_clinical_data_file, index=False)
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)

# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# Observing the given identifiers (e.g., '4', '5', '6', etc.), they do not match typical human gene symbols.
# Therefore, they likely need to be mapped to recognized gene symbols.

print("requires_gene_mapping = True")
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)

# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP: Gene Identifier Mapping

# 1. Identify columns in the gene_annotation dataframe corresponding to the probe IDs (matching gene_data.index)
#    and the gene symbols.
probe_id_column = "ID"
gene_symbol_column = "GENE_SYMBOL"

# 2. Get a gene mapping dataframe from the gene annotation
mapping_df = get_gene_mapping(
    gene_annotation,
    prob_col=probe_id_column,
    gene_col=gene_symbol_column
)

# 3. Convert probe-level measurements to gene-level expression data using the mapping
gene_data = apply_gene_mapping(gene_data, mapping_df)
import pandas as pd

# STEP 7: Data Normalization and Linking

# 1. Normalize gene symbols in the obtained gene expression data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)
print(f"Saved normalized gene data to {out_gene_data_file}")

# 2. Read the clinical DataFrame in a way that preserves the three rows (Arrhythmia, Age, Gender)
#    and interprets the first CSV row as the sample ID columns.
clinical_df = pd.read_csv(out_clinical_data_file, header=0)
# We know there are exactly 3 rows of data: [0]: Arrhythmia, [1]: Age, [2]: Gender
clinical_df.index = [trait, "Age", "Gender"]

# 3. Link the clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_df, normalized_gene_data)

# 4. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 5. Check for bias in the trait and remove any biased demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 6. Perform final validation and save metadata
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=trait_biased,
    df=linked_data,
    note="Trait data is available; completed linking and preprocessing."
)

# 7. If the dataset is usable, save the final linked data
if is_usable:
    linked_data.to_csv(out_data_file, index=True)
    print(f"Saved linked data to {out_data_file}")
else:
    print("The dataset is not usable; skipping final data output.")