File size: 6,666 Bytes
187fbda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Arrhythmia"
cohort = "GSE55231"

# Input paths
in_trait_dir = "../DATA/GEO/Arrhythmia"
in_cohort_dir = "../DATA/GEO/Arrhythmia/GSE55231"

# Output paths
out_data_file = "./output/preprocess/1/Arrhythmia/GSE55231.csv"
out_gene_data_file = "./output/preprocess/1/Arrhythmia/gene_data/GSE55231.csv"
out_clinical_data_file = "./output/preprocess/1/Arrhythmia/clinical_data/GSE55231.csv"
json_path = "./output/preprocess/1/Arrhythmia/cohort_info.json"

# STEP 1

from tools.preprocess import *

# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
    matrix_file, 
    background_prefixes, 
    clinical_prefixes
)

# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)

# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("\nSample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1. Determine if gene expression data is available
is_gene_available = True  # Based on study description (eQTL analysis, transcription profiling)

# 2. Identify variable availability
# Trait "Arrhythmia" is not listed in the sample characteristics, so treat it as not available.
trait_row = None

# Age is provided under key 2
age_row = 2

# Gender is provided under key 0
gender_row = 0

# 2.2 Define conversion functions
def convert_trait(value: str):
    # Trait data is not available. Return None for all inputs.
    return None

def convert_age(value: str):
    # Parse the string after colon and convert to float if possible
    parts = value.split(':', 1)
    raw = parts[1].strip() if len(parts) > 1 else parts[0].strip()
    try:
        return float(raw)
    except ValueError:
        return None

def convert_gender(value: str):
    # Parse the string after colon and convert to binary (female=0, male=1)
    parts = value.split(':', 1)
    raw = parts[1].strip().lower() if len(parts) > 1 else parts[0].strip().lower()
    if raw == 'female':
        return 0
    elif raw == 'male':
        return 1
    return None

# 3. Initial usability filtering and metadata saving
is_trait_available = (trait_row is not None)
cohort_usable = validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# 4. Since trait_row is None, skip clinical feature extraction.
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)

# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# Based on observation, the "ILMN_" prefix indicates Illumina probe IDs, not standard human gene symbols.
# Therefore, they require mapping to gene symbols.
print("These identifiers are Illumina probe IDs.\nrequires_gene_mapping = True")
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)

# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP: Gene Identifier Mapping

# 1. Identify the columns in gene_annotation that match the probe ID and gene symbol
probe_col = 'ID'
gene_symbol_col = 'Symbol'

# 2. Create the gene mapping dataframe
gene_mapping_df = get_gene_mapping(gene_annotation, prob_col=probe_col, gene_col=gene_symbol_col)

# 3. Convert probe-level measurements to gene-level expression data
gene_data = apply_gene_mapping(gene_data, gene_mapping_df)

# Just for a brief preview, let's check the resulting shape
print("Mapped gene_data shape:", gene_data.shape)
# STEP 7: Data Normalization and Linking

# 1. Normalize gene symbols in the obtained gene expression data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)
print(f"Saved normalized gene data to {out_gene_data_file}")

# 2. Check if we have a clinical dataframe called 'selected_clinical_df' (which only exists if trait_row was not None)
if 'selected_clinical_df' in globals():
    # We have trait data, so we can link and proceed with the final steps.
    selected_clinical = selected_clinical_df

    # 3. Link the clinical and genetic data on sample IDs
    linked_data = geo_link_clinical_genetic_data(selected_clinical, normalized_gene_data)

    # 4. Handle missing values, removing or imputing as instructed
    linked_data = handle_missing_values(linked_data, trait)

    # 5. Determine whether the trait is severely biased.
    trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

    # 6. Conduct final quality validation and save metadata
    is_usable = validate_and_save_cohort_info(
        is_final=True,
        cohort=cohort,
        info_path=json_path,
        is_gene_available=True,
        is_trait_available=True,
        is_biased=trait_biased,
        df=linked_data,
        note="Cohort data successfully processed with trait-based analysis."
    )

    # 7. If the dataset is usable, save the final linked data
    if is_usable:
        linked_data.to_csv(out_data_file, index=True)
        print(f"Saved final linked data to {out_data_file}")
    else:
        print("The dataset is not usable for trait-based association. Skipping final output.")

else:
    # Trait data was not extracted in Step 2 (trait_row was None), so no clinical linking or bias checks.
    print("No trait data found. Skipping linking, missing value handling, and trait bias analysis.")
    # Perform an initial metadata save (not final) since we lack a trait.
    is_usable = validate_and_save_cohort_info(
        is_final=False,
        cohort=cohort,
        info_path=json_path,
        is_gene_available=True,
        is_trait_available=False
    )
    # Without trait data, this dataset won't move forward to final association analysis
    print("No final output generated due to missing trait data.")