File size: 6,812 Bytes
187fbda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Arrhythmia"
cohort = "GSE93101"
# Input paths
in_trait_dir = "../DATA/GEO/Arrhythmia"
in_cohort_dir = "../DATA/GEO/Arrhythmia/GSE93101"
# Output paths
out_data_file = "./output/preprocess/1/Arrhythmia/GSE93101.csv"
out_gene_data_file = "./output/preprocess/1/Arrhythmia/gene_data/GSE93101.csv"
out_clinical_data_file = "./output/preprocess/1/Arrhythmia/clinical_data/GSE93101.csv"
json_path = "./output/preprocess/1/Arrhythmia/cohort_info.json"
# STEP 1
from tools.preprocess import *
# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
matrix_file,
background_prefixes,
clinical_prefixes
)
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("\nSample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1. Decide whether gene expression data is available
# From the background information, this submission represents transcriptome data.
is_gene_available = True
# 2. Identify rows for trait, age, and gender, and define conversion functions.
# - trait_row, age_row, gender_row
trait_row = 0 # "course:" with multiple diseases listed, including "Arrhythmia"
age_row = 1 # "age:"
gender_row = 2 # "gender:"
def convert_trait(value: str) -> Optional[int]:
"""Convert the 'course' field to a binary variable: 1 if Arrhythmia, 0 otherwise."""
try:
# Example: "course: Arrhythmia"
val = value.split(":")[1].strip().lower()
return 1 if val == "arrhythmia" else 0
except IndexError:
return None
def convert_age(value: str) -> Optional[float]:
"""Convert the 'age' field to a float."""
try:
# Example: "age: 55.8"
val = value.split(":")[1].strip()
return float(val)
except (IndexError, ValueError):
return None
def convert_gender(value: str) -> Optional[int]:
"""Convert the 'gender' field to 0 (Female) or 1 (Male)."""
try:
# Example: "gender: F"
val = value.split(":")[1].strip().lower()
if val == "f":
return 0
elif val == "m":
return 1
else:
return None
except IndexError:
return None
# 3. Perform initial filtering and save metadata
# Trait data availability is inferred from whether trait_row is None.
is_trait_available = (trait_row is not None)
is_usable = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. If the trait data is available, extract and preview clinical features
if trait_row is not None:
selected_clinical_df = geo_select_clinical_features(
clinical_data, # Assume 'clinical_data' is our previously obtained pandas DataFrame
trait, # Global variable: "Arrhythmia"
trait_row,
convert_trait,
age_row,
convert_age,
gender_row,
convert_gender
)
# Preview the extracted clinical features
preview = preview_df(selected_clinical_df, n=5)
print(preview)
# Save the clinical features to file
selected_clinical_df.to_csv(out_clinical_data_file, index=False)
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# Based on the provided identifiers (e.g., "ILMN_1651209", "ILMN_1651228"), they appear to be Illumina probe IDs, not standard human gene symbols.
# Therefore, mapping to gene symbols is needed.
print("requires_gene_mapping = True")
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP: Gene Identifier Mapping
# 1. Decide which columns correspond to the probe ID and the gene symbol.
# From the preview, the 'ID' column in 'gene_annotation' matches the expression data's row index,
# and the 'Symbol' column appears to store the gene symbol.
probe_id_col = "ID"
gene_symbol_col = "Symbol"
# 2. Get the gene mapping dataframe from the annotation.
mapping_df = get_gene_mapping(gene_annotation, probe_id_col, gene_symbol_col)
# 3. Convert probe-level measurements to gene-level expression data.
gene_data = apply_gene_mapping(gene_data, mapping_df)
# STEP 7: Data Normalization and Linking
# 1. Normalize gene symbols in the obtained gene expression data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)
print(f"Saved normalized gene data to {out_gene_data_file}")
# 2. Use the 'selected_clinical_df' variable from step 2 to link clinical and genetic data
selected_clinical = selected_clinical_df
# 3. Link the clinical and genetic data on sample IDs
linked_data = geo_link_clinical_genetic_data(selected_clinical, normalized_gene_data)
# 4. Handle missing values, removing or imputing as instructed
linked_data = handle_missing_values(linked_data, trait)
# 5. Determine whether the trait (and potentially other features) is severely biased.
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 6. Conduct final quality validation and save metadata
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True, # We do have a trait column
is_biased=trait_biased,
df=linked_data,
note="Cohort data successfully processed with trait-based analysis."
)
# 7. If the dataset is usable, save the final linked data
if is_usable:
linked_data.to_csv(out_data_file, index=True)
print(f"Saved final linked data to {out_data_file}")
else:
print("The dataset is not usable for trait-based association. Skipping final output.") |