File size: 6,812 Bytes
187fbda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Arrhythmia"
cohort = "GSE93101"

# Input paths
in_trait_dir = "../DATA/GEO/Arrhythmia"
in_cohort_dir = "../DATA/GEO/Arrhythmia/GSE93101"

# Output paths
out_data_file = "./output/preprocess/1/Arrhythmia/GSE93101.csv"
out_gene_data_file = "./output/preprocess/1/Arrhythmia/gene_data/GSE93101.csv"
out_clinical_data_file = "./output/preprocess/1/Arrhythmia/clinical_data/GSE93101.csv"
json_path = "./output/preprocess/1/Arrhythmia/cohort_info.json"

# STEP 1

from tools.preprocess import *

# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
    matrix_file, 
    background_prefixes, 
    clinical_prefixes
)

# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)

# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("\nSample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1. Decide whether gene expression data is available
# From the background information, this submission represents transcriptome data.
is_gene_available = True

# 2. Identify rows for trait, age, and gender, and define conversion functions.
#   - trait_row, age_row, gender_row
trait_row = 0  # "course:" with multiple diseases listed, including "Arrhythmia"
age_row = 1    # "age:"
gender_row = 2 # "gender:"

def convert_trait(value: str) -> Optional[int]:
    """Convert the 'course' field to a binary variable: 1 if Arrhythmia, 0 otherwise."""
    try:
        # Example: "course: Arrhythmia"
        val = value.split(":")[1].strip().lower()
        return 1 if val == "arrhythmia" else 0
    except IndexError:
        return None

def convert_age(value: str) -> Optional[float]:
    """Convert the 'age' field to a float."""
    try:
        # Example: "age: 55.8"
        val = value.split(":")[1].strip()
        return float(val)
    except (IndexError, ValueError):
        return None

def convert_gender(value: str) -> Optional[int]:
    """Convert the 'gender' field to 0 (Female) or 1 (Male)."""
    try:
        # Example: "gender: F"
        val = value.split(":")[1].strip().lower()
        if val == "f":
            return 0
        elif val == "m":
            return 1
        else:
            return None
    except IndexError:
        return None

# 3. Perform initial filtering and save metadata
#    Trait data availability is inferred from whether trait_row is None.
is_trait_available = (trait_row is not None)

is_usable = validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# 4. If the trait data is available, extract and preview clinical features
if trait_row is not None:
    selected_clinical_df = geo_select_clinical_features(
        clinical_data,          # Assume 'clinical_data' is our previously obtained pandas DataFrame
        trait,                  # Global variable: "Arrhythmia"
        trait_row,
        convert_trait,
        age_row,
        convert_age,
        gender_row,
        convert_gender
    )

    # Preview the extracted clinical features
    preview = preview_df(selected_clinical_df, n=5)
    print(preview)

    # Save the clinical features to file
    selected_clinical_df.to_csv(out_clinical_data_file, index=False)
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)

# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# Based on the provided identifiers (e.g., "ILMN_1651209", "ILMN_1651228"), they appear to be Illumina probe IDs, not standard human gene symbols.
# Therefore, mapping to gene symbols is needed.

print("requires_gene_mapping = True")
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)

# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP: Gene Identifier Mapping

# 1. Decide which columns correspond to the probe ID and the gene symbol.
#    From the preview, the 'ID' column in 'gene_annotation' matches the expression data's row index,
#    and the 'Symbol' column appears to store the gene symbol.
probe_id_col = "ID"
gene_symbol_col = "Symbol"

# 2. Get the gene mapping dataframe from the annotation.
mapping_df = get_gene_mapping(gene_annotation, probe_id_col, gene_symbol_col)

# 3. Convert probe-level measurements to gene-level expression data.
gene_data = apply_gene_mapping(gene_data, mapping_df)
# STEP 7: Data Normalization and Linking

# 1. Normalize gene symbols in the obtained gene expression data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)
print(f"Saved normalized gene data to {out_gene_data_file}")

# 2. Use the 'selected_clinical_df' variable from step 2 to link clinical and genetic data
selected_clinical = selected_clinical_df

# 3. Link the clinical and genetic data on sample IDs
linked_data = geo_link_clinical_genetic_data(selected_clinical, normalized_gene_data)

# 4. Handle missing values, removing or imputing as instructed
linked_data = handle_missing_values(linked_data, trait)

# 5. Determine whether the trait (and potentially other features) is severely biased.
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 6. Conduct final quality validation and save metadata
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,  # We do have a trait column
    is_biased=trait_biased,
    df=linked_data,
    note="Cohort data successfully processed with trait-based analysis."
)

# 7. If the dataset is usable, save the final linked data
if is_usable:
    linked_data.to_csv(out_data_file, index=True)
    print(f"Saved final linked data to {out_data_file}")
else:
    print("The dataset is not usable for trait-based association. Skipping final output.")