File size: 7,007 Bytes
187fbda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Asthma"
cohort = "GSE182798"
# Input paths
in_trait_dir = "../DATA/GEO/Asthma"
in_cohort_dir = "../DATA/GEO/Asthma/GSE182798"
# Output paths
out_data_file = "./output/preprocess/1/Asthma/GSE182798.csv"
out_gene_data_file = "./output/preprocess/1/Asthma/gene_data/GSE182798.csv"
out_clinical_data_file = "./output/preprocess/1/Asthma/clinical_data/GSE182798.csv"
json_path = "./output/preprocess/1/Asthma/cohort_info.json"
# STEP 1
# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
matrix_file,
background_prefixes,
clinical_prefixes
)
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("\nSample Characteristics Dictionary:")
print(sample_characteristics_dict)
def convert_trait(x):
if not isinstance(x, str):
return None
# Split only once, to ensure we keep the part after the colon.
parts = x.split(':', 1)
if len(parts) < 2:
return None
val = parts[1].strip().lower()
# Convert to a binary indicator: 1 if adult-onset asthma, else 0
# (other categories like IEI or healthy => 0)
if 'adult-onset asthma' in val:
return 1
else:
return 0
def convert_age(x):
if not isinstance(x, str):
return None
parts = x.split(':', 1)
if len(parts) < 2:
return None
try:
return float(parts[1].strip())
except ValueError:
return None
def convert_gender(x):
if not isinstance(x, str):
return None
parts = x.split(':', 1)
if len(parts) < 2:
return None
val = parts[1].strip().lower()
if val in ['female', 'f']:
return 0
elif val in ['male', 'm']:
return 1
return None
# 1. Check gene expression data availability
is_gene_available = True # Based on the transcriptomic profiling background
# 2.1 Identify row indices for trait, age, and gender
trait_row = 0 # "diagnosis: adult-onset asthma", etc. => available
age_row = 2 # "age: 33.42", "age: 46.08", ... => available
# Row 1 (gender) has only one unique value => treat it as not available
gender_row = None
# 3. Metadata: initial filtering
# trait_row != None => trait is available
is_trait_available = (trait_row is not None)
is_usable = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. If trait is available, extract clinical features
if trait_row is not None:
selected_clinical_df = geo_select_clinical_features(
clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row, # None
convert_gender=convert_gender
)
preview_result = preview_df(selected_clinical_df)
selected_clinical_df.to_csv(out_clinical_data_file, index=False)
print(preview_result)
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# These IDs (e.g., 'A_19_P00315452') appear to be array probe identifiers rather than standard gene symbols.
# Therefore, gene mapping is required.
print("requires_gene_mapping = True")
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP: Gene Identifier Mapping
# 1) Identify the appropriate columns in the gene annotation
# - The probe ID column in the annotation that matches the expression data index is "ID"
# - The gene symbol column is "GENE_SYMBOL"
# 2) Get a dataframe mapping probe IDs to gene symbols
mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="GENE_SYMBOL")
# 3) Convert probe-level expression data into gene-level expression data
gene_data = apply_gene_mapping(gene_data, mapping_df)
# (Optional) Print the shape or a small preview of the resulting gene_data
print("Gene-level expression data shape:", gene_data.shape)
print("Gene-level expression data (head):")
print(gene_data.head())
# STEP 7: Data Normalization and Linking
# 1) Normalize gene symbols in the obtained gene expression data;
# remove unrecognized symbols and average duplicates.
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)
print(f"Saved normalized gene data to {out_gene_data_file}")
# 2) Read previously saved clinical data. Because we saved it in Step 2 with index=False and each row representing
# a feature (trait or age), we need to transpose it so that the samples become rows and features become columns.
clinical_df = pd.read_csv(out_clinical_data_file, header=0)
clinical_df = clinical_df.T
# Rename the columns so they match the variables we want
clinical_df.columns = [trait, "Age"]
# 3) Link clinical with genetic data
linked_data = geo_link_clinical_genetic_data(clinical_df, normalized_gene_data)
# 4) Handle missing values in the linked data:
# remove samples with missing trait, remove genes with >20% missing,
# remove samples with >5% missing genes, then impute for the rest.
linked_data = handle_missing_values(linked_data, trait)
# 5) Check for severe bias in the trait and remove biased demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 6) Conduct final quality validation and save metadata
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="Processed with trait and gene data successfully."
)
# 7) If the dataset is usable, save the final linked data to CSV
if is_usable:
linked_data.to_csv(out_data_file)
print(f"Saved final linked data to {out_data_file}")
else:
print("Data not usable. No final linked file was saved.") |