File size: 7,007 Bytes
187fbda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Asthma"
cohort = "GSE182798"

# Input paths
in_trait_dir = "../DATA/GEO/Asthma"
in_cohort_dir = "../DATA/GEO/Asthma/GSE182798"

# Output paths
out_data_file = "./output/preprocess/1/Asthma/GSE182798.csv"
out_gene_data_file = "./output/preprocess/1/Asthma/gene_data/GSE182798.csv"
out_clinical_data_file = "./output/preprocess/1/Asthma/clinical_data/GSE182798.csv"
json_path = "./output/preprocess/1/Asthma/cohort_info.json"

# STEP 1

# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
    matrix_file, 
    background_prefixes, 
    clinical_prefixes
)

# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)

# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("\nSample Characteristics Dictionary:")
print(sample_characteristics_dict)
def convert_trait(x):
    if not isinstance(x, str):
        return None
    # Split only once, to ensure we keep the part after the colon.
    parts = x.split(':', 1)
    if len(parts) < 2:
        return None
    val = parts[1].strip().lower()
    # Convert to a binary indicator: 1 if adult-onset asthma, else 0
    # (other categories like IEI or healthy => 0)
    if 'adult-onset asthma' in val:
        return 1
    else:
        return 0

def convert_age(x):
    if not isinstance(x, str):
        return None
    parts = x.split(':', 1)
    if len(parts) < 2:
        return None
    try:
        return float(parts[1].strip())
    except ValueError:
        return None

def convert_gender(x):
    if not isinstance(x, str):
        return None
    parts = x.split(':', 1)
    if len(parts) < 2:
        return None
    val = parts[1].strip().lower()
    if val in ['female', 'f']:
        return 0
    elif val in ['male', 'm']:
        return 1
    return None

# 1. Check gene expression data availability
is_gene_available = True  # Based on the transcriptomic profiling background

# 2.1 Identify row indices for trait, age, and gender
trait_row = 0   # "diagnosis: adult-onset asthma", etc. => available
age_row = 2     # "age: 33.42", "age: 46.08", ... => available
# Row 1 (gender) has only one unique value => treat it as not available
gender_row = None

# 3. Metadata: initial filtering
#   trait_row != None => trait is available
is_trait_available = (trait_row is not None)
is_usable = validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# 4. If trait is available, extract clinical features
if trait_row is not None:
    selected_clinical_df = geo_select_clinical_features(
        clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,   # None
        convert_gender=convert_gender
    )
    preview_result = preview_df(selected_clinical_df)
    selected_clinical_df.to_csv(out_clinical_data_file, index=False)
    print(preview_result)
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)

# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# These IDs (e.g., 'A_19_P00315452') appear to be array probe identifiers rather than standard gene symbols.
# Therefore, gene mapping is required.
print("requires_gene_mapping = True")
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)

# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP: Gene Identifier Mapping

# 1) Identify the appropriate columns in the gene annotation
#    - The probe ID column in the annotation that matches the expression data index is "ID"
#    - The gene symbol column is "GENE_SYMBOL"

# 2) Get a dataframe mapping probe IDs to gene symbols
mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="GENE_SYMBOL")

# 3) Convert probe-level expression data into gene-level expression data
gene_data = apply_gene_mapping(gene_data, mapping_df)

# (Optional) Print the shape or a small preview of the resulting gene_data
print("Gene-level expression data shape:", gene_data.shape)
print("Gene-level expression data (head):")
print(gene_data.head())
# STEP 7: Data Normalization and Linking

# 1) Normalize gene symbols in the obtained gene expression data;
#    remove unrecognized symbols and average duplicates.
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)
print(f"Saved normalized gene data to {out_gene_data_file}")

# 2) Read previously saved clinical data. Because we saved it in Step 2 with index=False and each row representing
#    a feature (trait or age), we need to transpose it so that the samples become rows and features become columns.
clinical_df = pd.read_csv(out_clinical_data_file, header=0)
clinical_df = clinical_df.T
# Rename the columns so they match the variables we want
clinical_df.columns = [trait, "Age"]

# 3) Link clinical with genetic data
linked_data = geo_link_clinical_genetic_data(clinical_df, normalized_gene_data)

# 4) Handle missing values in the linked data:
#    remove samples with missing trait, remove genes with >20% missing,
#    remove samples with >5% missing genes, then impute for the rest.
linked_data = handle_missing_values(linked_data, trait)

# 5) Check for severe bias in the trait and remove biased demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 6) Conduct final quality validation and save metadata
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=trait_biased,
    df=linked_data,
    note="Processed with trait and gene data successfully."
)

# 7) If the dataset is usable, save the final linked data to CSV
if is_usable:
    linked_data.to_csv(out_data_file)
    print(f"Saved final linked data to {out_data_file}")
else:
    print("Data not usable. No final linked file was saved.")