File size: 5,734 Bytes
187fbda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Asthma"
cohort = "GSE184382"
# Input paths
in_trait_dir = "../DATA/GEO/Asthma"
in_cohort_dir = "../DATA/GEO/Asthma/GSE184382"
# Output paths
out_data_file = "./output/preprocess/1/Asthma/GSE184382.csv"
out_gene_data_file = "./output/preprocess/1/Asthma/gene_data/GSE184382.csv"
out_clinical_data_file = "./output/preprocess/1/Asthma/clinical_data/GSE184382.csv"
json_path = "./output/preprocess/1/Asthma/cohort_info.json"
# STEP 1
# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
matrix_file,
background_prefixes,
clinical_prefixes
)
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("\nSample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1. Gene Expression Data Availability
is_gene_available = True # This dataset includes transcriptome microarray data.
# 2. Variable Availability
trait_row = None # No row indicates "asthma" or similar
age_row = None # No row for age
gender_row = None # No row for gender
# 2.2 Data Type Conversion
def convert_trait(value: str) -> int:
"""
Convert raw trait string to a binary indicator (0 or 1).
Since trait_row is None, this function won't be used.
"""
# Placeholder implementation
return None
def convert_age(value: str) -> float:
"""
Convert raw age string to a float (continuous).
Since age_row is None, this function won't be used.
"""
# Placeholder implementation
return None
def convert_gender(value: str) -> int:
"""
Convert raw gender string to 0 (female) or 1 (male).
Since gender_row is None, this function won't be used.
"""
# Placeholder implementation
return None
# 3. Save Metadata
# Determine trait availability
is_trait_available = (trait_row is not None)
is_usable = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. Clinical Feature Extraction
# Since trait_row is None, we skip feature extraction.
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# These identifiers (e.g., "A_19_P...", "(+)E1A_r60_...", "3xSLv1") are not standard human gene symbols.
# They appear to be array or custom IDs that require mapping to gene symbols.
requires_gene_mapping = True
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP: Gene Identifier Mapping
# 1 & 2. Identify the columns in the annotation corresponding to the gene expression IDs and the gene symbols
# Here, 'ID' holds probe identifiers matching those in 'gene_data'
# and 'GENE_SYMBOL' holds the corresponding gene symbols.
gene_mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="GENE_SYMBOL")
# 3. Convert probe-level measurements to gene-level data using the mapping.
gene_data = apply_gene_mapping(gene_data, gene_mapping_df)
# STEP 7: Data Normalization and Linking
# We know from prior steps:
# - Trait is NOT available (trait_row = None), so no clinical CSV was saved.
# - We do have gene data, so we will at least normalize it.
# 1) Normalize gene symbols
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)
print(f"Saved normalized gene data to {out_gene_data_file}")
# 2) Since trait is not available, we cannot link or handle clinical data.
# We'll set up placeholders for final validation.
is_trait_available = False
trait_biased = False # Arbitrarily set; the library requires a boolean.
# 3) We have no clinical data to integrate; skip missing value handling.
# 4) With no trait, we cannot check bias meaningfully. Skipped.
# 5) Final dataset validation
# The library requires df and is_biased if is_final=True, so we provide an empty DataFrame.
# This ensures it records the dataset as not usable.
empty_df = pd.DataFrame()
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True, # Gene data is available
is_trait_available=False, # Trait is not available
is_biased=trait_biased,
df=empty_df,
note="No trait data; final record."
)
# 6) If the linked data were usable, we would save it. But here, is_usable will be False.
if is_usable:
# This block won't run in our scenario, but included for completeness
empty_df.to_csv(out_data_file)
print(f"Saved final linked data to {out_data_file}")
else:
print("Data not usable (no trait). No final linked file was saved.") |