File size: 5,734 Bytes
187fbda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Asthma"
cohort = "GSE184382"

# Input paths
in_trait_dir = "../DATA/GEO/Asthma"
in_cohort_dir = "../DATA/GEO/Asthma/GSE184382"

# Output paths
out_data_file = "./output/preprocess/1/Asthma/GSE184382.csv"
out_gene_data_file = "./output/preprocess/1/Asthma/gene_data/GSE184382.csv"
out_clinical_data_file = "./output/preprocess/1/Asthma/clinical_data/GSE184382.csv"
json_path = "./output/preprocess/1/Asthma/cohort_info.json"

# STEP 1

# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
    matrix_file, 
    background_prefixes, 
    clinical_prefixes
)

# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)

# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("\nSample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1. Gene Expression Data Availability
is_gene_available = True  # This dataset includes transcriptome microarray data.

# 2. Variable Availability
trait_row = None   # No row indicates "asthma" or similar
age_row = None     # No row for age
gender_row = None  # No row for gender

# 2.2 Data Type Conversion
def convert_trait(value: str) -> int:
    """
    Convert raw trait string to a binary indicator (0 or 1).
    Since trait_row is None, this function won't be used.
    """
    # Placeholder implementation
    return None

def convert_age(value: str) -> float:
    """
    Convert raw age string to a float (continuous).
    Since age_row is None, this function won't be used.
    """
    # Placeholder implementation
    return None

def convert_gender(value: str) -> int:
    """
    Convert raw gender string to 0 (female) or 1 (male).
    Since gender_row is None, this function won't be used.
    """
    # Placeholder implementation
    return None

# 3. Save Metadata
# Determine trait availability
is_trait_available = (trait_row is not None)

is_usable = validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# 4. Clinical Feature Extraction
# Since trait_row is None, we skip feature extraction.
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)

# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# These identifiers (e.g., "A_19_P...", "(+)E1A_r60_...", "3xSLv1") are not standard human gene symbols.
# They appear to be array or custom IDs that require mapping to gene symbols.

requires_gene_mapping = True
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)

# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP: Gene Identifier Mapping

# 1 & 2. Identify the columns in the annotation corresponding to the gene expression IDs and the gene symbols
#    Here, 'ID' holds probe identifiers matching those in 'gene_data'
#    and 'GENE_SYMBOL' holds the corresponding gene symbols.

gene_mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="GENE_SYMBOL")

# 3. Convert probe-level measurements to gene-level data using the mapping.
gene_data = apply_gene_mapping(gene_data, gene_mapping_df)
# STEP 7: Data Normalization and Linking

# We know from prior steps:
# - Trait is NOT available (trait_row = None), so no clinical CSV was saved.
# - We do have gene data, so we will at least normalize it.

# 1) Normalize gene symbols
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)
print(f"Saved normalized gene data to {out_gene_data_file}")

# 2) Since trait is not available, we cannot link or handle clinical data.
#    We'll set up placeholders for final validation.
is_trait_available = False
trait_biased = False   # Arbitrarily set; the library requires a boolean.

# 3) We have no clinical data to integrate; skip missing value handling.

# 4) With no trait, we cannot check bias meaningfully. Skipped.

# 5) Final dataset validation
#    The library requires df and is_biased if is_final=True, so we provide an empty DataFrame.
#    This ensures it records the dataset as not usable.
empty_df = pd.DataFrame()
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,   # Gene data is available
    is_trait_available=False, # Trait is not available
    is_biased=trait_biased,
    df=empty_df,
    note="No trait data; final record."
)

# 6) If the linked data were usable, we would save it. But here, is_usable will be False.
if is_usable:
    # This block won't run in our scenario, but included for completeness
    empty_df.to_csv(out_data_file)
    print(f"Saved final linked data to {out_data_file}")
else:
    print("Data not usable (no trait). No final linked file was saved.")