File size: 6,247 Bytes
187fbda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Asthma"
cohort = "GSE185658"
# Input paths
in_trait_dir = "../DATA/GEO/Asthma"
in_cohort_dir = "../DATA/GEO/Asthma/GSE185658"
# Output paths
out_data_file = "./output/preprocess/1/Asthma/GSE185658.csv"
out_gene_data_file = "./output/preprocess/1/Asthma/gene_data/GSE185658.csv"
out_clinical_data_file = "./output/preprocess/1/Asthma/clinical_data/GSE185658.csv"
json_path = "./output/preprocess/1/Asthma/cohort_info.json"
# STEP 1
# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
matrix_file,
background_prefixes,
clinical_prefixes
)
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("\nSample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1) Gene Expression Data Availability
is_gene_available = True # The background indicates Affymetrix microarrays for global gene expression
# 2) Variable Availability and Data Type Conversion
# Based on the sample characteristics dictionary, we only see a "group" field (row=1) that includes asthma vs healthy.
trait_row = 1
age_row = None
gender_row = None
# Define the conversion function for the trait (binary: 1 for Asthma, 0 for Healthy, None otherwise).
def convert_trait(value):
parts = value.split(':')
label = parts[-1].strip().lower() # Take text after ':'
if 'asthma' in label:
return 1
elif 'healthy' in label:
return 0
return None
# We do not have age or gender data, so these conversion functions are not used.
convert_age = None
convert_gender = None
# 3) Save Metadata (initial filtering)
is_trait_available = (trait_row is not None)
is_usable = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4) Clinical Feature Extraction (only if trait data is available)
if trait_row is not None:
selected_clinical_df = geo_select_clinical_features(
clinical_df=clinical_data, # previously obtained DataFrame of sample characteristics
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
preview_dict = preview_df(selected_clinical_df)
print("Preview of selected clinical features:", preview_dict)
# Save the extracted clinical features to CSV
selected_clinical_df.to_csv(out_clinical_data_file, index=False)
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# Based on the numeric format (e.g., '7892501'), these are likely not standard human gene symbols.
# Therefore, we conclude that gene mapping is required.
print("requires_gene_mapping = True")
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP: Gene Identifier Mapping
# 1. Decide which columns in the gene_annotation dataframe correspond to the probe ID and the gene symbol text.
# From the preview, "ID" appears to match the probe identifier (same as gene_data index),
# and "gene_assignment" appears to contain the gene symbols (though in a messy string).
# 2. Build a mapping dataframe using these two columns.
mapping_df = get_gene_mapping(annotation=gene_annotation, prob_col="ID", gene_col="gene_assignment")
# 3. Convert the probe-level measurements to gene expression data using the mapping,
# distributing expression when a probe maps to multiple genes and summing the contributions for each gene.
gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df)
# STEP 7: Data Normalization and Linking
# 1) Normalize gene symbols
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)
print(f"Saved normalized gene data to {out_gene_data_file}")
# 2) Link clinical and genetic data
# We know from previous steps that we do have trait data in out_clinical_data_file.
clinical_df = pd.read_csv(out_clinical_data_file, header=0)
# The clinical CSV contains a single row with the trait values and columns as sample IDs.
# Label that row with the trait name, so that geo_link_clinical_genetic_data can handle it properly.
clinical_df.index = [trait]
linked_data = geo_link_clinical_genetic_data(clinical_df, normalized_gene_data)
# 3) Handle missing values
linked_data = handle_missing_values(df=linked_data, trait_col=trait)
# 4) Determine bias
trait_biased, linked_data = judge_and_remove_biased_features(df=linked_data, trait=trait)
# 5) Final dataset validation
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="Completed data preprocessing and quality checks."
)
# 6) If usable, save the final linked data
if is_usable:
linked_data.to_csv(out_data_file, index=True)
print(f"Saved final linked data to {out_data_file}")
else:
print("Data not usable. No final file was saved.") |