File size: 6,247 Bytes
187fbda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Asthma"
cohort = "GSE185658"

# Input paths
in_trait_dir = "../DATA/GEO/Asthma"
in_cohort_dir = "../DATA/GEO/Asthma/GSE185658"

# Output paths
out_data_file = "./output/preprocess/1/Asthma/GSE185658.csv"
out_gene_data_file = "./output/preprocess/1/Asthma/gene_data/GSE185658.csv"
out_clinical_data_file = "./output/preprocess/1/Asthma/clinical_data/GSE185658.csv"
json_path = "./output/preprocess/1/Asthma/cohort_info.json"

# STEP 1

# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
    matrix_file, 
    background_prefixes, 
    clinical_prefixes
)

# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)

# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("\nSample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1) Gene Expression Data Availability
is_gene_available = True  # The background indicates Affymetrix microarrays for global gene expression

# 2) Variable Availability and Data Type Conversion
# Based on the sample characteristics dictionary, we only see a "group" field (row=1) that includes asthma vs healthy.
trait_row = 1
age_row = None
gender_row = None

# Define the conversion function for the trait (binary: 1 for Asthma, 0 for Healthy, None otherwise).
def convert_trait(value):
    parts = value.split(':')
    label = parts[-1].strip().lower()  # Take text after ':'
    if 'asthma' in label:
        return 1
    elif 'healthy' in label:
        return 0
    return None

# We do not have age or gender data, so these conversion functions are not used.
convert_age = None
convert_gender = None

# 3) Save Metadata (initial filtering)
is_trait_available = (trait_row is not None)
is_usable = validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# 4) Clinical Feature Extraction (only if trait data is available)
if trait_row is not None:
    selected_clinical_df = geo_select_clinical_features(
        clinical_df=clinical_data,  # previously obtained DataFrame of sample characteristics
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    preview_dict = preview_df(selected_clinical_df)
    print("Preview of selected clinical features:", preview_dict)

    # Save the extracted clinical features to CSV
    selected_clinical_df.to_csv(out_clinical_data_file, index=False)
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)

# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# Based on the numeric format (e.g., '7892501'), these are likely not standard human gene symbols.
# Therefore, we conclude that gene mapping is required.
print("requires_gene_mapping = True")
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)

# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP: Gene Identifier Mapping

# 1. Decide which columns in the gene_annotation dataframe correspond to the probe ID and the gene symbol text.
#    From the preview, "ID" appears to match the probe identifier (same as gene_data index),
#    and "gene_assignment" appears to contain the gene symbols (though in a messy string).

# 2. Build a mapping dataframe using these two columns.
mapping_df = get_gene_mapping(annotation=gene_annotation, prob_col="ID", gene_col="gene_assignment")

# 3. Convert the probe-level measurements to gene expression data using the mapping, 
#    distributing expression when a probe maps to multiple genes and summing the contributions for each gene.
gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df)
# STEP 7: Data Normalization and Linking

# 1) Normalize gene symbols
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)
print(f"Saved normalized gene data to {out_gene_data_file}")

# 2) Link clinical and genetic data
#    We know from previous steps that we do have trait data in out_clinical_data_file.
clinical_df = pd.read_csv(out_clinical_data_file, header=0)
# The clinical CSV contains a single row with the trait values and columns as sample IDs.
# Label that row with the trait name, so that geo_link_clinical_genetic_data can handle it properly.
clinical_df.index = [trait]

linked_data = geo_link_clinical_genetic_data(clinical_df, normalized_gene_data)

# 3) Handle missing values
linked_data = handle_missing_values(df=linked_data, trait_col=trait)

# 4) Determine bias
trait_biased, linked_data = judge_and_remove_biased_features(df=linked_data, trait=trait)

# 5) Final dataset validation
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=trait_biased,
    df=linked_data,
    note="Completed data preprocessing and quality checks."
)

# 6) If usable, save the final linked data
if is_usable:
    linked_data.to_csv(out_data_file, index=True)
    print(f"Saved final linked data to {out_data_file}")
else:
    print("Data not usable. No final file was saved.")