File size: 5,466 Bytes
187fbda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Asthma"
cohort = "GSE270312"

# Input paths
in_trait_dir = "../DATA/GEO/Asthma"
in_cohort_dir = "../DATA/GEO/Asthma/GSE270312"

# Output paths
out_data_file = "./output/preprocess/1/Asthma/GSE270312.csv"
out_gene_data_file = "./output/preprocess/1/Asthma/gene_data/GSE270312.csv"
out_clinical_data_file = "./output/preprocess/1/Asthma/clinical_data/GSE270312.csv"
json_path = "./output/preprocess/1/Asthma/cohort_info.json"

# STEP 1

from tools.preprocess import *

# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(
    matrix_file, 
    background_prefixes, 
    clinical_prefixes
)

# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)

# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("\nSample Characteristics Dictionary:")
print(sample_characteristics_dict)
# Step 1: Gene Expression Data Availability
# Based on the background stating "RNA transcriptome responses" were measured, we consider it gene expression data.
is_gene_available = True

# Step 2: Variable Availability and Conversion

# 2.1 Identify rows for trait, age, and gender
# From the sample characteristics dictionary, 'asthma status' = row 3, 'gender' = row 2. 
# No age information is provided.
trait_row = 3
age_row = None
gender_row = 2

# 2.2 Define data conversion functions
def convert_trait(value: str):
    # Example: "asthma status: Yes"
    # Split by colon, then strip extra spaces
    parts = value.split(":")
    if len(parts) < 2:
        return None
    val = parts[1].strip().lower()
    if val == "yes":
        return 1
    elif val == "no":
        return 0
    return None

def convert_age(value: str):
    # No age data available, so return None
    return None

def convert_gender(value: str):
    # Example: "gender: Female"
    parts = value.split(":")
    if len(parts) < 2:
        return None
    val = parts[1].strip().lower()
    if val == "female":
        return 0
    elif val == "male":
        return 1
    return None

# Step 3: Save Metadata (initial filtering)
# Trait data is considered available if we have a valid row for it
is_trait_available = (trait_row is not None)

filter_pass = validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# Step 4: Clinical Feature Extraction
if trait_row is not None:
    selected_clinical_df = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )

    # Preview the selected clinical features
    preview_clinical = preview_df(selected_clinical_df)
    # (You could print the preview or store it if needed; omitted here for brevity.)

    # Save the clinical data
    selected_clinical_df.to_csv(out_clinical_data_file, index=False)
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)

# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# Based on the observed gene identifiers such as ABCF1, ACE, ACKR2, etc.,
# these appear to be valid human gene symbols and do not require additional mapping.

print("These genes are human gene symbols.")

# Conclusion
print("\nrequires_gene_mapping = False")
# STEP 7: Data Normalization and Linking

# 1. Normalize gene symbols in the obtained gene expression data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)
print(f"Saved normalized gene data to {out_gene_data_file}")

# 2. Link the clinical and genetic data on sample IDs
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)

# 3. Handle missing values in the linked data
linked_data = handle_missing_values(linked_data, trait_col=trait)

# 4. Determine whether the trait/demographic features are severely biased
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait=trait)

# 5. Conduct final quality validation and save metadata
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=trait_biased,
    df=linked_data,
    note="Trait data and gene data successfully linked."
)

# 6. If the dataset is deemed usable, save the final linked data as a CSV file
if is_usable:
    linked_data.to_csv(out_data_file)
    print(f"Saved final linked data to {out_data_file}")
else:
    print("Dataset was not deemed usable; final linked data not saved.")