File size: 6,336 Bytes
187fbda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Atrial_Fibrillation"
cohort = "GSE115574"
# Input paths
in_trait_dir = "../DATA/GEO/Atrial_Fibrillation"
in_cohort_dir = "../DATA/GEO/Atrial_Fibrillation/GSE115574"
# Output paths
out_data_file = "./output/preprocess/1/Atrial_Fibrillation/GSE115574.csv"
out_gene_data_file = "./output/preprocess/1/Atrial_Fibrillation/gene_data/GSE115574.csv"
out_clinical_data_file = "./output/preprocess/1/Atrial_Fibrillation/clinical_data/GSE115574.csv"
json_path = "./output/preprocess/1/Atrial_Fibrillation/cohort_info.json"
# STEP1
from tools.preprocess import *
# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("Sample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1. Gene Expression Data Availability
is_gene_available = True # The series title and summary indicate "gene expression microarrays" were used
# 2. Variable Availability and Data Type Conversion
# 2.1 Identify rows for trait, age, gender.
# Examining the provided dictionary:
# {0: ['disease state: atrial fibrillation patient with severe mitral regurgitation',
# 'disease state: sinus rhythm patient with severe mitral regurgitation'],
# 1: ['tissue: left atrium - heart', 'tissue: right atrium - heart']}
# Row 0 has multiple unique values related to AF vs. sinus rhythm.
trait_row = 0
age_row = None # No row provides age info
gender_row = None # No row provides gender info
# 2.2 Define conversion functions
def convert_trait(value: str) -> int:
"""Convert trait info to a binary indicator: AF=1, otherwise=0."""
# Extract the part after the first colon
parts = value.split(':', 1)
raw_str = parts[1].strip().lower() if len(parts) > 1 else value.lower()
if 'atrial fibrillation' in raw_str:
return 1
elif 'sinus rhythm' in raw_str:
return 0
else:
return None
def convert_age(value: str) -> float:
"""Unused here because age_row is None, but define a placeholder."""
return None
def convert_gender(value: str) -> int:
"""Unused here because gender_row is None, but define a placeholder."""
return None
# 3. Save Metadata (initial filtering)
is_trait_available = (trait_row is not None)
_ = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. Clinical Feature Extraction
if trait_row is not None:
selected_features = geo_select_clinical_features(
clinical_df=clinical_data, # Assumes 'clinical_data' DataFrame is already in environment
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the selected features
preview_dict = preview_df(selected_features, n=5, max_items=200)
print("Clinical Features Preview:", preview_dict)
# Save the extracted clinical features
selected_features.to_csv(out_clinical_data_file, index=False)
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# Based on the probe IDs (e.g. '1007_s_at', '1053_at'), these are Affymetrix probe identifiers
# which require mapping to official gene symbols.
print("requires_gene_mapping = True")
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP: Gene Identifier Mapping
# 1 & 2. Identify the columns for the probe IDs and gene symbols in the annotation dataframe.
# In this dataset, they are stored in 'ID' and 'Gene Symbol'.
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')
# 3. Convert probe-level measurements to gene-level expression data.
gene_data = apply_gene_mapping(gene_data, mapping_df)
# Print the dimensions and the first 10 gene symbols to confirm
print("Mapped gene_data shape:", gene_data.shape)
print("First 10 gene symbols:", gene_data.index[:10])
# STEP7
# 1. Normalize the obtained gene data using the NCBI Gene synonym database
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)
# 2. Link the clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_features, normalized_gene_data)
# 3. Handle missing values systematically
linked_data_processed = handle_missing_values(linked_data, trait_col=trait)
# 4. Check for biased trait and remove any biased demographic features
trait_biased, linked_data_final = judge_and_remove_biased_features(linked_data_processed, trait)
# 5. Final quality validation and metadata saving
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data_final,
note="Dataset processed with GEO pipeline. Checked for missing values and bias."
)
# 6. If dataset is usable, save the final linked data
if is_usable:
linked_data_final.to_csv(out_data_file) |