File size: 5,840 Bytes
187fbda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Atrial_Fibrillation"
cohort = "GSE143924"
# Input paths
in_trait_dir = "../DATA/GEO/Atrial_Fibrillation"
in_cohort_dir = "../DATA/GEO/Atrial_Fibrillation/GSE143924"
# Output paths
out_data_file = "./output/preprocess/1/Atrial_Fibrillation/GSE143924.csv"
out_gene_data_file = "./output/preprocess/1/Atrial_Fibrillation/gene_data/GSE143924.csv"
out_clinical_data_file = "./output/preprocess/1/Atrial_Fibrillation/clinical_data/GSE143924.csv"
json_path = "./output/preprocess/1/Atrial_Fibrillation/cohort_info.json"
# STEP1
from tools.preprocess import *
# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("Sample Characteristics Dictionary:")
print(sample_characteristics_dict)
############################
# 1. Gene Expression Data Availability
############################
is_gene_available = True # Based on "Whole-tissue gene expression patterns" in the series summary
############################
# 2. Variable Availability and Data Type Conversion
############################
# From the sample characteristics dictionary:
# {0: ['tissue: epicardial adipose tissue'],
# 1: ['patient diagnosis: sinus rhythm after surgery',
# 'patient diagnosis: postoperative atrial fibrillation after surgery (POAF)']}
# The trait "Atrial_Fibrillation" can be inferred from row 1 since it contains
# "sinus rhythm after surgery" vs. "postoperative atrial fibrillation after surgery (POAF)".
trait_row = 1
# There's no mention of age or gender information in the dictionary,
# thus they are considered not available.
age_row = None
gender_row = None
# Data Type Conversions
def convert_trait(value: str) -> Optional[int]:
# Extract the value after the colon
parts = value.split(':', 1)
val_str = parts[1].strip() if len(parts) > 1 else value.strip()
# Map recognized patterns to 0 or 1
if val_str.lower() == 'sinus rhythm after surgery':
return 0
elif 'postoperative atrial fibrillation' in val_str.lower():
return 1
else:
return None
def convert_age(value: str) -> Optional[float]:
# No age data is truly available here; returning None
return None
def convert_gender(value: str) -> Optional[int]:
# No gender data is truly available here; returning None
return None
############################
# 3. Save Metadata (Initial Filtering)
############################
is_trait_available = trait_row is not None
is_usable = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
############################
# 4. Clinical Feature Extraction
############################
if trait_row is not None:
# Suppose clinical_data is our input DataFrame of sample characteristics
selected_clinical = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted clinical features
preview = preview_df(selected_clinical, n=5)
print("Selected Clinical Features Preview:", preview)
# Save the selected clinical data
selected_clinical.to_csv(out_clinical_data_file, index=False)
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# Based on biomedical knowledge, the listed gene identifiers appear to be recognized human gene symbols.
# Therefore, they do not require additional gene symbol mapping.
print("requires_gene_mapping = False")
# STEP5
# 1. Normalize the obtained gene data using the NCBI Gene synonym database
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)
# 2. Link the clinical and genetic data
# Replace "selected_clinical_df" with the correct variable "selected_clinical"
linked_data = geo_link_clinical_genetic_data(selected_clinical, normalized_gene_data)
# 3. Handle missing values systematically
linked_data_processed = handle_missing_values(linked_data, trait_col=trait)
# 4. Check for biased trait and remove any biased demographic features
trait_biased, linked_data_final = judge_and_remove_biased_features(linked_data_processed, trait)
# 5. Final quality validation and metadata saving
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data_final,
note="Dataset processed with GEO pipeline. Checked for missing values and bias."
)
# 6. If dataset is usable, save the final linked data
if is_usable:
linked_data_final.to_csv(out_data_file) |