File size: 4,755 Bytes
187fbda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Atrial_Fibrillation"
cohort = "GSE47727"
# Input paths
in_trait_dir = "../DATA/GEO/Atrial_Fibrillation"
in_cohort_dir = "../DATA/GEO/Atrial_Fibrillation/GSE47727"
# Output paths
out_data_file = "./output/preprocess/1/Atrial_Fibrillation/GSE47727.csv"
out_gene_data_file = "./output/preprocess/1/Atrial_Fibrillation/gene_data/GSE47727.csv"
out_clinical_data_file = "./output/preprocess/1/Atrial_Fibrillation/clinical_data/GSE47727.csv"
json_path = "./output/preprocess/1/Atrial_Fibrillation/cohort_info.json"
# STEP1
from tools.preprocess import *
# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("Sample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1. Gene Expression Data Availability
is_gene_available = True # The platform (HumanHT-12 V3.0) indicates a typical gene expression microarray
# 2. Variable Availability
trait_row = None # No row found containing AF or any case/control labels
age_row = 0 # Key 0 has multiple unique values for age
gender_row = 1 # Key 1 has at least two distinct values (male/female)
# 2.2 Data Type Conversion
def convert_trait(value: str):
"""
Convert the trait value to a binary indicator (0 or 1).
This dataset has no trait info, so we'll implement a placeholder function.
"""
# Normally, we'd parse after the colon and map "AF" -> 1, "control" -> 0, else None
return None
def convert_age(value: str):
"""
Convert the 'age (yrs)' string to a float.
Returns None if the format is unexpected.
"""
try:
# Split at the colon, take the part after the colon, strip, and convert to float
parts = value.split(':')
if len(parts) < 2:
return None
return float(parts[1].strip())
except:
return None
def convert_gender(value: str):
"""
Convert gender to binary: female -> 0, male -> 1.
Returns None if the format is unexpected.
"""
parts = value.split(':')
if len(parts) < 2:
return None
gender_str = parts[1].strip().lower()
if gender_str == 'female':
return 0
elif gender_str == 'male':
return 1
else:
return None
# 3. Save Metadata (initial filtering)
is_trait_available = (trait_row is not None)
_ = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. Clinical Feature Extraction
# Skip this step because trait_row is None (no trait data available)
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# The IDs (e.g., "ILMN_1343291") appear to be Illumina probe IDs, not standard human gene symbols.
# Therefore, this data requires mapping to gene symbols.
requires_gene_mapping = True
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP: Gene Identifier Mapping
# 1. Identify the columns in gene_annotation that match the probe IDs from gene_data (the 'ID' column),
# and the column that holds gene symbols (the 'Symbol' column).
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')
# 2. Convert probe-level measurements to gene-level measurements.
gene_data = apply_gene_mapping(gene_data, mapping_df)
# (Optional) Print some basic info for verification.
print("Mapped gene_data shape:", gene_data.shape)
print("First 20 gene symbols after mapping:")
print(gene_data.index[:20]) |