File size: 7,170 Bytes
0815237
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Cystic_Fibrosis"
cohort = "GSE107846"

# Input paths
in_trait_dir = "../DATA/GEO/Cystic_Fibrosis"
in_cohort_dir = "../DATA/GEO/Cystic_Fibrosis/GSE107846"

# Output paths
out_data_file = "./output/preprocess/1/Cystic_Fibrosis/GSE107846.csv"
out_gene_data_file = "./output/preprocess/1/Cystic_Fibrosis/gene_data/GSE107846.csv"
out_clinical_data_file = "./output/preprocess/1/Cystic_Fibrosis/clinical_data/GSE107846.csv"
json_path = "./output/preprocess/1/Cystic_Fibrosis/cohort_info.json"

# STEP1
from tools.preprocess import *
# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)

# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)

# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("Sample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1. Gene Expression Data Availability
is_gene_available = True  # Based on the GEO entry, we assume it's a gene expression dataset.

# 2. Variable Availability
trait_row = 5   # "state: CF" or "state: Healthy"
age_row = 1     # "age: ..."
gender_row = 2  # "Sex: F" / "Sex: M"

# 2.2 Data Type Conversions
def convert_trait(value: str):
    # Extract the text after the first colon
    val = value.split(":", 1)[1].strip() if ":" in value else value.strip()
    # Convert to binary: CF -> 1, Healthy -> 0
    if val.upper() == "CF":
        return 1
    elif val.upper() == "HEALTHY":
        return 0
    return None

def convert_age(value: str):
    # Extract the text after the first colon
    val = value.split(":", 1)[1].strip() if ":" in value else value.strip()
    # Convert to float if possible
    try:
        return float(val)
    except ValueError:
        return None

def convert_gender(value: str):
    # Extract the text after the first colon
    val = value.split(":", 1)[1].strip() if ":" in value else value.strip()
    # Convert to binary: F -> 0, M -> 1
    if val.upper() == "F":
        return 0
    elif val.upper() == "M":
        return 1
    return None

# 3. Save Metadata (initial filtering)
is_trait_available = (trait_row is not None)
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# 4. Clinical Feature Extraction if trait data is available
if trait_row is not None:
    selected_clinical_df = geo_select_clinical_features(
        clinical_df=clinical_data, 
        trait=trait, 
        trait_row=trait_row, 
        convert_trait=convert_trait,
        age_row=age_row, 
        convert_age=convert_age,
        gender_row=gender_row, 
        convert_gender=convert_gender
    )
    preview = preview_df(selected_clinical_df)
    print("Preview of selected clinical features:", preview)
    selected_clinical_df.to_csv(out_clinical_data_file, index=False)
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)

# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# Based on the gene identifiers (ILMN_XXXXXX), these appear to be Illumina probe IDs.
# Therefore, they require mapping to standard gene symbols.

requires_gene_mapping = True
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)

# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP: Gene Identifier Mapping

# 1. Decide which key in the gene annotation corresponds to the same identifier type as in the gene expression data
#    and which key corresponds to the gene symbols.
#    From observation, 'ID' matches ILMN probe identifiers (e.g., "ILMN_1245321") and 'SYMBOL' stores gene symbols.

# 2. Get a gene mapping dataframe.
mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="SYMBOL")

# 3. Convert probe-level measurements to gene expression data by applying the gene mapping.
gene_data = apply_gene_mapping(gene_data, mapping_df)

# (gene_data now contains gene expression values indexed by gene symbols)
print("Mapped gene_data shape:", gene_data.shape)
print("First few rows of mapped gene expression data:\n", gene_data.head())
import pandas as pd

# STEP7

# 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library.
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)

# Based on Step 2, we concluded trait_row=5 (thus trait data is available).
is_trait_available = True

if not is_trait_available:
    # 2-4: Skip linking, missing value handling, and bias checks because trait is unavailable.
    empty_df = pd.DataFrame()
    validate_and_save_cohort_info(
        is_final=True,
        cohort=cohort,
        info_path=json_path,
        is_gene_available=True,
        is_trait_available=False,
        is_biased=True,
        df=empty_df,
        note="Trait data not available; skipping further steps."
    )
else:
    # 2. Load the clinical data. Since the CSV was saved with index=False, we first read the file,
    # then manually set the row index to ["Cystic_Fibrosis","Age","Gender"].
    selected_clinical_data = pd.read_csv(out_clinical_data_file, header=0)
    selected_clinical_data.index = [trait, "Age", "Gender"]

    # 3. Link the clinical and genetic data
    linked_data = geo_link_clinical_genetic_data(selected_clinical_data, normalized_gene_data)

    # 4. Handle missing values in the linked data
    linked_data = handle_missing_values(linked_data, trait)

    # 5. Determine whether the trait and demographic features are severely biased
    is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait)

    # 6. Conduct final quality validation and save the cohort information
    is_usable = validate_and_save_cohort_info(
        is_final=True,
        cohort=cohort,
        info_path=json_path,
        is_gene_available=True,
        is_trait_available=True,
        is_biased=is_trait_biased,
        df=unbiased_linked_data,
        note="Final check after linking and missing-value handling."
    )

    # 7. If the dataset is usable, save it as CSV
    if is_usable:
        unbiased_linked_data.to_csv(out_data_file)