File size: 7,170 Bytes
0815237 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Cystic_Fibrosis"
cohort = "GSE107846"
# Input paths
in_trait_dir = "../DATA/GEO/Cystic_Fibrosis"
in_cohort_dir = "../DATA/GEO/Cystic_Fibrosis/GSE107846"
# Output paths
out_data_file = "./output/preprocess/1/Cystic_Fibrosis/GSE107846.csv"
out_gene_data_file = "./output/preprocess/1/Cystic_Fibrosis/gene_data/GSE107846.csv"
out_clinical_data_file = "./output/preprocess/1/Cystic_Fibrosis/clinical_data/GSE107846.csv"
json_path = "./output/preprocess/1/Cystic_Fibrosis/cohort_info.json"
# STEP1
from tools.preprocess import *
# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("Sample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1. Gene Expression Data Availability
is_gene_available = True # Based on the GEO entry, we assume it's a gene expression dataset.
# 2. Variable Availability
trait_row = 5 # "state: CF" or "state: Healthy"
age_row = 1 # "age: ..."
gender_row = 2 # "Sex: F" / "Sex: M"
# 2.2 Data Type Conversions
def convert_trait(value: str):
# Extract the text after the first colon
val = value.split(":", 1)[1].strip() if ":" in value else value.strip()
# Convert to binary: CF -> 1, Healthy -> 0
if val.upper() == "CF":
return 1
elif val.upper() == "HEALTHY":
return 0
return None
def convert_age(value: str):
# Extract the text after the first colon
val = value.split(":", 1)[1].strip() if ":" in value else value.strip()
# Convert to float if possible
try:
return float(val)
except ValueError:
return None
def convert_gender(value: str):
# Extract the text after the first colon
val = value.split(":", 1)[1].strip() if ":" in value else value.strip()
# Convert to binary: F -> 0, M -> 1
if val.upper() == "F":
return 0
elif val.upper() == "M":
return 1
return None
# 3. Save Metadata (initial filtering)
is_trait_available = (trait_row is not None)
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. Clinical Feature Extraction if trait data is available
if trait_row is not None:
selected_clinical_df = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
preview = preview_df(selected_clinical_df)
print("Preview of selected clinical features:", preview)
selected_clinical_df.to_csv(out_clinical_data_file, index=False)
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# Based on the gene identifiers (ILMN_XXXXXX), these appear to be Illumina probe IDs.
# Therefore, they require mapping to standard gene symbols.
requires_gene_mapping = True
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)
# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP: Gene Identifier Mapping
# 1. Decide which key in the gene annotation corresponds to the same identifier type as in the gene expression data
# and which key corresponds to the gene symbols.
# From observation, 'ID' matches ILMN probe identifiers (e.g., "ILMN_1245321") and 'SYMBOL' stores gene symbols.
# 2. Get a gene mapping dataframe.
mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="SYMBOL")
# 3. Convert probe-level measurements to gene expression data by applying the gene mapping.
gene_data = apply_gene_mapping(gene_data, mapping_df)
# (gene_data now contains gene expression values indexed by gene symbols)
print("Mapped gene_data shape:", gene_data.shape)
print("First few rows of mapped gene expression data:\n", gene_data.head())
import pandas as pd
# STEP7
# 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library.
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)
# Based on Step 2, we concluded trait_row=5 (thus trait data is available).
is_trait_available = True
if not is_trait_available:
# 2-4: Skip linking, missing value handling, and bias checks because trait is unavailable.
empty_df = pd.DataFrame()
validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=False,
is_biased=True,
df=empty_df,
note="Trait data not available; skipping further steps."
)
else:
# 2. Load the clinical data. Since the CSV was saved with index=False, we first read the file,
# then manually set the row index to ["Cystic_Fibrosis","Age","Gender"].
selected_clinical_data = pd.read_csv(out_clinical_data_file, header=0)
selected_clinical_data.index = [trait, "Age", "Gender"]
# 3. Link the clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_data, normalized_gene_data)
# 4. Handle missing values in the linked data
linked_data = handle_missing_values(linked_data, trait)
# 5. Determine whether the trait and demographic features are severely biased
is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait)
# 6. Conduct final quality validation and save the cohort information
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_trait_biased,
df=unbiased_linked_data,
note="Final check after linking and missing-value handling."
)
# 7. If the dataset is usable, save it as CSV
if is_usable:
unbiased_linked_data.to_csv(out_data_file) |