File size: 6,135 Bytes
24fe0da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Endometriosis"
cohort = "GSE120103"

# Input paths
in_trait_dir = "../DATA/GEO/Endometriosis"
in_cohort_dir = "../DATA/GEO/Endometriosis/GSE120103"

# Output paths
out_data_file = "./output/preprocess/1/Endometriosis/GSE120103.csv"
out_gene_data_file = "./output/preprocess/1/Endometriosis/gene_data/GSE120103.csv"
out_clinical_data_file = "./output/preprocess/1/Endometriosis/clinical_data/GSE120103.csv"
json_path = "./output/preprocess/1/Endometriosis/cohort_info.json"

# STEP1
from tools.preprocess import *
# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)

# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)

# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("Sample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1. Gene Expression Data Availability
is_gene_available = True  # Identified "whole genome expression" in the dataset description.

# 2. Variable Availability
#    trait_row = 1, age_row = None, gender_row = None based on the sample characteristics dictionary.
trait_row = 1
age_row = None
gender_row = None

# 2.2 Data Type Conversion
def convert_trait(x: str):
    """Convert the sample group information to a binary trait variable: 0 for Disease free, 1 for Stage IV Ovarian Endometriosis."""
    if ':' in x:
        _, val = x.split(':', 1)
        val = val.strip().lower()
    else:
        val = x.strip().lower()
    if 'stage iv ovarian endometriosis' in val:
        return 1
    elif 'disease free endometrium' in val:
        return 0
    return None  # For any unexpected value

def convert_age(x: str):
    """No age data is available in this dataset."""
    return None

def convert_gender(x: str):
    """No gender variation in this dataset (all female)."""
    return None

# 3. Save Metadata (Initial Filtering)
is_trait_available = (trait_row is not None)
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# 4. Clinical Feature Extraction (only if trait_row is not None)
if trait_row is not None:
    selected_clinical_df = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    # Preview the extracted clinical features
    preview = preview_df(selected_clinical_df)
    print(preview)

    # Save the extracted clinical features
    selected_clinical_df.to_csv(out_clinical_data_file, index=False)
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)

# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# Based on the provided identifiers, they appear to be array probe IDs rather than standard human gene symbols.
# Therefore, gene mapping is required.

print("requires_gene_mapping = True")
# STEP5
# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.
gene_annotation = get_gene_annotation(soft_file)

# 2. Use the 'preview_df' function from the library to preview the data and print out the results.
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# 1. Identify the matching columns in the gene annotation for the probe IDs and gene symbols.
mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="GENE_SYMBOL")

# 2. Convert probe-level measurements to gene-level expression data.
gene_data = apply_gene_mapping(gene_data, mapping_df)

# (Optional) Print a quick check of the resulting gene_data.
print("Mapped gene_data shape:", gene_data.shape)
print("First 5 mapped gene symbols:", gene_data.index[:5].tolist())
# STEP 7

import pandas as pd

# 1. Normalize the gene expression data to standard gene symbols.
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)
print("Normalized gene expression data saved to:", out_gene_data_file)

# 2. Read back the clinical data, reassign its single row index to the trait name, and link with genetic data.
selected_clinical_df = pd.read_csv(out_clinical_data_file, header=0)
selected_clinical_df.index = [trait]  # Ensure the clinical row is labeled by the trait
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)

# 3. Handle missing values systematically.
df = handle_missing_values(linked_data, trait)

# 4. Determine whether the trait or demographic features are biased; remove biased demographic features.
trait_biased, df = judge_and_remove_biased_features(df, trait)

# 5. Perform final validation with full dataset information.
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=trait_biased,
    df=df,
    note="Final step with linking, missing-value handling, bias checks."
)

# 6. If the data is usable, save the final linked data.
if is_usable:
    df.to_csv(out_data_file)
    print(f"Final linked data saved to: {out_data_file}")
else:
    print("Dataset is not usable or severely biased. No final data saved.")