Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +28 -0
- p1/preprocess/Chronic_kidney_disease/gene_data/TCGA.csv +3 -0
- p1/preprocess/Colon_and_Rectal_Cancer/TCGA.csv +3 -0
- p1/preprocess/Colon_and_Rectal_Cancer/gene_data/TCGA.csv +3 -0
- p1/preprocess/Craniosynostosis/GSE27976.csv +3 -0
- p1/preprocess/Craniosynostosis/gene_data/GSE27976.csv +3 -0
- p1/preprocess/Crohns_Disease/gene_data/GSE186582.csv +3 -0
- p1/preprocess/Depression/gene_data/GSE135524.csv +3 -0
- p1/preprocess/Depression/gene_data/GSE81761.csv +3 -0
- p1/preprocess/Duchenne_Muscular_Dystrophy/GSE79263.csv +3 -0
- p1/preprocess/Duchenne_Muscular_Dystrophy/gene_data/GSE109178.csv +3 -0
- p1/preprocess/Duchenne_Muscular_Dystrophy/gene_data/GSE13608.csv +3 -0
- p1/preprocess/Duchenne_Muscular_Dystrophy/gene_data/GSE79263.csv +3 -0
- p1/preprocess/Eczema/GSE182740.csv +3 -0
- p1/preprocess/Eczema/GSE32924.csv +0 -0
- p1/preprocess/Eczema/GSE57225.csv +3 -0
- p1/preprocess/Eczema/gene_data/GSE120899.csv +0 -0
- p1/preprocess/Eczema/gene_data/GSE150797.csv +3 -0
- p1/preprocess/Eczema/gene_data/GSE182740.csv +3 -0
- p1/preprocess/Eczema/gene_data/GSE32924.csv +0 -0
- p1/preprocess/Eczema/gene_data/GSE57225.csv +3 -0
- p1/preprocess/Eczema/gene_data/GSE61225.csv +3 -0
- p1/preprocess/Endometrioid_Cancer/GSE40785.csv +0 -0
- p1/preprocess/Endometrioid_Cancer/GSE65986.csv +0 -0
- p1/preprocess/Endometrioid_Cancer/GSE68600.csv +0 -0
- p1/preprocess/Endometrioid_Cancer/GSE73551.csv +3 -0
- p1/preprocess/Endometrioid_Cancer/clinical_data/GSE40785.csv +2 -0
- p1/preprocess/Endometrioid_Cancer/clinical_data/GSE65986.csv +3 -0
- p1/preprocess/Endometrioid_Cancer/clinical_data/GSE66667.csv +2 -0
- p1/preprocess/Endometrioid_Cancer/clinical_data/GSE68600.csv +2 -0
- p1/preprocess/Endometrioid_Cancer/clinical_data/GSE73551.csv +2 -0
- p1/preprocess/Endometrioid_Cancer/clinical_data/GSE73637.csv +2 -0
- p1/preprocess/Endometrioid_Cancer/code/GSE120490.py +163 -0
- p1/preprocess/Endometrioid_Cancer/code/GSE40785.py +181 -0
- p1/preprocess/Endometrioid_Cancer/code/GSE65986.py +193 -0
- p1/preprocess/Endometrioid_Cancer/code/GSE66667.py +185 -0
- p1/preprocess/Endometrioid_Cancer/code/GSE68600.py +189 -0
- p1/preprocess/Endometrioid_Cancer/code/GSE73551.py +176 -0
- p1/preprocess/Endometrioid_Cancer/code/GSE73614.py +190 -0
- p1/preprocess/Endometrioid_Cancer/code/GSE73637.py +287 -0
- p1/preprocess/Endometrioid_Cancer/code/GSE94523.py +70 -0
- p1/preprocess/Endometrioid_Cancer/code/GSE94524.py +74 -0
- p1/preprocess/Endometrioid_Cancer/code/TCGA.py +111 -0
- p1/preprocess/Endometrioid_Cancer/cohort_info.json +1 -0
- p1/preprocess/Endometrioid_Cancer/gene_data/GSE120490.csv +3 -0
- p1/preprocess/Endometrioid_Cancer/gene_data/GSE40785.csv +0 -0
- p1/preprocess/Endometrioid_Cancer/gene_data/GSE65986.csv +0 -0
- p1/preprocess/Endometrioid_Cancer/gene_data/GSE66667.csv +0 -0
- p1/preprocess/Endometrioid_Cancer/gene_data/GSE68600.csv +0 -0
- p1/preprocess/Endometrioid_Cancer/gene_data/GSE73551.csv +3 -0
.gitattributes
CHANGED
@@ -1048,3 +1048,31 @@ p1/preprocess/Cystic_Fibrosis/gene_data/GSE67698.csv filter=lfs diff=lfs merge=l
|
|
1048 |
p1/preprocess/Cystic_Fibrosis/gene_data/GSE71799.csv filter=lfs diff=lfs merge=lfs -text
|
1049 |
p1/preprocess/Depression/gene_data/GSE138297.csv filter=lfs diff=lfs merge=lfs -text
|
1050 |
p1/preprocess/Depression/gene_data/GSE149980.csv filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1048 |
p1/preprocess/Cystic_Fibrosis/gene_data/GSE71799.csv filter=lfs diff=lfs merge=lfs -text
|
1049 |
p1/preprocess/Depression/gene_data/GSE138297.csv filter=lfs diff=lfs merge=lfs -text
|
1050 |
p1/preprocess/Depression/gene_data/GSE149980.csv filter=lfs diff=lfs merge=lfs -text
|
1051 |
+
p1/preprocess/Depression/gene_data/GSE135524.csv filter=lfs diff=lfs merge=lfs -text
|
1052 |
+
p1/preprocess/Duchenne_Muscular_Dystrophy/gene_data/GSE109178.csv filter=lfs diff=lfs merge=lfs -text
|
1053 |
+
p1/preprocess/Duchenne_Muscular_Dystrophy/gene_data/GSE13608.csv filter=lfs diff=lfs merge=lfs -text
|
1054 |
+
p1/preprocess/Colon_and_Rectal_Cancer/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
1055 |
+
p1/preprocess/Craniosynostosis/GSE27976.csv filter=lfs diff=lfs merge=lfs -text
|
1056 |
+
p1/preprocess/Craniosynostosis/gene_data/GSE27976.csv filter=lfs diff=lfs merge=lfs -text
|
1057 |
+
p1/preprocess/Depression/gene_data/GSE81761.csv filter=lfs diff=lfs merge=lfs -text
|
1058 |
+
p1/preprocess/Colon_and_Rectal_Cancer/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
1059 |
+
p1/preprocess/Duchenne_Muscular_Dystrophy/GSE79263.csv filter=lfs diff=lfs merge=lfs -text
|
1060 |
+
p1/preprocess/Eczema/GSE182740.csv filter=lfs diff=lfs merge=lfs -text
|
1061 |
+
p1/preprocess/Eczema/GSE57225.csv filter=lfs diff=lfs merge=lfs -text
|
1062 |
+
p1/preprocess/Crohns_Disease/gene_data/GSE186582.csv filter=lfs diff=lfs merge=lfs -text
|
1063 |
+
p1/preprocess/Duchenne_Muscular_Dystrophy/gene_data/GSE79263.csv filter=lfs diff=lfs merge=lfs -text
|
1064 |
+
p1/preprocess/Eczema/gene_data/GSE182740.csv filter=lfs diff=lfs merge=lfs -text
|
1065 |
+
p1/preprocess/Eczema/gene_data/GSE57225.csv filter=lfs diff=lfs merge=lfs -text
|
1066 |
+
p1/preprocess/Endometrioid_Cancer/GSE73551.csv filter=lfs diff=lfs merge=lfs -text
|
1067 |
+
p1/preprocess/Eczema/gene_data/GSE61225.csv filter=lfs diff=lfs merge=lfs -text
|
1068 |
+
p1/preprocess/Eczema/gene_data/GSE150797.csv filter=lfs diff=lfs merge=lfs -text
|
1069 |
+
p1/preprocess/Endometrioid_Cancer/gene_data/GSE73551.csv filter=lfs diff=lfs merge=lfs -text
|
1070 |
+
p1/preprocess/Endometrioid_Cancer/gene_data/GSE73637.csv filter=lfs diff=lfs merge=lfs -text
|
1071 |
+
p1/preprocess/Endometriosis/GSE73622.csv filter=lfs diff=lfs merge=lfs -text
|
1072 |
+
p1/preprocess/Endometrioid_Cancer/gene_data/GSE73614.csv filter=lfs diff=lfs merge=lfs -text
|
1073 |
+
p1/preprocess/Endometriosis/GSE145702.csv filter=lfs diff=lfs merge=lfs -text
|
1074 |
+
p1/preprocess/Endometriosis/gene_data/GSE145702.csv filter=lfs diff=lfs merge=lfs -text
|
1075 |
+
p1/preprocess/Endometrioid_Cancer/gene_data/GSE120490.csv filter=lfs diff=lfs merge=lfs -text
|
1076 |
+
p1/preprocess/Chronic_kidney_disease/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
1077 |
+
p1/preprocess/Endometriosis/gene_data/GSE165004.csv filter=lfs diff=lfs merge=lfs -text
|
1078 |
+
p1/preprocess/Endometriosis/gene_data/GSE73622.csv filter=lfs diff=lfs merge=lfs -text
|
p1/preprocess/Chronic_kidney_disease/gene_data/TCGA.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad56d64496541ee0872327215eca3da6769d5e7ccee6a3d8759e9c00555c00ed
|
3 |
+
size 182067513
|
p1/preprocess/Colon_and_Rectal_Cancer/TCGA.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3c5390e6daf5e3e47bb2c3812fe5afc0432b495fa8f86816dbdef6f026e048eb
|
3 |
+
size 126039154
|
p1/preprocess/Colon_and_Rectal_Cancer/gene_data/TCGA.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:12ad01388efefe4f4b1c0553956a6584709216157e914efc50afbd3ab6db088f
|
3 |
+
size 126034303
|
p1/preprocess/Craniosynostosis/GSE27976.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:557ff216dbfb89b8495832e041de2ba238ab1d53ac0c276a5e1bf2e4b7ab7f35
|
3 |
+
size 84076597
|
p1/preprocess/Craniosynostosis/gene_data/GSE27976.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:16279c820c79d0c94bb8ba0cbab22d0bf85779ec2ffd3a6b35e1178e1d1bb0d5
|
3 |
+
size 84073337
|
p1/preprocess/Crohns_Disease/gene_data/GSE186582.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4a9c7f53a5f6ea3c35153efb348986dccceb6882564285f9c3b52df03b7521f5
|
3 |
+
size 80350269
|
p1/preprocess/Depression/gene_data/GSE135524.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:da8beefb314eeab7395b333e8a7b2136ad6af14fc7414ef9a6ee911a2d4fc085
|
3 |
+
size 18896895
|
p1/preprocess/Depression/gene_data/GSE81761.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:80d271a331e56d79d6ae609b699491af556ac5efb7e7466dd13a554ce437216e
|
3 |
+
size 21422884
|
p1/preprocess/Duchenne_Muscular_Dystrophy/GSE79263.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5b04c843ca8a1a37ee127d045d3eae0f8cd110d80e4f168d0829d3a275ea6e2d
|
3 |
+
size 22002744
|
p1/preprocess/Duchenne_Muscular_Dystrophy/gene_data/GSE109178.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1b3bf5fe2136dab438c44d5884d783e459a41ddee7375966ec649904d339b1a6
|
3 |
+
size 10804879
|
p1/preprocess/Duchenne_Muscular_Dystrophy/gene_data/GSE13608.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ac51962b6fe19aedebf4a486659790dbdc0831f54aa25eb8883971ca8a2b9f7f
|
3 |
+
size 11626290
|
p1/preprocess/Duchenne_Muscular_Dystrophy/gene_data/GSE79263.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3795bd2996cbb1a8bc0192d993a9a679e691c5496793d969c09eaf9c76d0b51b
|
3 |
+
size 24035990
|
p1/preprocess/Eczema/GSE182740.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0279f7574c1e3094045ed43719b8b520f6b8a32194b9ec4d755d264ecfcb2af5
|
3 |
+
size 16722900
|
p1/preprocess/Eczema/GSE32924.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p1/preprocess/Eczema/GSE57225.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:611c42ec645481fd1d05c821e06cc5c04a2ead1c5c5075a7cf6091e0e4a561cf
|
3 |
+
size 15231598
|
p1/preprocess/Eczema/gene_data/GSE120899.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p1/preprocess/Eczema/gene_data/GSE150797.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3de8e5b459707fa792e521653fea9e87b73d2dc5680f556235ba6c1b37be4e29
|
3 |
+
size 28353275
|
p1/preprocess/Eczema/gene_data/GSE182740.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:095173af41a72566b017be3af9b37ffcce35a7b1300de4acb4731e97fb40270d
|
3 |
+
size 16722597
|
p1/preprocess/Eczema/gene_data/GSE32924.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p1/preprocess/Eczema/gene_data/GSE57225.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:04e68c8383ece4574a117f19746426af4d18aff14370c16c48c34694742b4f4f
|
3 |
+
size 15230778
|
p1/preprocess/Eczema/gene_data/GSE61225.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:48bc07e8b37b35fecb1c6a1c1a4ba16583326afa9becbd526d97f068140712ad
|
3 |
+
size 15566705
|
p1/preprocess/Endometrioid_Cancer/GSE40785.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p1/preprocess/Endometrioid_Cancer/GSE65986.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p1/preprocess/Endometrioid_Cancer/GSE68600.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p1/preprocess/Endometrioid_Cancer/GSE73551.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d4c290838f5d518e6242d47cad1fd2f7170339fdb7b700f1ad1c9a79e681d9d2
|
3 |
+
size 14282175
|
p1/preprocess/Endometrioid_Cancer/clinical_data/GSE40785.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
GSM1001395,GSM1001396,GSM1001397,GSM1001398,GSM1001399,GSM1001400,GSM1001401,GSM1001402,GSM1001403,GSM1001404,GSM1001405,GSM1001406,GSM1001407,GSM1001408,GSM1001409,GSM1001410,GSM1001411,GSM1001412,GSM1001413,GSM1001414,GSM1001415,GSM1001416,GSM1001417,GSM1001418,GSM1001419,GSM1001420,GSM1001421,GSM1001422,GSM1001423,GSM1001424,GSM1001425,GSM1001426,GSM1001427,GSM1001428,GSM1001429,GSM1001430,GSM1001431
|
2 |
+
0.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,,0.0,0.0,1.0,,0.0,0.0,1.0,0.0,0.0,0.0,0.0,,0.0,0.0,,,0.0,0.0,,,1.0,1.0,0.0,0.0,0.0,0.0,0.0
|
p1/preprocess/Endometrioid_Cancer/clinical_data/GSE65986.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
GSM1612097,GSM1612098,GSM1612099,GSM1612100,GSM1612101,GSM1612102,GSM1612103,GSM1612104,GSM1612105,GSM1612106,GSM1612107,GSM1612108,GSM1612109,GSM1612110,GSM1612111,GSM1612112,GSM1612113,GSM1612114,GSM1612115,GSM1612116,GSM1612117,GSM1612118,GSM1612119,GSM1612120,GSM1612121,GSM1612122,GSM1612123,GSM1612124,GSM1612125,GSM1612126,GSM1612127,GSM1612128,GSM1612129,GSM1612130,GSM1612131,GSM1612132,GSM1612133,GSM1612134,GSM1612135,GSM1612136,GSM1612137,GSM1612138,GSM1612139,GSM1612140,GSM1612141,GSM1612142,GSM1612143,GSM1612144,GSM1612145,GSM1612146,GSM1612147,GSM1612148,GSM1612149,GSM1612150,GSM1612151
|
2 |
+
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
|
3 |
+
64.0,57.0,59.0,50.0,52.0,66.0,67.0,37.0,53.0,46.0,57.0,51.0,55.0,39.0,71.0,54.0,64.0,53.0,45.0,80.0,55.0,64.0,74.0,67.0,39.0,43.0,39.0,49.0,61.0,64.0,61.0,32.0,69.0,45.0,52.0,74.0,33.0,41.0,71.0,67.0,58.0,58.0,44.0,56.0,56.0,69.0,49.0,74.0,56.0,58.0,68.0,64.0,63.0,38.0,62.0
|
p1/preprocess/Endometrioid_Cancer/clinical_data/GSE66667.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
GSM1627456,GSM1627457,GSM1627458,GSM1627459,GSM1627460,GSM1627461,GSM1627462,GSM1627463,GSM1627464,GSM1627465,GSM1627466,GSM1627467,GSM1627468,GSM1627469,GSM1627470,GSM1627471,GSM1627472,GSM1627473,GSM1627474,GSM1627475,GSM1627476,GSM1627477,GSM1627478,GSM1627479,GSM1627480,GSM1627481,GSM1627482,GSM1627483,GSM1627484,GSM1627485,GSM1627486,GSM1627487,GSM1627488,GSM1627489,GSM1627490,GSM1627491
|
2 |
+
0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
|
p1/preprocess/Endometrioid_Cancer/clinical_data/GSE68600.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
GSM1676602,GSM1676603,GSM1676604,GSM1676605,GSM1676606,GSM1676607,GSM1676608,GSM1676609,GSM1676610,GSM1676611,GSM1676612,GSM1676613,GSM1676614,GSM1676615,GSM1676616,GSM1676617,GSM1676618,GSM1676619,GSM1676620,GSM1676621,GSM1676622,GSM1676623,GSM1676624,GSM1676625,GSM1676626,GSM1676627,GSM1676628,GSM1676629,GSM1676630,GSM1676631,GSM1676632,GSM1676633,GSM1676634,GSM1676635,GSM1676636,GSM1676637,GSM1676638,GSM1676639,GSM1676640,GSM1676641,GSM1676642,GSM1676643,GSM1676644,GSM1676645,GSM1676646,GSM1676647,GSM1676648,GSM1676649,GSM1676650,GSM1676651,GSM1676652,GSM1676653,GSM1676654,GSM1676655,GSM1676656,GSM1676657,GSM1676658,GSM1676659,GSM1676660,GSM1676661,GSM1676662,GSM1676663,GSM1676664,GSM1676665,GSM1676666,GSM1676667,GSM1676668,GSM1676669,GSM1676670,GSM1676671,GSM1676672,GSM1676673,GSM1676674,GSM1676675,GSM1676676,GSM1676677,GSM1676678,GSM1676679,GSM1676680,GSM1676681,GSM1676682,GSM1676683,GSM1676684,GSM1676685,GSM1676686,GSM1676687,GSM1676688,GSM1676689,GSM1676690,GSM1676691,GSM1676692,GSM1676693,GSM1676694,GSM1676695,GSM1676696,GSM1676697,GSM1676698,GSM1676699,GSM1676700,GSM1676701,GSM1676702,GSM1676703,GSM1676704,GSM1676705,GSM1676706,GSM1676707,GSM1676708,GSM1676709,GSM1676710,GSM1676711,GSM1676712,GSM1676713,GSM1676714
|
2 |
+
0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0
|
p1/preprocess/Endometrioid_Cancer/clinical_data/GSE73551.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
GSM1897741,GSM1897744,GSM1897746,GSM1897748,GSM1897750,GSM1897752,GSM1897753,GSM1897755,GSM1897757,GSM1897759,GSM1897761,GSM1897763,GSM1897765,GSM1897767,GSM1897769,GSM1897770,GSM1897772,GSM1897774,GSM1897776,GSM1897778,GSM1897780,GSM1897782,GSM1897784,GSM1897786,GSM1897787,GSM1897789,GSM1897792,GSM1897794,GSM1897795,GSM1897797,GSM1897799,GSM1897801,GSM1897802,GSM1897804,GSM1897806,GSM1897808,GSM1897810,GSM1897812,GSM1897814,GSM1897816,GSM1897818,GSM1897820,GSM1897822,GSM1897823,GSM1897825,GSM1897827,GSM1897829,GSM1897831,GSM1897833,GSM1897835
|
2 |
+
0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
|
p1/preprocess/Endometrioid_Cancer/clinical_data/GSE73637.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17
|
2 |
+
0.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,,,,,,,,
|
p1/preprocess/Endometrioid_Cancer/code/GSE120490.py
ADDED
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Endometrioid_Cancer"
|
6 |
+
cohort = "GSE120490"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Endometrioid_Cancer"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Endometrioid_Cancer/GSE120490"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Endometrioid_Cancer/GSE120490.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Endometrioid_Cancer/gene_data/GSE120490.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Endometrioid_Cancer/clinical_data/GSE120490.csv"
|
16 |
+
json_path = "./output/preprocess/1/Endometrioid_Cancer/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
is_gene_available = True # Based on "transcriptomic analysis using the Affymetrix U133 Plus 2.0 microarray platform"
|
38 |
+
|
39 |
+
# 2. Variable Availability and Conversion
|
40 |
+
# This dataset does not provide any row for trait, age, or gender.
|
41 |
+
# So all row indicators are None.
|
42 |
+
trait_row = None
|
43 |
+
age_row = None
|
44 |
+
gender_row = None
|
45 |
+
|
46 |
+
# Define dummy conversion functions, since none of these variables is available.
|
47 |
+
def convert_trait(value: str):
|
48 |
+
return None
|
49 |
+
|
50 |
+
def convert_age(value: str):
|
51 |
+
return None
|
52 |
+
|
53 |
+
def convert_gender(value: str):
|
54 |
+
return None
|
55 |
+
|
56 |
+
# 3. Save Metadata (Initial Filtering)
|
57 |
+
is_trait_available = (trait_row is not None)
|
58 |
+
validate_and_save_cohort_info(
|
59 |
+
is_final=False,
|
60 |
+
cohort=cohort,
|
61 |
+
info_path=json_path,
|
62 |
+
is_gene_available=is_gene_available,
|
63 |
+
is_trait_available=is_trait_available
|
64 |
+
)
|
65 |
+
|
66 |
+
# 4. Since trait_row is None, we skip clinical feature extraction.
|
67 |
+
# STEP3
|
68 |
+
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
|
69 |
+
gene_data = get_genetic_data(matrix_file)
|
70 |
+
|
71 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
72 |
+
print(gene_data.index[:20])
|
73 |
+
print("requires_gene_mapping = True")
|
74 |
+
# STEP5
|
75 |
+
import pandas as pd
|
76 |
+
import io
|
77 |
+
|
78 |
+
# 1. Extract the lines that do NOT start with '^', '!', or '#', but do NOT parse them into a DataFrame yet.
|
79 |
+
annotation_text, _ = filter_content_by_prefix(
|
80 |
+
source=soft_file,
|
81 |
+
prefixes_a=['^', '!', '#'],
|
82 |
+
unselect=True,
|
83 |
+
source_type='file',
|
84 |
+
return_df_a=False,
|
85 |
+
return_df_b=False
|
86 |
+
)
|
87 |
+
|
88 |
+
# 2. Manually parse the filtered text into a DataFrame, specifying engine="python" to avoid buffer overflow issues.
|
89 |
+
gene_annotation = pd.read_csv(
|
90 |
+
io.StringIO(annotation_text),
|
91 |
+
delimiter='\t',
|
92 |
+
on_bad_lines='skip',
|
93 |
+
engine='python'
|
94 |
+
)
|
95 |
+
|
96 |
+
print("Gene annotation preview:")
|
97 |
+
print(preview_df(gene_annotation))
|
98 |
+
# STEP6: Gene Identifier Mapping
|
99 |
+
|
100 |
+
# 1. Identify the columns for gene IDs and gene symbols in the gene_annotation dataframe.
|
101 |
+
# From our observations, the "ID" column matches the row index of the gene_data expression,
|
102 |
+
# and the "Gene Symbol" column in the annotation holds the associated gene symbols.
|
103 |
+
|
104 |
+
# 2. Extract the mapping between probes and gene symbols and store it in mapping_df.
|
105 |
+
mapping_df = get_gene_mapping(gene_annotation, "ID", "Gene Symbol")
|
106 |
+
|
107 |
+
# 3. Apply the mapping to convert probe-level expression values into gene-level expression data.
|
108 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
109 |
+
|
110 |
+
# Confirm the resulting gene_data shape or a snippet if needed (commented out):
|
111 |
+
# print(gene_data.shape)
|
112 |
+
# print(gene_data.head())
|
113 |
+
import os
|
114 |
+
import pandas as pd
|
115 |
+
|
116 |
+
# STEP7
|
117 |
+
|
118 |
+
# 1) Normalize gene symbols and save
|
119 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
120 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
121 |
+
|
122 |
+
# Check whether we actually have a clinical CSV file (i.e., trait data) from Step 2
|
123 |
+
if os.path.exists(out_clinical_data_file):
|
124 |
+
# 2) Link the clinical and gene expression data
|
125 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
|
126 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
|
127 |
+
|
128 |
+
# 3) Handle missing values
|
129 |
+
final_data = handle_missing_values(linked_data, trait_col=trait)
|
130 |
+
|
131 |
+
# 4) Evaluate bias in the trait
|
132 |
+
trait_biased, final_data = judge_and_remove_biased_features(final_data, trait)
|
133 |
+
|
134 |
+
# 5) Final validation (trait is available)
|
135 |
+
is_usable = validate_and_save_cohort_info(
|
136 |
+
is_final=True,
|
137 |
+
cohort=cohort,
|
138 |
+
info_path=json_path,
|
139 |
+
is_gene_available=True,
|
140 |
+
is_trait_available=True,
|
141 |
+
is_biased=trait_biased,
|
142 |
+
df=final_data,
|
143 |
+
note="Trait data successfully extracted in Step 2."
|
144 |
+
)
|
145 |
+
|
146 |
+
# 6) If the dataset is usable, save
|
147 |
+
if is_usable:
|
148 |
+
final_data.to_csv(out_data_file)
|
149 |
+
|
150 |
+
else:
|
151 |
+
# If the clinical file does not exist, the trait is unavailable
|
152 |
+
# Perform final validation indicating that we lack trait data
|
153 |
+
empty_df = pd.DataFrame()
|
154 |
+
validate_and_save_cohort_info(
|
155 |
+
is_final=True,
|
156 |
+
cohort=cohort,
|
157 |
+
info_path=json_path,
|
158 |
+
is_gene_available=True,
|
159 |
+
is_trait_available=False,
|
160 |
+
is_biased=True, # Arbitrary non-None to skip usage
|
161 |
+
df=empty_df,
|
162 |
+
note="No trait data was found; linking and final dataset output are skipped."
|
163 |
+
)
|
p1/preprocess/Endometrioid_Cancer/code/GSE40785.py
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Endometrioid_Cancer"
|
6 |
+
cohort = "GSE40785"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Endometrioid_Cancer"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Endometrioid_Cancer/GSE40785"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Endometrioid_Cancer/GSE40785.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Endometrioid_Cancer/gene_data/GSE40785.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Endometrioid_Cancer/clinical_data/GSE40785.csv"
|
16 |
+
json_path = "./output/preprocess/1/Endometrioid_Cancer/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
# 1. Determine if the dataset contains gene expression data
|
37 |
+
# Based on the series description, there are gene probes and expression profiling.
|
38 |
+
# So we conclude it likely has suitable gene expression data (not just miRNA or methylation).
|
39 |
+
is_gene_available = True
|
40 |
+
|
41 |
+
# 2. Determine availability of trait, age, and gender
|
42 |
+
# From the dictionary, we see various "histology:" entries at key=1, including "histology: Endometrioid".
|
43 |
+
# This indicates trait data is present (key=1). No mention of age or gender data was found in the dictionary.
|
44 |
+
trait_row = 1
|
45 |
+
age_row = None
|
46 |
+
gender_row = None
|
47 |
+
|
48 |
+
# 2.2 Data Type Conversion
|
49 |
+
# We'll define functions that convert the raw strings to appropriate data types.
|
50 |
+
# Trait: We'll treat "Endometrioid" or values containing "Endometrioid" as 1, and anything else as 0.
|
51 |
+
def convert_trait(value: str) -> Optional[int]:
|
52 |
+
if not isinstance(value, str):
|
53 |
+
return None
|
54 |
+
# Split on colon if present
|
55 |
+
parts = value.split(':', 1)
|
56 |
+
val = parts[-1].strip().lower() # value after colon, or the entire string if no colon
|
57 |
+
if 'endometrioid' in val:
|
58 |
+
return 1
|
59 |
+
elif 'histology' in val or 'mucinous' in val or 'clear cell' in val or 'serous' in val:
|
60 |
+
return 0
|
61 |
+
return None # for unknown cases
|
62 |
+
|
63 |
+
# Since we don't have age_row or gender_row, we only define simple converters returning None if called.
|
64 |
+
def convert_age(value: str) -> Optional[float]:
|
65 |
+
return None
|
66 |
+
|
67 |
+
def convert_gender(value: str) -> Optional[int]:
|
68 |
+
return None
|
69 |
+
|
70 |
+
# 3. Conduct initial filtering on dataset usability and save metadata
|
71 |
+
is_trait_available = (trait_row is not None)
|
72 |
+
is_usable_flag = validate_and_save_cohort_info(
|
73 |
+
is_final=False,
|
74 |
+
cohort=cohort,
|
75 |
+
info_path=json_path,
|
76 |
+
is_gene_available=is_gene_available,
|
77 |
+
is_trait_available=is_trait_available
|
78 |
+
)
|
79 |
+
|
80 |
+
# 4. Clinical Feature Extraction (only if trait_row is not None)
|
81 |
+
if trait_row is not None:
|
82 |
+
# Assume "clinical_data" is the DataFrame obtained previously
|
83 |
+
selected_clinical_df = geo_select_clinical_features(
|
84 |
+
clinical_data,
|
85 |
+
trait=trait,
|
86 |
+
trait_row=trait_row,
|
87 |
+
convert_trait=convert_trait,
|
88 |
+
age_row=age_row,
|
89 |
+
convert_age=convert_age,
|
90 |
+
gender_row=gender_row,
|
91 |
+
convert_gender=convert_gender
|
92 |
+
)
|
93 |
+
# Preview the selected clinical features
|
94 |
+
clinical_preview = preview_df(selected_clinical_df)
|
95 |
+
print("Preview of Clinical Features:", clinical_preview)
|
96 |
+
|
97 |
+
# Save the extracted clinical features to CSV
|
98 |
+
selected_clinical_df.to_csv(out_clinical_data_file, index=False)
|
99 |
+
# STEP3
|
100 |
+
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
|
101 |
+
gene_data = get_genetic_data(matrix_file)
|
102 |
+
|
103 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
104 |
+
print(gene_data.index[:20])
|
105 |
+
# Based on the given gene expression data indices (e.g., "ILMN_1343291"), these are Illumina probe IDs,
|
106 |
+
# not standard human gene symbols. Hence, gene mapping is required.
|
107 |
+
print("requires_gene_mapping = True")
|
108 |
+
# STEP5
|
109 |
+
import pandas as pd
|
110 |
+
import io
|
111 |
+
|
112 |
+
# 1. Extract the lines that do NOT start with '^', '!', or '#', but do NOT parse them into a DataFrame yet.
|
113 |
+
annotation_text, _ = filter_content_by_prefix(
|
114 |
+
source=soft_file,
|
115 |
+
prefixes_a=['^', '!', '#'],
|
116 |
+
unselect=True,
|
117 |
+
source_type='file',
|
118 |
+
return_df_a=False,
|
119 |
+
return_df_b=False
|
120 |
+
)
|
121 |
+
|
122 |
+
# 2. Manually parse the filtered text into a DataFrame, specifying engine="python" to avoid buffer overflow issues.
|
123 |
+
gene_annotation = pd.read_csv(
|
124 |
+
io.StringIO(annotation_text),
|
125 |
+
delimiter='\t',
|
126 |
+
on_bad_lines='skip',
|
127 |
+
engine='python'
|
128 |
+
)
|
129 |
+
|
130 |
+
print("Gene annotation preview:")
|
131 |
+
print(preview_df(gene_annotation))
|
132 |
+
# STEP: Gene Identifier Mapping
|
133 |
+
|
134 |
+
# 1 & 2. Determine columns for probe IDs ("ID") and gene symbols ("Symbol") from our annotation.
|
135 |
+
# Then extract a gene mapping DataFrame with two columns: [ID, Gene].
|
136 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')
|
137 |
+
|
138 |
+
# 3. Convert probe-level measurements to gene-level expression using the mapping.
|
139 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
140 |
+
|
141 |
+
# (Optional) Let's preview and then save the resulting gene-level expression data.
|
142 |
+
print("Preview of gene-level expression data:", preview_df(gene_data))
|
143 |
+
gene_data.to_csv(out_gene_data_file)
|
144 |
+
import pandas as pd
|
145 |
+
|
146 |
+
# STEP7
|
147 |
+
|
148 |
+
# 1) Normalize gene symbols and save
|
149 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
150 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
151 |
+
|
152 |
+
# Read back the clinical dataframe saved in Step 2.
|
153 |
+
# According to Step 2, we saved 1 row (the trait) × N columns (the samples) without the row index.
|
154 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file) # shape: (1, number_of_samples)
|
155 |
+
# Rename the row index to the trait (e.g., "Eczema")
|
156 |
+
selected_clinical_df.index = [trait]
|
157 |
+
|
158 |
+
# 2) Link the clinical and gene expression data
|
159 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
|
160 |
+
|
161 |
+
# 3) Handle missing values using the trait column
|
162 |
+
final_data = handle_missing_values(linked_data, trait_col=trait)
|
163 |
+
|
164 |
+
# 4) Evaluate bias in the trait (and remove biased demographic features if they existed)
|
165 |
+
trait_biased, final_data = judge_and_remove_biased_features(final_data, trait)
|
166 |
+
|
167 |
+
# 5) Final validation. Since we do have trait data, set is_trait_available=True
|
168 |
+
is_usable = validate_and_save_cohort_info(
|
169 |
+
is_final=True,
|
170 |
+
cohort=cohort,
|
171 |
+
info_path=json_path,
|
172 |
+
is_gene_available=True,
|
173 |
+
is_trait_available=True,
|
174 |
+
is_biased=trait_biased,
|
175 |
+
df=final_data,
|
176 |
+
note="Trait data successfully extracted from Step 2."
|
177 |
+
)
|
178 |
+
|
179 |
+
# 6) If the dataset is deemed usable, save final linked data
|
180 |
+
if is_usable:
|
181 |
+
final_data.to_csv(out_data_file)
|
p1/preprocess/Endometrioid_Cancer/code/GSE65986.py
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Endometrioid_Cancer"
|
6 |
+
cohort = "GSE65986"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Endometrioid_Cancer"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Endometrioid_Cancer/GSE65986"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Endometrioid_Cancer/GSE65986.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Endometrioid_Cancer/gene_data/GSE65986.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Endometrioid_Cancer/clinical_data/GSE65986.csv"
|
16 |
+
json_path = "./output/preprocess/1/Endometrioid_Cancer/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
# 1. Determine if gene expression data is available
|
37 |
+
# From the background info: "Gene expression ... was analyzed by Affymetrix U133plus2 array."
|
38 |
+
# Hence, it is gene expression rather than miRNA or methylation data.
|
39 |
+
is_gene_available = True
|
40 |
+
|
41 |
+
# 2. Identify data availability for trait, age, gender, and define conversion functions
|
42 |
+
|
43 |
+
# Observed keys in the sample characteristics dictionary:
|
44 |
+
# 0 -> histology: [Clear, Endometrioid, Serous]
|
45 |
+
# 1 -> age: [64, 57, ...]
|
46 |
+
# 2 -> Stage: ...
|
47 |
+
# 3 -> pfs: ...
|
48 |
+
# 4 -> prognosis: ...
|
49 |
+
# There is no key containing gender data, and it is likely all female since this is an ovarian cancer study.
|
50 |
+
|
51 |
+
trait_row = 0 # row 0 has multiple values including "Endometrioid", so it is not constant and is relevant to our trait.
|
52 |
+
age_row = 1 # row 1 has multiple age values, so it is valid.
|
53 |
+
gender_row = None # no gender info is available or it is constant (all female), so treat as not available.
|
54 |
+
|
55 |
+
def convert_trait(value: str):
|
56 |
+
"""Convert the 'histology' entries to a binary trait.
|
57 |
+
'Endometrioid' -> 1, others -> 0."""
|
58 |
+
val = value.split(':')[-1].strip().lower()
|
59 |
+
if val == 'endometrioid':
|
60 |
+
return 1
|
61 |
+
elif val in ['clear', 'serous']:
|
62 |
+
return 0
|
63 |
+
return None # unknown or unexpected text
|
64 |
+
|
65 |
+
def convert_age(value: str):
|
66 |
+
"""Convert 'age' entries to a continuous numeric type."""
|
67 |
+
val = value.split(':')[-1].strip()
|
68 |
+
try:
|
69 |
+
return float(val)
|
70 |
+
except:
|
71 |
+
return None
|
72 |
+
|
73 |
+
def convert_gender(value: str):
|
74 |
+
"""Convert 'gender' entries to binary: female->0, male->1.
|
75 |
+
Although not used here, define for completeness."""
|
76 |
+
val = value.split(':')[-1].strip().lower()
|
77 |
+
if val == 'female':
|
78 |
+
return 0
|
79 |
+
elif val == 'male':
|
80 |
+
return 1
|
81 |
+
return None
|
82 |
+
|
83 |
+
# 3. Save metadata after initial filtering
|
84 |
+
is_trait_available = (trait_row is not None)
|
85 |
+
is_usable = validate_and_save_cohort_info(
|
86 |
+
is_final=False,
|
87 |
+
cohort=cohort,
|
88 |
+
info_path=json_path,
|
89 |
+
is_gene_available=is_gene_available,
|
90 |
+
is_trait_available=is_trait_available
|
91 |
+
)
|
92 |
+
|
93 |
+
# 4. Clinical feature extraction if trait data is available
|
94 |
+
if trait_row is not None:
|
95 |
+
selected_clinical_df = geo_select_clinical_features(
|
96 |
+
clinical_data, # clinical_data is assumed to be already loaded from a previous step
|
97 |
+
trait,
|
98 |
+
trait_row,
|
99 |
+
convert_trait,
|
100 |
+
age_row=age_row,
|
101 |
+
convert_age=convert_age,
|
102 |
+
gender_row=gender_row,
|
103 |
+
convert_gender=convert_gender
|
104 |
+
)
|
105 |
+
# Preview and save
|
106 |
+
print("Preview of selected clinical features:\n", preview_df(selected_clinical_df))
|
107 |
+
selected_clinical_df.to_csv(out_clinical_data_file, index=False)
|
108 |
+
# STEP3
|
109 |
+
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
|
110 |
+
gene_data = get_genetic_data(matrix_file)
|
111 |
+
|
112 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
113 |
+
print(gene_data.index[:20])
|
114 |
+
# These IDs are Affymetrix probe set identifiers, not standard gene symbols.
|
115 |
+
# They require mapping to gene symbols.
|
116 |
+
|
117 |
+
print("requires_gene_mapping = True")
|
118 |
+
# STEP5
|
119 |
+
import pandas as pd
|
120 |
+
import io
|
121 |
+
|
122 |
+
# 1. Extract the lines that do NOT start with '^', '!', or '#', but do NOT parse them into a DataFrame yet.
|
123 |
+
annotation_text, _ = filter_content_by_prefix(
|
124 |
+
source=soft_file,
|
125 |
+
prefixes_a=['^', '!', '#'],
|
126 |
+
unselect=True,
|
127 |
+
source_type='file',
|
128 |
+
return_df_a=False,
|
129 |
+
return_df_b=False
|
130 |
+
)
|
131 |
+
|
132 |
+
# 2. Manually parse the filtered text into a DataFrame, specifying engine="python" to avoid buffer overflow issues.
|
133 |
+
gene_annotation = pd.read_csv(
|
134 |
+
io.StringIO(annotation_text),
|
135 |
+
delimiter='\t',
|
136 |
+
on_bad_lines='skip',
|
137 |
+
engine='python'
|
138 |
+
)
|
139 |
+
|
140 |
+
print("Gene annotation preview:")
|
141 |
+
print(preview_df(gene_annotation))
|
142 |
+
# STEP: Gene Identifier Mapping
|
143 |
+
|
144 |
+
# 1. Identify the corresponding columns in the annotation dataframe for probe IDs and gene symbols
|
145 |
+
probe_col = "ID"
|
146 |
+
gene_symbol_col = "Gene Symbol"
|
147 |
+
|
148 |
+
# 2. Get the gene mapping dataframe
|
149 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col=probe_col, gene_col=gene_symbol_col)
|
150 |
+
|
151 |
+
# 3. Convert probe-level measurements to gene expression data
|
152 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
153 |
+
|
154 |
+
# (Optional) Print shape and preview if desired
|
155 |
+
print("Mapped gene_data dimensions:", gene_data.shape)
|
156 |
+
print("Preview of mapped gene_data:\n", gene_data.iloc[:5, :5])
|
157 |
+
import pandas as pd
|
158 |
+
|
159 |
+
# STEP7
|
160 |
+
|
161 |
+
# 1) Normalize gene symbols and save
|
162 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
163 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
164 |
+
|
165 |
+
# 2) Read the clinical dataframe with header=0 to ensure the first row is recognized as column headers,
|
166 |
+
# leaving two rows of data to be indexed as [trait, "Age"].
|
167 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file, header=0)
|
168 |
+
selected_clinical_df.index = [trait, "Age"]
|
169 |
+
|
170 |
+
# 3) Link the clinical and gene expression data
|
171 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
|
172 |
+
|
173 |
+
# 4) Handle missing values using the trait column
|
174 |
+
final_data = handle_missing_values(linked_data, trait_col=trait)
|
175 |
+
|
176 |
+
# 5) Evaluate bias in the trait (and remove biased demographic features if they existed)
|
177 |
+
trait_biased, final_data = judge_and_remove_biased_features(final_data, trait)
|
178 |
+
|
179 |
+
# 6) Final validation. Since we do have trait data, set is_trait_available=True
|
180 |
+
is_usable = validate_and_save_cohort_info(
|
181 |
+
is_final=True,
|
182 |
+
cohort=cohort,
|
183 |
+
info_path=json_path,
|
184 |
+
is_gene_available=True,
|
185 |
+
is_trait_available=True,
|
186 |
+
is_biased=trait_biased,
|
187 |
+
df=final_data,
|
188 |
+
note="Trait and Age data in the first two rows of the clinical CSV."
|
189 |
+
)
|
190 |
+
|
191 |
+
# 7) If the dataset is deemed usable, save final linked data
|
192 |
+
if is_usable:
|
193 |
+
final_data.to_csv(out_data_file)
|
p1/preprocess/Endometrioid_Cancer/code/GSE66667.py
ADDED
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Endometrioid_Cancer"
|
6 |
+
cohort = "GSE66667"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Endometrioid_Cancer"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Endometrioid_Cancer/GSE66667"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Endometrioid_Cancer/GSE66667.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Endometrioid_Cancer/gene_data/GSE66667.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Endometrioid_Cancer/clinical_data/GSE66667.csv"
|
16 |
+
json_path = "./output/preprocess/1/Endometrioid_Cancer/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
# From the background info, microarrays were used to measure global gene expression, so:
|
38 |
+
is_gene_available = True
|
39 |
+
|
40 |
+
# 2. Variable Availability and Data Type Conversion
|
41 |
+
# The sample characteristics dictionary reveals that 'histology' (key=0) varies
|
42 |
+
# and includes "Endometrioid". Hence we use key 0 as trait_row.
|
43 |
+
# No age or gender info is present, so set those to None.
|
44 |
+
|
45 |
+
trait_row = 0
|
46 |
+
age_row = None
|
47 |
+
gender_row = None
|
48 |
+
|
49 |
+
def convert_trait(value: str) -> Optional[int]:
|
50 |
+
"""
|
51 |
+
Convert the histology field to a binary indicator:
|
52 |
+
1 if it matches 'Endometrioid', otherwise 0.
|
53 |
+
Unknown values => None (not expected here, but safe fallback).
|
54 |
+
"""
|
55 |
+
parts = value.split(":", 1)
|
56 |
+
val = parts[1].strip() if len(parts) > 1 else value
|
57 |
+
if "endometrioid" in val.lower():
|
58 |
+
return 1
|
59 |
+
else:
|
60 |
+
return 0
|
61 |
+
|
62 |
+
# Age and gender are not available
|
63 |
+
convert_age = None
|
64 |
+
convert_gender = None
|
65 |
+
|
66 |
+
# Determine if trait data is available
|
67 |
+
is_trait_available = (trait_row is not None)
|
68 |
+
|
69 |
+
# 3. Save Metadata (initial filtering)
|
70 |
+
validate_and_save_cohort_info(
|
71 |
+
is_final=False,
|
72 |
+
cohort=cohort,
|
73 |
+
info_path=json_path,
|
74 |
+
is_gene_available=is_gene_available,
|
75 |
+
is_trait_available=is_trait_available
|
76 |
+
)
|
77 |
+
|
78 |
+
# 4. Clinical Feature Extraction (only if trait data is available)
|
79 |
+
if trait_row is not None:
|
80 |
+
df_clinical_selected = geo_select_clinical_features(
|
81 |
+
clinical_data,
|
82 |
+
trait,
|
83 |
+
trait_row,
|
84 |
+
convert_trait,
|
85 |
+
age_row,
|
86 |
+
convert_age,
|
87 |
+
gender_row,
|
88 |
+
convert_gender
|
89 |
+
)
|
90 |
+
# Preview and save
|
91 |
+
preview_result = preview_df(df_clinical_selected)
|
92 |
+
print("Clinical features preview:", preview_result)
|
93 |
+
|
94 |
+
df_clinical_selected.to_csv(out_clinical_data_file, index=False)
|
95 |
+
# STEP3
|
96 |
+
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
|
97 |
+
gene_data = get_genetic_data(matrix_file)
|
98 |
+
|
99 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
100 |
+
print(gene_data.index[:20])
|
101 |
+
# Based on the given probe IDs (e.g., "1007_s_at", "1053_at"), they appear to be Affymetrix probe set IDs
|
102 |
+
# (or similar microarray probe identifiers). These are not standard human gene symbols and therefore
|
103 |
+
# require mapping to gene symbols.
|
104 |
+
|
105 |
+
print("requires_gene_mapping = True")
|
106 |
+
# STEP5
|
107 |
+
import pandas as pd
|
108 |
+
import io
|
109 |
+
|
110 |
+
# 1. Extract the lines that do NOT start with '^', '!', or '#', but do NOT parse them into a DataFrame yet.
|
111 |
+
annotation_text, _ = filter_content_by_prefix(
|
112 |
+
source=soft_file,
|
113 |
+
prefixes_a=['^', '!', '#'],
|
114 |
+
unselect=True,
|
115 |
+
source_type='file',
|
116 |
+
return_df_a=False,
|
117 |
+
return_df_b=False
|
118 |
+
)
|
119 |
+
|
120 |
+
# 2. Manually parse the filtered text into a DataFrame, specifying engine="python" to avoid buffer overflow issues.
|
121 |
+
gene_annotation = pd.read_csv(
|
122 |
+
io.StringIO(annotation_text),
|
123 |
+
delimiter='\t',
|
124 |
+
on_bad_lines='skip',
|
125 |
+
engine='python'
|
126 |
+
)
|
127 |
+
|
128 |
+
print("Gene annotation preview:")
|
129 |
+
print(preview_df(gene_annotation))
|
130 |
+
# STEP: Gene Identifier Mapping
|
131 |
+
|
132 |
+
# 1. Determine the columns corresponding to the probe IDs ("ID") and gene symbols ("Gene Symbol").
|
133 |
+
# From the preview, the annotation column for the microarray IDs is "ID",
|
134 |
+
# and the column for gene symbols is "Gene Symbol".
|
135 |
+
|
136 |
+
prob_col = "ID"
|
137 |
+
gene_col = "Gene Symbol"
|
138 |
+
|
139 |
+
# 2. Build a gene mapping dataframe from the annotation
|
140 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col=prob_col, gene_col=gene_col)
|
141 |
+
|
142 |
+
# 3. Convert probe-level measurements to gene-level expression using the mapping
|
143 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
144 |
+
|
145 |
+
# Print some basic info about the new gene_data
|
146 |
+
print("Mapped gene expression data shape:", gene_data.shape)
|
147 |
+
print("First few gene IDs after mapping:", gene_data.index[:10])
|
148 |
+
import pandas as pd
|
149 |
+
|
150 |
+
# STEP7
|
151 |
+
|
152 |
+
# 1) Normalize gene symbols and save
|
153 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
154 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
155 |
+
|
156 |
+
# Read back the clinical dataframe saved in Step 2.
|
157 |
+
# According to Step 2, we saved 1 row (the trait) × N columns (the samples) without the row index.
|
158 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file) # shape: (1, number_of_samples)
|
159 |
+
# Rename the row index to the trait (e.g., "Eczema")
|
160 |
+
selected_clinical_df.index = [trait]
|
161 |
+
|
162 |
+
# 2) Link the clinical and gene expression data
|
163 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
|
164 |
+
|
165 |
+
# 3) Handle missing values using the trait column
|
166 |
+
final_data = handle_missing_values(linked_data, trait_col=trait)
|
167 |
+
|
168 |
+
# 4) Evaluate bias in the trait (and remove biased demographic features if they existed)
|
169 |
+
trait_biased, final_data = judge_and_remove_biased_features(final_data, trait)
|
170 |
+
|
171 |
+
# 5) Final validation. Since we do have trait data, set is_trait_available=True
|
172 |
+
is_usable = validate_and_save_cohort_info(
|
173 |
+
is_final=True,
|
174 |
+
cohort=cohort,
|
175 |
+
info_path=json_path,
|
176 |
+
is_gene_available=True,
|
177 |
+
is_trait_available=True,
|
178 |
+
is_biased=trait_biased,
|
179 |
+
df=final_data,
|
180 |
+
note="Trait data successfully extracted from Step 2."
|
181 |
+
)
|
182 |
+
|
183 |
+
# 6) If the dataset is deemed usable, save final linked data
|
184 |
+
if is_usable:
|
185 |
+
final_data.to_csv(out_data_file)
|
p1/preprocess/Endometrioid_Cancer/code/GSE68600.py
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Endometrioid_Cancer"
|
6 |
+
cohort = "GSE68600"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Endometrioid_Cancer"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Endometrioid_Cancer/GSE68600"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Endometrioid_Cancer/GSE68600.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Endometrioid_Cancer/gene_data/GSE68600.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Endometrioid_Cancer/clinical_data/GSE68600.csv"
|
16 |
+
json_path = "./output/preprocess/1/Endometrioid_Cancer/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
is_gene_available = True # "Assay Type: Gene Expression" indicates gene expression data is likely present.
|
38 |
+
|
39 |
+
# 2. Variable Availability and Data Type Conversion
|
40 |
+
# Observing the sample characteristics dictionary:
|
41 |
+
# - trait ("Endometrioid_Cancer") can be inferred from row 4 (histology).
|
42 |
+
# - age is not found => age_row = None.
|
43 |
+
# - gender appears to be uniformly female => no variability => gender_row = None.
|
44 |
+
|
45 |
+
trait_row = 4
|
46 |
+
age_row = None
|
47 |
+
gender_row = None
|
48 |
+
|
49 |
+
# Define data-conversion functions:
|
50 |
+
def convert_trait(sample_value: str):
|
51 |
+
"""
|
52 |
+
Convert sample_value into a binary representation:
|
53 |
+
1 if 'endometrioid' is found in the histology,
|
54 |
+
0 if it is any other histology,
|
55 |
+
None if it can't be parsed.
|
56 |
+
"""
|
57 |
+
parts = sample_value.split(':', 1)
|
58 |
+
if len(parts) < 2:
|
59 |
+
return None
|
60 |
+
val = parts[1].strip().lower()
|
61 |
+
# Mark samples with 'endometrioid' as 1, all others as 0
|
62 |
+
if 'endometrioid' in val:
|
63 |
+
return 1
|
64 |
+
else:
|
65 |
+
return 0
|
66 |
+
|
67 |
+
def convert_age(sample_value: str):
|
68 |
+
# Age data is not available in this dataset, so return None
|
69 |
+
return None
|
70 |
+
|
71 |
+
def convert_gender(sample_value: str):
|
72 |
+
# Gender is uniformly female, so it's not useful for analysis. Return None.
|
73 |
+
return None
|
74 |
+
|
75 |
+
# Determine whether trait data is available
|
76 |
+
is_trait_available = (trait_row is not None)
|
77 |
+
|
78 |
+
# 3. Save Metadata (Initial Filtering)
|
79 |
+
dataset_passed_filtering = validate_and_save_cohort_info(
|
80 |
+
is_final=False,
|
81 |
+
cohort=cohort,
|
82 |
+
info_path=json_path,
|
83 |
+
is_gene_available=is_gene_available,
|
84 |
+
is_trait_available=is_trait_available
|
85 |
+
)
|
86 |
+
|
87 |
+
# 4. Clinical Feature Extraction (only if trait data is available)
|
88 |
+
if trait_row is not None:
|
89 |
+
# 'clinical_data' is assumed to be the DataFrame containing the sample characteristics
|
90 |
+
selected_clinical_df = geo_select_clinical_features(
|
91 |
+
clinical_df=clinical_data,
|
92 |
+
trait=trait,
|
93 |
+
trait_row=trait_row,
|
94 |
+
convert_trait=convert_trait,
|
95 |
+
age_row=age_row,
|
96 |
+
convert_age=convert_age,
|
97 |
+
gender_row=gender_row,
|
98 |
+
convert_gender=convert_gender
|
99 |
+
)
|
100 |
+
|
101 |
+
# Preview the extracted clinical data
|
102 |
+
print(preview_df(selected_clinical_df))
|
103 |
+
|
104 |
+
# Save the extracted clinical features to CSV
|
105 |
+
selected_clinical_df.to_csv(out_clinical_data_file, index=False)
|
106 |
+
# STEP3
|
107 |
+
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
|
108 |
+
gene_data = get_genetic_data(matrix_file)
|
109 |
+
|
110 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
111 |
+
print(gene_data.index[:20])
|
112 |
+
# Based on the identifiers, these appear to be Affymetrix probe IDs rather than standard gene symbols.
|
113 |
+
# Therefore, they require mapping to gene symbols.
|
114 |
+
requires_gene_mapping = True
|
115 |
+
# STEP5
|
116 |
+
import pandas as pd
|
117 |
+
import io
|
118 |
+
|
119 |
+
# 1. Extract the lines that do NOT start with '^', '!', or '#', but do NOT parse them into a DataFrame yet.
|
120 |
+
annotation_text, _ = filter_content_by_prefix(
|
121 |
+
source=soft_file,
|
122 |
+
prefixes_a=['^', '!', '#'],
|
123 |
+
unselect=True,
|
124 |
+
source_type='file',
|
125 |
+
return_df_a=False,
|
126 |
+
return_df_b=False
|
127 |
+
)
|
128 |
+
|
129 |
+
# 2. Manually parse the filtered text into a DataFrame, specifying engine="python" to avoid buffer overflow issues.
|
130 |
+
gene_annotation = pd.read_csv(
|
131 |
+
io.StringIO(annotation_text),
|
132 |
+
delimiter='\t',
|
133 |
+
on_bad_lines='skip',
|
134 |
+
engine='python'
|
135 |
+
)
|
136 |
+
|
137 |
+
print("Gene annotation preview:")
|
138 |
+
print(preview_df(gene_annotation))
|
139 |
+
# Gene Identifier Mapping
|
140 |
+
prob_col = 'ID'
|
141 |
+
gene_col = 'Gene Symbol'
|
142 |
+
|
143 |
+
# 1 & 2. Identify the columns for the probe IDs and gene symbols, then retrieve the mapping dataframe
|
144 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col=prob_col, gene_col=gene_col)
|
145 |
+
|
146 |
+
# 3. Convert probe-level data to gene-level data
|
147 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
148 |
+
|
149 |
+
# (Optional) Print a brief preview of the mapped gene_data
|
150 |
+
print("Mapped gene expression data shape:", gene_data.shape)
|
151 |
+
print("First 5 genes:\n", gene_data.head(5))
|
152 |
+
import pandas as pd
|
153 |
+
|
154 |
+
# STEP7
|
155 |
+
|
156 |
+
# 1) Normalize gene symbols and save
|
157 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
158 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
159 |
+
|
160 |
+
# Read back the clinical dataframe saved in Step 2.
|
161 |
+
# According to Step 2, we saved 1 row (the trait) × N columns (the samples) without the row index.
|
162 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file) # shape: (1, number_of_samples)
|
163 |
+
# Rename the row index to the trait (e.g., "Eczema")
|
164 |
+
selected_clinical_df.index = [trait]
|
165 |
+
|
166 |
+
# 2) Link the clinical and gene expression data
|
167 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
|
168 |
+
|
169 |
+
# 3) Handle missing values using the trait column
|
170 |
+
final_data = handle_missing_values(linked_data, trait_col=trait)
|
171 |
+
|
172 |
+
# 4) Evaluate bias in the trait (and remove biased demographic features if they existed)
|
173 |
+
trait_biased, final_data = judge_and_remove_biased_features(final_data, trait)
|
174 |
+
|
175 |
+
# 5) Final validation. Since we do have trait data, set is_trait_available=True
|
176 |
+
is_usable = validate_and_save_cohort_info(
|
177 |
+
is_final=True,
|
178 |
+
cohort=cohort,
|
179 |
+
info_path=json_path,
|
180 |
+
is_gene_available=True,
|
181 |
+
is_trait_available=True,
|
182 |
+
is_biased=trait_biased,
|
183 |
+
df=final_data,
|
184 |
+
note="Trait data successfully extracted from Step 2."
|
185 |
+
)
|
186 |
+
|
187 |
+
# 6) If the dataset is deemed usable, save final linked data
|
188 |
+
if is_usable:
|
189 |
+
final_data.to_csv(out_data_file)
|
p1/preprocess/Endometrioid_Cancer/code/GSE73551.py
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Endometrioid_Cancer"
|
6 |
+
cohort = "GSE73551"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Endometrioid_Cancer"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Endometrioid_Cancer/GSE73551"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Endometrioid_Cancer/GSE73551.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Endometrioid_Cancer/gene_data/GSE73551.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Endometrioid_Cancer/clinical_data/GSE73551.csv"
|
16 |
+
json_path = "./output/preprocess/1/Endometrioid_Cancer/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
# Based on the background information, this dataset is likely gene expression data
|
38 |
+
is_gene_available = True
|
39 |
+
|
40 |
+
# 2. Variable Availability and Data Type Conversion
|
41 |
+
# From the sample characteristics, row 0 has multiple "cell type" entries
|
42 |
+
# that include "ENDOMETRIOID". We'll treat that as the trait row for Endometrioid_Cancer.
|
43 |
+
trait_row = 0
|
44 |
+
|
45 |
+
# No age or gender information is available or inferred from the sample characteristics
|
46 |
+
age_row = None
|
47 |
+
gender_row = None
|
48 |
+
|
49 |
+
# For the trait, we convert "ENDOMETRIOID" to 1 and all other cell types to 0.
|
50 |
+
def convert_trait(value: str):
|
51 |
+
parts = value.split(':', 1)
|
52 |
+
val = parts[1].strip().lower() if len(parts) > 1 else parts[0].strip().lower()
|
53 |
+
return 1 if val == "endometrioid" else 0
|
54 |
+
|
55 |
+
# Since age and gender data are not available, these functions will return None.
|
56 |
+
def convert_age(value: str):
|
57 |
+
return None
|
58 |
+
|
59 |
+
def convert_gender(value: str):
|
60 |
+
return None
|
61 |
+
|
62 |
+
# 3. Save Metadata (Initial filtering)
|
63 |
+
is_trait_available = (trait_row is not None)
|
64 |
+
validate_and_save_cohort_info(
|
65 |
+
is_final=False,
|
66 |
+
cohort=cohort,
|
67 |
+
info_path=json_path,
|
68 |
+
is_gene_available=is_gene_available,
|
69 |
+
is_trait_available=is_trait_available
|
70 |
+
)
|
71 |
+
|
72 |
+
# 4. Clinical Feature Extraction (only if trait data is available)
|
73 |
+
if trait_row is not None:
|
74 |
+
selected_clinical_df = geo_select_clinical_features(
|
75 |
+
clinical_df=clinical_data,
|
76 |
+
trait=trait,
|
77 |
+
trait_row=trait_row,
|
78 |
+
convert_trait=convert_trait,
|
79 |
+
age_row=age_row,
|
80 |
+
convert_age=convert_age,
|
81 |
+
gender_row=gender_row,
|
82 |
+
convert_gender=convert_gender
|
83 |
+
)
|
84 |
+
|
85 |
+
# Preview the selected clinical features
|
86 |
+
preview = preview_df(selected_clinical_df)
|
87 |
+
print("Preview of selected clinical features:", preview)
|
88 |
+
|
89 |
+
# Save extracted clinical features to CSV
|
90 |
+
selected_clinical_df.to_csv(out_clinical_data_file, index=False)
|
91 |
+
# STEP3
|
92 |
+
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
|
93 |
+
gene_data = get_genetic_data(matrix_file)
|
94 |
+
|
95 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
96 |
+
print(gene_data.index[:20])
|
97 |
+
# Based on the listed identifiers (1,2,3, etc.), they are not standard human gene symbols.
|
98 |
+
# These identifiers likely need to be mapped to recognized gene symbols.
|
99 |
+
print("requires_gene_mapping = True")
|
100 |
+
# STEP5
|
101 |
+
import pandas as pd
|
102 |
+
import io
|
103 |
+
|
104 |
+
# 1. Extract the lines that do NOT start with '^', '!', or '#', but do NOT parse them into a DataFrame yet.
|
105 |
+
annotation_text, _ = filter_content_by_prefix(
|
106 |
+
source=soft_file,
|
107 |
+
prefixes_a=['^', '!', '#'],
|
108 |
+
unselect=True,
|
109 |
+
source_type='file',
|
110 |
+
return_df_a=False,
|
111 |
+
return_df_b=False
|
112 |
+
)
|
113 |
+
|
114 |
+
# 2. Manually parse the filtered text into a DataFrame, specifying engine="python" to avoid buffer overflow issues.
|
115 |
+
gene_annotation = pd.read_csv(
|
116 |
+
io.StringIO(annotation_text),
|
117 |
+
delimiter='\t',
|
118 |
+
on_bad_lines='skip',
|
119 |
+
engine='python'
|
120 |
+
)
|
121 |
+
|
122 |
+
print("Gene annotation preview:")
|
123 |
+
print(preview_df(gene_annotation))
|
124 |
+
# STEP: Gene Identifier Mapping
|
125 |
+
|
126 |
+
# 1 & 2. Identify the columns in the gene_annotation that correspond to the gene expression row IDs ("ID")
|
127 |
+
# and the human gene symbols ("GeneSymbol"). Extract them into a mapping dataframe.
|
128 |
+
mapping_df = get_gene_mapping(
|
129 |
+
annotation=gene_annotation,
|
130 |
+
prob_col='ID', # Matches the row IDs in our gene_data
|
131 |
+
gene_col='GeneSymbol' # Stores the human gene symbols
|
132 |
+
)
|
133 |
+
|
134 |
+
# 3. Convert probe-level measurements to gene-level expression data using apply_gene_mapping
|
135 |
+
gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df)
|
136 |
+
|
137 |
+
# Just display the first few rows for observation
|
138 |
+
print(gene_data.head(5))
|
139 |
+
import pandas as pd
|
140 |
+
|
141 |
+
# STEP7
|
142 |
+
|
143 |
+
# 1) Normalize gene symbols and save
|
144 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
145 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
146 |
+
|
147 |
+
# Read back the clinical dataframe saved in Step 2.
|
148 |
+
# According to Step 2, we saved 1 row (the trait) × N columns (the samples) without the row index.
|
149 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file) # shape: (1, number_of_samples)
|
150 |
+
# Rename the row index to the trait (e.g., "Eczema")
|
151 |
+
selected_clinical_df.index = [trait]
|
152 |
+
|
153 |
+
# 2) Link the clinical and gene expression data
|
154 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
|
155 |
+
|
156 |
+
# 3) Handle missing values using the trait column
|
157 |
+
final_data = handle_missing_values(linked_data, trait_col=trait)
|
158 |
+
|
159 |
+
# 4) Evaluate bias in the trait (and remove biased demographic features if they existed)
|
160 |
+
trait_biased, final_data = judge_and_remove_biased_features(final_data, trait)
|
161 |
+
|
162 |
+
# 5) Final validation. Since we do have trait data, set is_trait_available=True
|
163 |
+
is_usable = validate_and_save_cohort_info(
|
164 |
+
is_final=True,
|
165 |
+
cohort=cohort,
|
166 |
+
info_path=json_path,
|
167 |
+
is_gene_available=True,
|
168 |
+
is_trait_available=True,
|
169 |
+
is_biased=trait_biased,
|
170 |
+
df=final_data,
|
171 |
+
note="Trait data successfully extracted from Step 2."
|
172 |
+
)
|
173 |
+
|
174 |
+
# 6) If the dataset is deemed usable, save final linked data
|
175 |
+
if is_usable:
|
176 |
+
final_data.to_csv(out_data_file)
|
p1/preprocess/Endometrioid_Cancer/code/GSE73614.py
ADDED
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Endometrioid_Cancer"
|
6 |
+
cohort = "GSE73614"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Endometrioid_Cancer"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Endometrioid_Cancer/GSE73614"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Endometrioid_Cancer/GSE73614.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Endometrioid_Cancer/gene_data/GSE73614.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Endometrioid_Cancer/clinical_data/GSE73614.csv"
|
16 |
+
json_path = "./output/preprocess/1/Endometrioid_Cancer/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
# 1. Determine if the dataset contains gene expression data
|
37 |
+
is_gene_available = True # Based on background info describing transcriptional profiling
|
38 |
+
|
39 |
+
# 2. Identify the availability of trait, age, and gender
|
40 |
+
# From the sample characteristics dictionary, we only see {0: ['tissue: ovarian']}.
|
41 |
+
# This has no variation (same value for all samples) and does not provide the Endometrioid_Cancer distinction.
|
42 |
+
# Hence, there's no useful variable for trait, age, or gender.
|
43 |
+
trait_row = None
|
44 |
+
age_row = None
|
45 |
+
gender_row = None
|
46 |
+
|
47 |
+
# 2.2. Define type-conversion functions.
|
48 |
+
def convert_trait(value: str) -> Optional[int]:
|
49 |
+
"""
|
50 |
+
Binary conversion for 'Endometrioid_Cancer':
|
51 |
+
Return 1 if the value indicates endometrioid, 0 if indicates something else,
|
52 |
+
None if unknown.
|
53 |
+
"""
|
54 |
+
parts = value.split(':', 1)
|
55 |
+
val = parts[-1].strip().lower() if len(parts) > 1 else value.strip().lower()
|
56 |
+
if 'endometrioid' in val:
|
57 |
+
return 1
|
58 |
+
elif 'serous' in val or 'clear' in val or 'ovarian' in val:
|
59 |
+
return 0
|
60 |
+
return None
|
61 |
+
|
62 |
+
def convert_age(value: str) -> Optional[float]:
|
63 |
+
"""
|
64 |
+
Continuous conversion for age:
|
65 |
+
Try to parse a number from the string, return None if parsing fails.
|
66 |
+
"""
|
67 |
+
parts = value.split(':', 1)
|
68 |
+
val_str = parts[-1].strip() if len(parts) > 1 else value.strip()
|
69 |
+
try:
|
70 |
+
return float(val_str)
|
71 |
+
except ValueError:
|
72 |
+
return None
|
73 |
+
|
74 |
+
def convert_gender(value: str) -> Optional[int]:
|
75 |
+
"""
|
76 |
+
Binary conversion for gender:
|
77 |
+
Return 0 for female, 1 for male, None if unknown.
|
78 |
+
"""
|
79 |
+
parts = value.split(':', 1)
|
80 |
+
val = parts[-1].strip().lower() if len(parts) > 1 else value.strip().lower()
|
81 |
+
if val in ['female', 'f']:
|
82 |
+
return 0
|
83 |
+
elif val in ['male', 'm']:
|
84 |
+
return 1
|
85 |
+
return None
|
86 |
+
|
87 |
+
# 3. Conduct initial filtering and save metadata
|
88 |
+
is_trait_available = (trait_row is not None)
|
89 |
+
validate_and_save_cohort_info(
|
90 |
+
is_final=False,
|
91 |
+
cohort=cohort,
|
92 |
+
info_path=json_path,
|
93 |
+
is_gene_available=is_gene_available,
|
94 |
+
is_trait_available=is_trait_available
|
95 |
+
)
|
96 |
+
|
97 |
+
# 4. Since trait_row is None, we skip the clinical feature extraction step
|
98 |
+
# STEP3
|
99 |
+
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
|
100 |
+
gene_data = get_genetic_data(matrix_file)
|
101 |
+
|
102 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
103 |
+
print(gene_data.index[:20])
|
104 |
+
requires_gene_mapping = True
|
105 |
+
# STEP5
|
106 |
+
import pandas as pd
|
107 |
+
import io
|
108 |
+
|
109 |
+
# 1. Extract the lines that do NOT start with '^', '!', or '#', but do NOT parse them into a DataFrame yet.
|
110 |
+
annotation_text, _ = filter_content_by_prefix(
|
111 |
+
source=soft_file,
|
112 |
+
prefixes_a=['^', '!', '#'],
|
113 |
+
unselect=True,
|
114 |
+
source_type='file',
|
115 |
+
return_df_a=False,
|
116 |
+
return_df_b=False
|
117 |
+
)
|
118 |
+
|
119 |
+
# 2. Manually parse the filtered text into a DataFrame, specifying engine="python" to avoid buffer overflow issues.
|
120 |
+
gene_annotation = pd.read_csv(
|
121 |
+
io.StringIO(annotation_text),
|
122 |
+
delimiter='\t',
|
123 |
+
on_bad_lines='skip',
|
124 |
+
engine='python'
|
125 |
+
)
|
126 |
+
|
127 |
+
print("Gene annotation preview:")
|
128 |
+
print(preview_df(gene_annotation))
|
129 |
+
# STEP: Gene Identifier Mapping
|
130 |
+
|
131 |
+
# 1. Determine which columns match the gene expression dataset and the gene symbols
|
132 |
+
probe_col = "ID"
|
133 |
+
symbol_col = "GENE_SYMBOL"
|
134 |
+
|
135 |
+
# 2. Extract the gene identifier and gene symbol columns to form a mapping dataframe
|
136 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col=probe_col, gene_col=symbol_col)
|
137 |
+
|
138 |
+
# 3. Convert the probe-level expression data to gene-level expression data
|
139 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
140 |
+
|
141 |
+
print("Gene mapping completed. Final gene_data shape:", gene_data.shape)
|
142 |
+
import os
|
143 |
+
import pandas as pd
|
144 |
+
|
145 |
+
# STEP7
|
146 |
+
|
147 |
+
# 1) Normalize gene symbols in our gene_data and save the result
|
148 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
149 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
150 |
+
|
151 |
+
# 2) Check if the clinical data file (trait data) exists
|
152 |
+
if not os.path.exists(out_clinical_data_file):
|
153 |
+
print(f"File not found: {out_clinical_data_file}. No trait data is available for this cohort.")
|
154 |
+
# Perform an initial/partial validation because trait data is missing
|
155 |
+
is_usable = validate_and_save_cohort_info(
|
156 |
+
is_final=False,
|
157 |
+
cohort=cohort,
|
158 |
+
info_path=json_path,
|
159 |
+
is_gene_available=True,
|
160 |
+
is_trait_available=False
|
161 |
+
)
|
162 |
+
else:
|
163 |
+
# 3) Trait data is present, so read it and link with gene data
|
164 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file)
|
165 |
+
# Rename the single row index to match the trait name
|
166 |
+
selected_clinical_df.index = [trait]
|
167 |
+
|
168 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
|
169 |
+
|
170 |
+
# 4) Handle missing values, using the trait column name
|
171 |
+
final_data = handle_missing_values(linked_data, trait_col=trait)
|
172 |
+
|
173 |
+
# 5) Check whether the trait (and optional demographics) are severely biased
|
174 |
+
trait_biased, final_data = judge_and_remove_biased_features(final_data, trait)
|
175 |
+
|
176 |
+
# 6) Conduct final validation
|
177 |
+
is_usable = validate_and_save_cohort_info(
|
178 |
+
is_final=True,
|
179 |
+
cohort=cohort,
|
180 |
+
info_path=json_path,
|
181 |
+
is_gene_available=True,
|
182 |
+
is_trait_available=True,
|
183 |
+
is_biased=trait_biased,
|
184 |
+
df=final_data,
|
185 |
+
note="Trait data successfully extracted and processed."
|
186 |
+
)
|
187 |
+
|
188 |
+
# 7) If the dataset is deemed usable, save the final linked data
|
189 |
+
if is_usable:
|
190 |
+
final_data.to_csv(out_data_file)
|
p1/preprocess/Endometrioid_Cancer/code/GSE73637.py
ADDED
@@ -0,0 +1,287 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Endometrioid_Cancer"
|
6 |
+
cohort = "GSE73637"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Endometrioid_Cancer"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Endometrioid_Cancer/GSE73637"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Endometrioid_Cancer/GSE73637.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Endometrioid_Cancer/gene_data/GSE73637.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Endometrioid_Cancer/clinical_data/GSE73637.csv"
|
16 |
+
json_path = "./output/preprocess/1/Endometrioid_Cancer/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
import pandas as pd
|
37 |
+
|
38 |
+
# 1. Determine if gene expression data is available
|
39 |
+
# Based on background info, this dataset uses gene expression for GECA analysis.
|
40 |
+
is_gene_available = True
|
41 |
+
|
42 |
+
# 2. Identify data availability and define row indices
|
43 |
+
# From the sample characteristics dictionary, histopathology is stored in row 3,
|
44 |
+
# which includes “Endometrioid” among other values (i.e., multiple categories).
|
45 |
+
# There's no mention of age or gender, so age_row and gender_row are None.
|
46 |
+
|
47 |
+
trait_row = 3 # row containing histopathology with "Endometrioid"
|
48 |
+
age_row = None
|
49 |
+
gender_row = None
|
50 |
+
|
51 |
+
# 2.2 Define data type conversion functions
|
52 |
+
def convert_trait(value: str):
|
53 |
+
"""
|
54 |
+
Convert histopathology values to binary, indicating whether
|
55 |
+
'Endometrioid' is present (1) or not (0). Unknown/unexpected
|
56 |
+
values become None.
|
57 |
+
"""
|
58 |
+
parts = value.split(':', 1)
|
59 |
+
if len(parts) == 2:
|
60 |
+
val_str = parts[1].strip().lower()
|
61 |
+
else:
|
62 |
+
val_str = parts[0].strip().lower()
|
63 |
+
|
64 |
+
# Heuristic: Any mention of 'endometrioid' or 'endometroid' is mapped to 1
|
65 |
+
# Otherwise, map known terms to 0, else None.
|
66 |
+
if 'endometrioid' in val_str or 'endometroid' in val_str:
|
67 |
+
return 1
|
68 |
+
elif any(keyword in val_str for keyword in ['serous', 'carcinoma', 'clear cell', 'adenocarcinoma']):
|
69 |
+
return 0
|
70 |
+
else:
|
71 |
+
return None
|
72 |
+
|
73 |
+
def convert_age(value: str):
|
74 |
+
# No age data available; return None
|
75 |
+
return None
|
76 |
+
|
77 |
+
def convert_gender(value: str):
|
78 |
+
# No gender data available; return None
|
79 |
+
return None
|
80 |
+
|
81 |
+
# 3. Perform initial filtering and save metadata
|
82 |
+
is_trait_available = trait_row is not None
|
83 |
+
validate_and_save_cohort_info(
|
84 |
+
is_final=False,
|
85 |
+
cohort=cohort,
|
86 |
+
info_path=json_path,
|
87 |
+
is_gene_available=is_gene_available,
|
88 |
+
is_trait_available=is_trait_available
|
89 |
+
)
|
90 |
+
|
91 |
+
# 4. If trait_row is available, extract clinical data and save
|
92 |
+
if trait_row is not None:
|
93 |
+
# Suppose 'clinical_data' is the DataFrame that holds the sample characteristics
|
94 |
+
# in the same format as shown in the "Sample Characteristics Dictionary".
|
95 |
+
data_dict = {
|
96 |
+
0: ['cell type: ovarian cells'],
|
97 |
+
1: [
|
98 |
+
'cell line: COV504',
|
99 |
+
'cell line: COV362',
|
100 |
+
'cell line: UWB1.289+BRCA1',
|
101 |
+
'cell line: OV56',
|
102 |
+
'cell line: UWB1.289',
|
103 |
+
'cell line: COV318',
|
104 |
+
'cell line: NCI/ADR-RES',
|
105 |
+
'cell line: OVCAR3',
|
106 |
+
'cell line: OVCAR4',
|
107 |
+
'cell line: OVCAR8',
|
108 |
+
'cell line: IGR-OV1',
|
109 |
+
'cell line: SK-OV-3',
|
110 |
+
'cell line: OVCAR5',
|
111 |
+
'cell line: ES-2',
|
112 |
+
'cell line: TOV-21G',
|
113 |
+
'cell line: TOV-112D',
|
114 |
+
'cell line: PEO1',
|
115 |
+
'cell line: PEO4'
|
116 |
+
],
|
117 |
+
2: ['tumor site of origin: Ovarian'],
|
118 |
+
3: [
|
119 |
+
'histopathology: Serous',
|
120 |
+
'histopathology: Endometrioid',
|
121 |
+
'histopathology: Poorly differentiated serous',
|
122 |
+
'histopathology: Undifferentiated carcinoma',
|
123 |
+
'histopathology: Poorly differentiated carcinoma',
|
124 |
+
'histopathology: Moderately differentiated carcinoma',
|
125 |
+
'histopathology: Endometroid with serous/clear cell',
|
126 |
+
'histopathology: Well-differentiated adenocarcinoma',
|
127 |
+
'histopathology: Poorly differentiated clear cell',
|
128 |
+
'histopathology: Clear Cell'
|
129 |
+
]
|
130 |
+
}
|
131 |
+
# Convert the dictionary to a DataFrame similar to how GEO data often appear
|
132 |
+
clinical_data = pd.DataFrame.from_dict(data_dict, orient='index').fillna('')
|
133 |
+
|
134 |
+
selected_clinical_df = geo_select_clinical_features(
|
135 |
+
clinical_df=clinical_data,
|
136 |
+
trait=trait,
|
137 |
+
trait_row=trait_row,
|
138 |
+
convert_trait=convert_trait,
|
139 |
+
age_row=age_row,
|
140 |
+
convert_age=convert_age,
|
141 |
+
gender_row=gender_row,
|
142 |
+
convert_gender=convert_gender
|
143 |
+
)
|
144 |
+
|
145 |
+
# Preview the extracted DataFrame
|
146 |
+
preview_result = preview_df(selected_clinical_df)
|
147 |
+
print("Preview of selected clinical features:", preview_result)
|
148 |
+
|
149 |
+
# Save clinical data to CSV
|
150 |
+
selected_clinical_df.to_csv(out_clinical_data_file, index=False)
|
151 |
+
# STEP3
|
152 |
+
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
|
153 |
+
gene_data = get_genetic_data(matrix_file)
|
154 |
+
|
155 |
+
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
|
156 |
+
print(gene_data.index[:20])
|
157 |
+
# Based on the output, the gene identifiers are numeric (e.g., '1', '2', '3', etc.),
|
158 |
+
# which indicates they are not human gene symbols and likely require mapping.
|
159 |
+
# Therefore:
|
160 |
+
|
161 |
+
requires_gene_mapping = True
|
162 |
+
# STEP5
|
163 |
+
import pandas as pd
|
164 |
+
import io
|
165 |
+
|
166 |
+
# 1. Extract the lines that do NOT start with '^', '!', or '#', but do NOT parse them into a DataFrame yet.
|
167 |
+
annotation_text, _ = filter_content_by_prefix(
|
168 |
+
source=soft_file,
|
169 |
+
prefixes_a=['^', '!', '#'],
|
170 |
+
unselect=True,
|
171 |
+
source_type='file',
|
172 |
+
return_df_a=False,
|
173 |
+
return_df_b=False
|
174 |
+
)
|
175 |
+
|
176 |
+
# 2. Manually parse the filtered text into a DataFrame, specifying engine="python" to avoid buffer overflow issues.
|
177 |
+
gene_annotation = pd.read_csv(
|
178 |
+
io.StringIO(annotation_text),
|
179 |
+
delimiter='\t',
|
180 |
+
on_bad_lines='skip',
|
181 |
+
engine='python'
|
182 |
+
)
|
183 |
+
|
184 |
+
print("Gene annotation preview:")
|
185 |
+
print(preview_df(gene_annotation))
|
186 |
+
# STEP: Gene Identifier Mapping
|
187 |
+
|
188 |
+
# 1. Decide which columns correspond to the gene expression ID and the gene symbol
|
189 |
+
# From the previews, "ID" matches the numeric identifiers in gene_data,
|
190 |
+
# and "GeneSymbol" stores the actual gene symbols.
|
191 |
+
|
192 |
+
# 2. Get a gene mapping DataFrame
|
193 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="GeneSymbol")
|
194 |
+
|
195 |
+
# 3. Convert probe-level measurements to gene-level expression data
|
196 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
197 |
+
import pandas as pd
|
198 |
+
|
199 |
+
# STEP7
|
200 |
+
|
201 |
+
# 1) Normalize gene symbols and save
|
202 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
203 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
204 |
+
|
205 |
+
# 2) Read back the clinical DataFrame we saved in Step 2.
|
206 |
+
# Since we saved a single row with no header or index, we read with header=None to keep that row as data.
|
207 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file, header=None)
|
208 |
+
|
209 |
+
# If the number of columns aligns with the gene expression DataFrame's columns (i.e., same samples),
|
210 |
+
# rename the clinical DataFrame columns accordingly to achieve correct sample alignment.
|
211 |
+
if selected_clinical_df.shape[1] == normalized_gene_data.shape[1]:
|
212 |
+
selected_clinical_df.columns = normalized_gene_data.columns
|
213 |
+
|
214 |
+
# Set the row index to the trait name (e.g., "Endometrioid_Cancer")
|
215 |
+
selected_clinical_df.index = [trait]
|
216 |
+
|
217 |
+
# 3) Link the clinical and gene expression data
|
218 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
|
219 |
+
|
220 |
+
# 4) Handle missing values using the trait column
|
221 |
+
final_data = handle_missing_values(linked_data, trait_col=trait)
|
222 |
+
|
223 |
+
# 5) Evaluate bias in the trait (and remove biased demographic features if present)
|
224 |
+
trait_biased, final_data = judge_and_remove_biased_features(final_data, trait)
|
225 |
+
|
226 |
+
# 6) Final validation. We do have trait data, so set is_trait_available=True
|
227 |
+
is_usable = validate_and_save_cohort_info(
|
228 |
+
is_final=True,
|
229 |
+
cohort=cohort,
|
230 |
+
info_path=json_path,
|
231 |
+
is_gene_available=True,
|
232 |
+
is_trait_available=True,
|
233 |
+
is_biased=trait_biased,
|
234 |
+
df=final_data,
|
235 |
+
note="Aligned columns in clinical DataFrame to match gene expression samples."
|
236 |
+
)
|
237 |
+
|
238 |
+
# 7) If the dataset is deemed usable, save final linked data
|
239 |
+
if is_usable:
|
240 |
+
final_data.to_csv(out_data_file)
|
241 |
+
import pandas as pd
|
242 |
+
|
243 |
+
# STEP8
|
244 |
+
# 1) Normalize gene symbols and save
|
245 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
246 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
247 |
+
|
248 |
+
# 2) Read back the clinical DataFrame saved in Step 2 (one or more rows × number_of_samples columns, no header).
|
249 |
+
selected_clinical_df = pd.read_csv(out_clinical_data_file, header=None)
|
250 |
+
|
251 |
+
# In case there are empty columns (e.g., trailing commas), drop them
|
252 |
+
selected_clinical_df = selected_clinical_df.dropna(axis=1, how='all')
|
253 |
+
|
254 |
+
# If the number of columns matches the number of samples (columns) in the gene data, rename to align sample IDs
|
255 |
+
if selected_clinical_df.shape[1] == normalized_gene_data.shape[1]:
|
256 |
+
selected_clinical_df.columns = normalized_gene_data.columns
|
257 |
+
else:
|
258 |
+
print(f"Warning: Mismatch in shape. Clinical data has {selected_clinical_df.shape[1]} columns, "
|
259 |
+
f"while gene data has {normalized_gene_data.shape[1]} columns. Linking may fail.")
|
260 |
+
|
261 |
+
# Set the row index to the trait, so we can keep track of it
|
262 |
+
selected_clinical_df.index = [trait]
|
263 |
+
|
264 |
+
# 2) Link the clinical and gene expression data
|
265 |
+
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
|
266 |
+
|
267 |
+
# 3) Handle missing values using the trait column
|
268 |
+
final_data = handle_missing_values(linked_data, trait_col=trait)
|
269 |
+
|
270 |
+
# 4) Evaluate bias in the trait (and remove biased demographic features if present)
|
271 |
+
trait_biased, final_data = judge_and_remove_biased_features(final_data, trait)
|
272 |
+
|
273 |
+
# 5) Final validation
|
274 |
+
is_usable = validate_and_save_cohort_info(
|
275 |
+
is_final=True,
|
276 |
+
cohort=cohort,
|
277 |
+
info_path=json_path,
|
278 |
+
is_gene_available=True,
|
279 |
+
is_trait_available=True,
|
280 |
+
is_biased=trait_biased,
|
281 |
+
df=final_data,
|
282 |
+
note="Ensured clinical and gene sample columns were aligned if possible."
|
283 |
+
)
|
284 |
+
|
285 |
+
# 6) If the dataset is usable, save the final linked data
|
286 |
+
if is_usable:
|
287 |
+
final_data.to_csv(out_data_file)
|
p1/preprocess/Endometrioid_Cancer/code/GSE94523.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Endometrioid_Cancer"
|
6 |
+
cohort = "GSE94523"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Endometrioid_Cancer"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Endometrioid_Cancer/GSE94523"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Endometrioid_Cancer/GSE94523.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Endometrioid_Cancer/gene_data/GSE94523.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Endometrioid_Cancer/clinical_data/GSE94523.csv"
|
16 |
+
json_path = "./output/preprocess/1/Endometrioid_Cancer/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
is_gene_available = True # Microarray expression implies gene expression data
|
38 |
+
|
39 |
+
# 2. Variable Availability and Data Type Conversion
|
40 |
+
|
41 |
+
# From the sample characteristics {0: ['tissue: endometrioid adenocarcinoma']},
|
42 |
+
# we see there's only one unique value: "endometrioid adenocarcinoma".
|
43 |
+
# This is constant for all samples, so it's not useful for association.
|
44 |
+
trait_row = None # Not available because there's no variation
|
45 |
+
age_row = None # No information about age
|
46 |
+
gender_row = None # No information about gender
|
47 |
+
|
48 |
+
# Define the conversion functions (though we won't actually use them for None rows).
|
49 |
+
def convert_trait(value: str):
|
50 |
+
# Since data is not available, return None
|
51 |
+
return None
|
52 |
+
|
53 |
+
def convert_age(value: str):
|
54 |
+
return None
|
55 |
+
|
56 |
+
def convert_gender(value: str):
|
57 |
+
return None
|
58 |
+
|
59 |
+
# 3. Save Metadata (initial filtering)
|
60 |
+
is_trait_available = (trait_row is not None)
|
61 |
+
dataset_usable = validate_and_save_cohort_info(
|
62 |
+
is_final=False,
|
63 |
+
cohort=cohort,
|
64 |
+
info_path=json_path,
|
65 |
+
is_gene_available=is_gene_available,
|
66 |
+
is_trait_available=is_trait_available
|
67 |
+
)
|
68 |
+
|
69 |
+
# 4. Clinical Feature Extraction
|
70 |
+
# Skip, because trait_row is None
|
p1/preprocess/Endometrioid_Cancer/code/GSE94524.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Endometrioid_Cancer"
|
6 |
+
cohort = "GSE94524"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Endometrioid_Cancer"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Endometrioid_Cancer/GSE94524"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/1/Endometrioid_Cancer/GSE94524.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/1/Endometrioid_Cancer/gene_data/GSE94524.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/1/Endometrioid_Cancer/clinical_data/GSE94524.csv"
|
16 |
+
json_path = "./output/preprocess/1/Endometrioid_Cancer/cohort_info.json"
|
17 |
+
|
18 |
+
# STEP1
|
19 |
+
from tools.preprocess import *
|
20 |
+
# 1. Identify the paths to the SOFT file and the matrix file
|
21 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
22 |
+
|
23 |
+
# 2. Read the matrix file to obtain background information and sample characteristics data
|
24 |
+
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
|
25 |
+
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
|
26 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
|
27 |
+
|
28 |
+
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
|
29 |
+
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
|
30 |
+
|
31 |
+
# 4. Explicitly print out all the background information and the sample characteristics dictionary
|
32 |
+
print("Background Information:")
|
33 |
+
print(background_info)
|
34 |
+
print("Sample Characteristics Dictionary:")
|
35 |
+
print(sample_characteristics_dict)
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
is_gene_available = True # Based on the background info, assume gene expression data is available.
|
38 |
+
|
39 |
+
# 2. Variable Availability and Data Type Conversion
|
40 |
+
|
41 |
+
# 2.1 Identify row keys (None if not available or constant)
|
42 |
+
# The sample characteristics dictionary only has one key, 0, whose value is
|
43 |
+
# "tissue: endometrioid adenocarcinoma" (single unique value).
|
44 |
+
# Therefore, no meaningful variation for trait, age, or gender.
|
45 |
+
trait_row = None
|
46 |
+
age_row = None
|
47 |
+
gender_row = None
|
48 |
+
|
49 |
+
# 2.2 Define conversion functions
|
50 |
+
def convert_trait(value: str) -> int:
|
51 |
+
# No data available, but if needed, here's a placeholder.
|
52 |
+
return None
|
53 |
+
|
54 |
+
def convert_age(value: str) -> float:
|
55 |
+
# No data available, but if needed, here's a placeholder.
|
56 |
+
return None
|
57 |
+
|
58 |
+
def convert_gender(value: str) -> int:
|
59 |
+
# No data available, but if needed, here's a placeholder.
|
60 |
+
return None
|
61 |
+
|
62 |
+
# 3. Save Metadata (initial filtering) - trait is unavailable if trait_row is None
|
63 |
+
is_trait_available = (trait_row is not None)
|
64 |
+
|
65 |
+
is_usable = validate_and_save_cohort_info(
|
66 |
+
is_final=False,
|
67 |
+
cohort=cohort,
|
68 |
+
info_path=json_path,
|
69 |
+
is_gene_available=is_gene_available,
|
70 |
+
is_trait_available=is_trait_available
|
71 |
+
)
|
72 |
+
|
73 |
+
# 4. Clinical Feature Extraction
|
74 |
+
# Skip because trait_row is None (no available clinical variation).
|
p1/preprocess/Endometrioid_Cancer/code/TCGA.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Endometrioid_Cancer"
|
6 |
+
|
7 |
+
# Input paths
|
8 |
+
tcga_root_dir = "../DATA/TCGA"
|
9 |
+
|
10 |
+
# Output paths
|
11 |
+
out_data_file = "./output/preprocess/1/Endometrioid_Cancer/TCGA.csv"
|
12 |
+
out_gene_data_file = "./output/preprocess/1/Endometrioid_Cancer/gene_data/TCGA.csv"
|
13 |
+
out_clinical_data_file = "./output/preprocess/1/Endometrioid_Cancer/clinical_data/TCGA.csv"
|
14 |
+
json_path = "./output/preprocess/1/Endometrioid_Cancer/cohort_info.json"
|
15 |
+
|
16 |
+
import os
|
17 |
+
import pandas as pd
|
18 |
+
|
19 |
+
# 1. Identify subdirectories under tcga_root_dir
|
20 |
+
subdirectories = os.listdir(tcga_root_dir)
|
21 |
+
|
22 |
+
trait_subdir = None
|
23 |
+
for d in subdirectories:
|
24 |
+
lower_d = d.lower()
|
25 |
+
# Check for "endometrioid" or "ucec" to match "TCGA_Endometrioid_Cancer_(UCEC)"
|
26 |
+
if "endometrioid" in lower_d or "ucec" in lower_d:
|
27 |
+
trait_subdir = d
|
28 |
+
break
|
29 |
+
|
30 |
+
# If none found, skip this trait
|
31 |
+
if not trait_subdir:
|
32 |
+
print(f"No suitable subdirectory found for trait '{trait}'. Skipping...")
|
33 |
+
is_gene_available = False
|
34 |
+
is_trait_available = False
|
35 |
+
validate_and_save_cohort_info(
|
36 |
+
is_final=False,
|
37 |
+
cohort="TCGA",
|
38 |
+
info_path=json_path,
|
39 |
+
is_gene_available=is_gene_available,
|
40 |
+
is_trait_available=is_trait_available
|
41 |
+
)
|
42 |
+
else:
|
43 |
+
# 2. Identify paths to the clinical and genetic data files
|
44 |
+
full_subdir_path = os.path.join(tcga_root_dir, trait_subdir)
|
45 |
+
clinical_path, genetic_path = tcga_get_relevant_filepaths(full_subdir_path)
|
46 |
+
|
47 |
+
# 3. Load data into DataFrames
|
48 |
+
clinical_df = pd.read_csv(clinical_path, index_col=0, sep='\t')
|
49 |
+
genetic_df = pd.read_csv(genetic_path, index_col=0, sep='\t')
|
50 |
+
|
51 |
+
# 4. Print the column names of the clinical data for inspection
|
52 |
+
print("Clinical Data Columns:")
|
53 |
+
print(clinical_df.columns.tolist())
|
54 |
+
# Identify candidate columns
|
55 |
+
candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'days_to_birth']
|
56 |
+
candidate_gender_cols = ['gender']
|
57 |
+
|
58 |
+
# Extract the candidate columns
|
59 |
+
df_age = clinical_df[candidate_age_cols] if candidate_age_cols else pd.DataFrame()
|
60 |
+
df_gender = clinical_df[candidate_gender_cols] if candidate_gender_cols else pd.DataFrame()
|
61 |
+
|
62 |
+
# Preview the extracted columns
|
63 |
+
age_preview = preview_df(df_age, n=5, max_items=200) if not df_age.empty else {}
|
64 |
+
gender_preview = preview_df(df_gender, n=5, max_items=200) if not df_gender.empty else {}
|
65 |
+
|
66 |
+
# Print the results
|
67 |
+
print("candidate_age_cols =", candidate_age_cols)
|
68 |
+
print("candidate_gender_cols =", candidate_gender_cols)
|
69 |
+
print(age_preview)
|
70 |
+
print(gender_preview)
|
71 |
+
age_col = "age_at_initial_pathologic_diagnosis"
|
72 |
+
gender_col = "gender"
|
73 |
+
|
74 |
+
print("Selected age column:", age_col)
|
75 |
+
print("Selected gender column:", gender_col)
|
76 |
+
# 1) Extract and standardize clinical features
|
77 |
+
selected_clinical_df = tcga_select_clinical_features(
|
78 |
+
clinical_df=clinical_df,
|
79 |
+
trait=trait,
|
80 |
+
age_col=age_col,
|
81 |
+
gender_col=gender_col
|
82 |
+
)
|
83 |
+
|
84 |
+
# 2) Normalize gene symbols
|
85 |
+
normalized_gene_df = normalize_gene_symbols_in_index(genetic_df)
|
86 |
+
normalized_gene_df.to_csv(out_gene_data_file)
|
87 |
+
|
88 |
+
# 3) Link clinical and genetic data
|
89 |
+
linked_data = selected_clinical_df.join(normalized_gene_df.T, how='inner')
|
90 |
+
|
91 |
+
# 4) Handle missing values
|
92 |
+
linked_data_clean = handle_missing_values(linked_data, trait)
|
93 |
+
|
94 |
+
# 5) Determine biased features
|
95 |
+
trait_biased, linked_data_no_bias = judge_and_remove_biased_features(linked_data_clean, trait)
|
96 |
+
|
97 |
+
# 6) Final quality validation
|
98 |
+
is_usable = validate_and_save_cohort_info(
|
99 |
+
is_final=True,
|
100 |
+
cohort="TCGA",
|
101 |
+
info_path=json_path,
|
102 |
+
is_gene_available=True,
|
103 |
+
is_trait_available=True,
|
104 |
+
is_biased=trait_biased,
|
105 |
+
df=linked_data_no_bias,
|
106 |
+
note="Endometrioid Cancer TCGA cohort processed successfully."
|
107 |
+
)
|
108 |
+
|
109 |
+
# 7) Save usable data
|
110 |
+
if is_usable:
|
111 |
+
linked_data_no_bias.to_csv(out_data_file)
|
p1/preprocess/Endometrioid_Cancer/cohort_info.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"GSE94524": {"is_usable": false, "is_gene_available": true, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": null}, "GSE94523": {"is_usable": false, "is_gene_available": true, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": null}, "GSE73637": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "Trait data successfully extracted from Step 2."}, "GSE73614": {"is_usable": false, "is_gene_available": true, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": null}, "GSE73551": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": false, "has_gender": false, "sample_size": 50, "note": "Trait data successfully extracted from Step 2."}, "GSE68600": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": false, "has_gender": false, "sample_size": 113, "note": "Trait data successfully extracted from Step 2."}, "GSE66667": {"is_usable": false, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": true, "has_age": false, "has_gender": false, "sample_size": 36, "note": "Trait data successfully extracted from Step 2."}, "GSE65986": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": true, "has_gender": false, "sample_size": 55, "note": "Trait and Age data in the first two rows of the clinical CSV."}, "GSE40785": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": false, "has_gender": false, "sample_size": 30, "note": "Trait data successfully extracted from Step 2."}, "GSE120490": {"is_usable": false, "is_gene_available": false, "is_trait_available": false, "is_available": false, "is_biased": null, "has_age": null, "has_gender": null, "sample_size": null, "note": "No trait data was found; linking and final dataset output are skipped."}, "TCGA": {"is_usable": true, "is_gene_available": true, "is_trait_available": true, "is_available": true, "is_biased": false, "has_age": true, "has_gender": false, "sample_size": 201, "note": "Endometrioid Cancer TCGA cohort processed successfully."}}
|
p1/preprocess/Endometrioid_Cancer/gene_data/GSE120490.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7c2759aa8e42735d02ef9d461e653d8193afbf79f2bc172dbf0a1ffec969bbfd
|
3 |
+
size 38249974
|
p1/preprocess/Endometrioid_Cancer/gene_data/GSE40785.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p1/preprocess/Endometrioid_Cancer/gene_data/GSE65986.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p1/preprocess/Endometrioid_Cancer/gene_data/GSE66667.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p1/preprocess/Endometrioid_Cancer/gene_data/GSE68600.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p1/preprocess/Endometrioid_Cancer/gene_data/GSE73551.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:521c3184f53a970bae9c21a469f19dc9d3761202131547c1bef3be922fb6503f
|
3 |
+
size 14281959
|