File size: 6,049 Bytes
24fe0da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Epilepsy"
cohort = "GSE64123"
# Input paths
in_trait_dir = "../DATA/GEO/Epilepsy"
in_cohort_dir = "../DATA/GEO/Epilepsy/GSE64123"
# Output paths
out_data_file = "./output/preprocess/1/Epilepsy/GSE64123.csv"
out_gene_data_file = "./output/preprocess/1/Epilepsy/gene_data/GSE64123.csv"
out_clinical_data_file = "./output/preprocess/1/Epilepsy/clinical_data/GSE64123.csv"
json_path = "./output/preprocess/1/Epilepsy/cohort_info.json"
# STEP1
from tools.preprocess import *
# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("Sample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1. Gene Expression Data Availability
# Based on the background info and the sample dictionary,
# this dataset is most likely a gene expression study (not miRNA or methylation).
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# All rows in the sample characteristics dictionary pertain to time, drug exposure, or concentration.
# There is no row indicating a human trait of "Epilepsy," nor any human "age" or "gender."
trait_row = None
age_row = None
gender_row = None
is_trait_available = (trait_row is not None)
# Although we found no data for these variables, we still define stub conversion functions:
def convert_trait(value: str):
return None # No trait data available
def convert_age(value: str):
return None # No age data available
def convert_gender(value: str):
return None # No gender data available
# 3. Save Metadata (Initial Filtering)
# Because it's the initial filtering, use is_final=False.
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. Clinical Feature Extraction
# This step is skipped because 'trait_row' is None (no trait data).
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# These probe IDs (e.g., "10000_at") are not standard human gene symbols, thus mapping is required.
print("requires_gene_mapping = True")
# STEP5
import pandas as pd
import io
# 1. Extract the lines that do NOT start with '^', '!', or '#', but do NOT parse them into a DataFrame yet.
annotation_text, _ = filter_content_by_prefix(
source=soft_file,
prefixes_a=['^', '!', '#'],
unselect=True,
source_type='file',
return_df_a=False,
return_df_b=False
)
# 2. Manually parse the filtered text into a DataFrame, specifying engine="python" to avoid buffer overflow issues.
gene_annotation = pd.read_csv(
io.StringIO(annotation_text),
delimiter='\t',
on_bad_lines='skip',
engine='python'
)
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP: Gene Identifier Mapping
# 1. Determine which columns in gene_annotation match the data in gene_data.
# - The probe IDs in gene_data match the "ID" column in gene_annotation.
# - The gene symbols appear to be in the "Description" column.
# 2. Create the mapping dataframe using the library function get_gene_mapping.
mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="Description")
# 3. Convert the probe-level measurements in gene_data to gene-level expressions.
gene_data = apply_gene_mapping(gene_data, mapping_df)
import os
import pandas as pd
# STEP7
# 1) Normalize gene symbols and save
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)
# Check whether we actually have a clinical CSV file (i.e., trait data) from Step 2
if os.path.exists(out_clinical_data_file):
# 2) Link the clinical and gene expression data
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
# 3) Handle missing values
final_data = handle_missing_values(linked_data, trait_col=trait)
# 4) Evaluate bias in the trait
trait_biased, final_data = judge_and_remove_biased_features(final_data, trait)
# 5) Final validation (trait is available)
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=final_data,
note="Trait data successfully extracted in Step 2."
)
# 6) If the dataset is usable, save
if is_usable:
final_data.to_csv(out_data_file)
else:
# If the clinical file does not exist, the trait is unavailable
# Perform final validation indicating that we lack trait data
empty_df = pd.DataFrame()
validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=False,
is_biased=True, # Arbitrary non-None to skip usage
df=empty_df,
note="No trait data was found; linking and final dataset output are skipped."
) |