File size: 6,049 Bytes
24fe0da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Epilepsy"
cohort = "GSE64123"

# Input paths
in_trait_dir = "../DATA/GEO/Epilepsy"
in_cohort_dir = "../DATA/GEO/Epilepsy/GSE64123"

# Output paths
out_data_file = "./output/preprocess/1/Epilepsy/GSE64123.csv"
out_gene_data_file = "./output/preprocess/1/Epilepsy/gene_data/GSE64123.csv"
out_clinical_data_file = "./output/preprocess/1/Epilepsy/clinical_data/GSE64123.csv"
json_path = "./output/preprocess/1/Epilepsy/cohort_info.json"

# STEP1
from tools.preprocess import *
# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)

# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)

# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("Sample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1. Gene Expression Data Availability
# Based on the background info and the sample dictionary,
# this dataset is most likely a gene expression study (not miRNA or methylation).
is_gene_available = True

# 2. Variable Availability and Data Type Conversion

# All rows in the sample characteristics dictionary pertain to time, drug exposure, or concentration.
# There is no row indicating a human trait of "Epilepsy," nor any human "age" or "gender."
trait_row = None
age_row = None
gender_row = None
is_trait_available = (trait_row is not None)

# Although we found no data for these variables, we still define stub conversion functions:
def convert_trait(value: str):
    return None  # No trait data available

def convert_age(value: str):
    return None  # No age data available

def convert_gender(value: str):
    return None  # No gender data available

# 3. Save Metadata (Initial Filtering)
# Because it's the initial filtering, use is_final=False.
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# 4. Clinical Feature Extraction
# This step is skipped because 'trait_row' is None (no trait data).
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)

# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# These probe IDs (e.g., "10000_at") are not standard human gene symbols, thus mapping is required.
print("requires_gene_mapping = True")
# STEP5
import pandas as pd
import io

# 1. Extract the lines that do NOT start with '^', '!', or '#', but do NOT parse them into a DataFrame yet.
annotation_text, _ = filter_content_by_prefix(
    source=soft_file,
    prefixes_a=['^', '!', '#'],
    unselect=True,
    source_type='file',
    return_df_a=False,
    return_df_b=False
)

# 2. Manually parse the filtered text into a DataFrame, specifying engine="python" to avoid buffer overflow issues.
gene_annotation = pd.read_csv(
    io.StringIO(annotation_text),
    delimiter='\t',
    on_bad_lines='skip',
    engine='python'
)

print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP: Gene Identifier Mapping

# 1. Determine which columns in gene_annotation match the data in gene_data.
#    - The probe IDs in gene_data match the "ID" column in gene_annotation.
#    - The gene symbols appear to be in the "Description" column.

# 2. Create the mapping dataframe using the library function get_gene_mapping.
mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="Description")

# 3. Convert the probe-level measurements in gene_data to gene-level expressions.
gene_data = apply_gene_mapping(gene_data, mapping_df)
import os
import pandas as pd

# STEP7

# 1) Normalize gene symbols and save
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)

# Check whether we actually have a clinical CSV file (i.e., trait data) from Step 2
if os.path.exists(out_clinical_data_file):
    # 2) Link the clinical and gene expression data
    selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
    linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)

    # 3) Handle missing values
    final_data = handle_missing_values(linked_data, trait_col=trait)

    # 4) Evaluate bias in the trait
    trait_biased, final_data = judge_and_remove_biased_features(final_data, trait)

    # 5) Final validation (trait is available)
    is_usable = validate_and_save_cohort_info(
        is_final=True,
        cohort=cohort,
        info_path=json_path,
        is_gene_available=True,
        is_trait_available=True,
        is_biased=trait_biased,
        df=final_data,
        note="Trait data successfully extracted in Step 2."
    )

    # 6) If the dataset is usable, save
    if is_usable:
        final_data.to_csv(out_data_file)

else:
    # If the clinical file does not exist, the trait is unavailable
    # Perform final validation indicating that we lack trait data
    empty_df = pd.DataFrame()
    validate_and_save_cohort_info(
        is_final=True,
        cohort=cohort,
        info_path=json_path,
        is_gene_available=True,
        is_trait_available=False,
        is_biased=True,  # Arbitrary non-None to skip usage
        df=empty_df,
        note="No trait data was found; linking and final dataset output are skipped."
    )