File size: 1,688 Bytes
24fe0da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Epilepsy"
# Input paths
tcga_root_dir = "../DATA/TCGA"
# Output paths
out_data_file = "./output/preprocess/1/Epilepsy/TCGA.csv"
out_gene_data_file = "./output/preprocess/1/Epilepsy/gene_data/TCGA.csv"
out_clinical_data_file = "./output/preprocess/1/Epilepsy/clinical_data/TCGA.csv"
json_path = "./output/preprocess/1/Epilepsy/cohort_info.json"
import os
import pandas as pd
# 1. Identify subdirectories under tcga_root_dir
subdirectories = os.listdir(tcga_root_dir)
trait_subdir = None
for d in subdirectories:
# Check if the directory name contains "epilepsy" or synonyms (lowercase match)
if "epilepsy" in d.lower():
trait_subdir = d
break
# 2. If none found, skip this trait
if not trait_subdir:
print(f"No suitable subdirectory found for trait '{trait}'. Skipping...")
is_gene_available = False
is_trait_available = False
validate_and_save_cohort_info(
is_final=False,
cohort="TCGA",
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
else:
# Identify the paths to the clinical and genetic data files
full_subdir_path = os.path.join(tcga_root_dir, trait_subdir)
clinical_path, genetic_path = tcga_get_relevant_filepaths(full_subdir_path)
# 3. Load data into DataFrames
clinical_df = pd.read_csv(clinical_path, index_col=0, sep='\t')
genetic_df = pd.read_csv(genetic_path, index_col=0, sep='\t')
# 4. Print the column names of the clinical data for inspection
print("Clinical Data Columns:")
print(clinical_df.columns.tolist()) |