File size: 7,925 Bytes
c192597 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Fibromyalgia"
cohort = "GSE67311"
# Input paths
in_trait_dir = "../DATA/GEO/Fibromyalgia"
in_cohort_dir = "../DATA/GEO/Fibromyalgia/GSE67311"
# Output paths
out_data_file = "./output/preprocess/1/Fibromyalgia/GSE67311.csv"
out_gene_data_file = "./output/preprocess/1/Fibromyalgia/gene_data/GSE67311.csv"
out_clinical_data_file = "./output/preprocess/1/Fibromyalgia/clinical_data/GSE67311.csv"
json_path = "./output/preprocess/1/Fibromyalgia/cohort_info.json"
# STEP1
from tools.preprocess import *
# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)
# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)
# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("Sample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1. Determine if gene expression data is available
is_gene_available = True # From the background info, this is a gene expression dataset
# 2. Identify row keys for trait, age, and gender, and define conversion functions
# We see that sample characteristics dictionary at row 0 includes:
# 'diagnosis: fibromyalgia', 'diagnosis: healthy control'.
# This matches our trait-of-interest (Fibromyalgia) vs. Healthy control cohorts, so:
trait_row = 0
# There's no apparent age or gender data in the dictionary, so:
age_row = None
gender_row = None
# Define trait conversion function (binary: fibromyalgia=1, healthy=0)
def convert_trait(value: str):
if ':' in value:
value = value.split(':', 1)[1].strip()
val_lower = value.lower()
if val_lower == 'fibromyalgia':
return 1
elif val_lower == 'healthy control':
return 0
return None
# Age and gender are unavailable, so set the converting functions to None
convert_age = None
convert_gender = None
# 3. Save metadata using initial filtering
is_trait_available = (trait_row is not None)
is_usable = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. Clinical feature extraction if trait data is available
if trait_row is not None:
selected_clinical_df = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview and save extracted clinical features
preview_result = preview_df(selected_clinical_df)
print("Preview of selected clinical features:", preview_result)
selected_clinical_df.to_csv(out_clinical_data_file, index=False)
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)
# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# The given identifiers look like numeric probe IDs rather than standard human gene symbols,
# so they likely require mapping to gene symbols.
print("requires_gene_mapping = True")
# STEP5
import pandas as pd
import io
# 1. Extract the lines that do NOT start with '^', '!', or '#', but do NOT parse them into a DataFrame yet.
annotation_text, _ = filter_content_by_prefix(
source=soft_file,
prefixes_a=['^', '!', '#'],
unselect=True,
source_type='file',
return_df_a=False,
return_df_b=False
)
# 2. Manually parse the filtered text into a DataFrame, specifying engine="python" to avoid buffer overflow issues.
gene_annotation = pd.read_csv(
io.StringIO(annotation_text),
delimiter='\t',
on_bad_lines='skip',
engine='python'
)
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP: Gene Identifier Mapping
# 1. Identify which columns in the gene_annotation dataframe match our probe identifiers and gene symbols.
# From the preview, the "ID" column in gene_annotation corresponds to the same probe IDs
# used in gene_data (both numeric, e.g. '7896736', '7896738'), and "gene_assignment" stores text containing gene symbols.
# 2. Get a gene mapping dataframe: extract the "ID" column (probe ID) and "gene_assignment" column (gene text).
mapping_df = get_gene_mapping(
annotation=gene_annotation,
prob_col="ID",
gene_col="gene_assignment"
)
# 3. Apply the probe-to-gene mapping to convert probe-level data into gene-level expression.
gene_data = apply_gene_mapping(
expression_df=gene_data,
mapping_df=mapping_df
)
print("Gene-level expression data shape:", gene_data.shape)
import os
import pandas as pd
# STEP7
# 1) Normalize gene symbols and save
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)
# 2) Try reading the clinical CSV file (trait data). If it's empty or unreadable, treat trait as unavailable.
if os.path.exists(out_clinical_data_file):
try:
tmp_df = pd.read_csv(out_clinical_data_file, header=0)
# If successfully read, check the number of rows to rename their index properly.
row_count = tmp_df.shape[0]
if row_count == 1:
tmp_df.index = [trait]
elif row_count == 2:
tmp_df.index = [trait, "Gender"]
selected_clinical_df = tmp_df
# Link the clinical and gene expression data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)
# 3) Handle missing values
final_data = handle_missing_values(linked_data, trait_col=trait)
# 4) Evaluate bias in the trait (and remove biased demographics if any)
trait_biased, final_data = judge_and_remove_biased_features(final_data, trait)
# 5) Final validation
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=final_data,
note="Trait and gender rows found; no age row."
)
# 6) If the dataset is usable, save
if is_usable:
final_data.to_csv(out_data_file)
except (pd.errors.EmptyDataError, ValueError):
# If file is present but empty or invalid, treat trait data as unavailable
empty_df = pd.DataFrame()
validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=False,
is_biased=True,
df=empty_df,
note="Trait file is empty or invalid; linking and final dataset output are skipped."
)
else:
# If the clinical file does not exist at all, the trait is unavailable
empty_df = pd.DataFrame()
validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=False,
is_biased=True,
df=empty_df,
note="No trait data file was found; linking and final dataset output are skipped."
) |