File size: 7,925 Bytes
c192597
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Fibromyalgia"
cohort = "GSE67311"

# Input paths
in_trait_dir = "../DATA/GEO/Fibromyalgia"
in_cohort_dir = "../DATA/GEO/Fibromyalgia/GSE67311"

# Output paths
out_data_file = "./output/preprocess/1/Fibromyalgia/GSE67311.csv"
out_gene_data_file = "./output/preprocess/1/Fibromyalgia/gene_data/GSE67311.csv"
out_clinical_data_file = "./output/preprocess/1/Fibromyalgia/clinical_data/GSE67311.csv"
json_path = "./output/preprocess/1/Fibromyalgia/cohort_info.json"

# STEP1
from tools.preprocess import *
# 1. Identify the paths to the SOFT file and the matrix file
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# 2. Read the matrix file to obtain background information and sample characteristics data
background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']
clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']
background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)

# 3. Obtain the sample characteristics dictionary from the clinical dataframe
sample_characteristics_dict = get_unique_values_by_row(clinical_data)

# 4. Explicitly print out all the background information and the sample characteristics dictionary
print("Background Information:")
print(background_info)
print("Sample Characteristics Dictionary:")
print(sample_characteristics_dict)
# 1. Determine if gene expression data is available
is_gene_available = True  # From the background info, this is a gene expression dataset

# 2. Identify row keys for trait, age, and gender, and define conversion functions

# We see that sample characteristics dictionary at row 0 includes:
# 'diagnosis: fibromyalgia', 'diagnosis: healthy control'.
# This matches our trait-of-interest (Fibromyalgia) vs. Healthy control cohorts, so:
trait_row = 0

# There's no apparent age or gender data in the dictionary, so:
age_row = None
gender_row = None

# Define trait conversion function (binary: fibromyalgia=1, healthy=0)
def convert_trait(value: str):
    if ':' in value:
        value = value.split(':', 1)[1].strip()
    val_lower = value.lower()
    if val_lower == 'fibromyalgia':
        return 1
    elif val_lower == 'healthy control':
        return 0
    return None

# Age and gender are unavailable, so set the converting functions to None
convert_age = None
convert_gender = None

# 3. Save metadata using initial filtering
is_trait_available = (trait_row is not None)
is_usable = validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# 4. Clinical feature extraction if trait data is available
if trait_row is not None:
    selected_clinical_df = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait, 
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )

    # Preview and save extracted clinical features
    preview_result = preview_df(selected_clinical_df)
    print("Preview of selected clinical features:", preview_result)

    selected_clinical_df.to_csv(out_clinical_data_file, index=False)
# STEP3
# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.
gene_data = get_genetic_data(matrix_file)

# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.
print(gene_data.index[:20])
# The given identifiers look like numeric probe IDs rather than standard human gene symbols, 
# so they likely require mapping to gene symbols.

print("requires_gene_mapping = True")
# STEP5
import pandas as pd
import io

# 1. Extract the lines that do NOT start with '^', '!', or '#', but do NOT parse them into a DataFrame yet.
annotation_text, _ = filter_content_by_prefix(
    source=soft_file,
    prefixes_a=['^', '!', '#'],
    unselect=True,
    source_type='file',
    return_df_a=False,
    return_df_b=False
)

# 2. Manually parse the filtered text into a DataFrame, specifying engine="python" to avoid buffer overflow issues.
gene_annotation = pd.read_csv(
    io.StringIO(annotation_text),
    delimiter='\t',
    on_bad_lines='skip',
    engine='python'
)

print("Gene annotation preview:")
print(preview_df(gene_annotation))
# STEP: Gene Identifier Mapping

# 1. Identify which columns in the gene_annotation dataframe match our probe identifiers and gene symbols.
#    From the preview, the "ID" column in gene_annotation corresponds to the same probe IDs
#    used in gene_data (both numeric, e.g. '7896736', '7896738'), and "gene_assignment" stores text containing gene symbols.

# 2. Get a gene mapping dataframe: extract the "ID" column (probe ID) and "gene_assignment" column (gene text).
mapping_df = get_gene_mapping(
    annotation=gene_annotation,
    prob_col="ID",
    gene_col="gene_assignment"
)

# 3. Apply the probe-to-gene mapping to convert probe-level data into gene-level expression.
gene_data = apply_gene_mapping(
    expression_df=gene_data,
    mapping_df=mapping_df
)

print("Gene-level expression data shape:", gene_data.shape)
import os
import pandas as pd

# STEP7

# 1) Normalize gene symbols and save
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)

# 2) Try reading the clinical CSV file (trait data). If it's empty or unreadable, treat trait as unavailable.
if os.path.exists(out_clinical_data_file):
    try:
        tmp_df = pd.read_csv(out_clinical_data_file, header=0)
        # If successfully read, check the number of rows to rename their index properly.
        row_count = tmp_df.shape[0]
        if row_count == 1:
            tmp_df.index = [trait]
        elif row_count == 2:
            tmp_df.index = [trait, "Gender"]

        selected_clinical_df = tmp_df

        # Link the clinical and gene expression data
        linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)

        # 3) Handle missing values
        final_data = handle_missing_values(linked_data, trait_col=trait)

        # 4) Evaluate bias in the trait (and remove biased demographics if any)
        trait_biased, final_data = judge_and_remove_biased_features(final_data, trait)

        # 5) Final validation
        is_usable = validate_and_save_cohort_info(
            is_final=True,
            cohort=cohort,
            info_path=json_path,
            is_gene_available=True,
            is_trait_available=True,
            is_biased=trait_biased,
            df=final_data,
            note="Trait and gender rows found; no age row."
        )

        # 6) If the dataset is usable, save
        if is_usable:
            final_data.to_csv(out_data_file)

    except (pd.errors.EmptyDataError, ValueError):
        # If file is present but empty or invalid, treat trait data as unavailable
        empty_df = pd.DataFrame()
        validate_and_save_cohort_info(
            is_final=True,
            cohort=cohort,
            info_path=json_path,
            is_gene_available=True,
            is_trait_available=False,
            is_biased=True,
            df=empty_df,
            note="Trait file is empty or invalid; linking and final dataset output are skipped."
        )
else:
    # If the clinical file does not exist at all, the trait is unavailable
    empty_df = pd.DataFrame()
    validate_and_save_cohort_info(
        is_final=True,
        cohort=cohort,
        info_path=json_path,
        is_gene_available=True,
        is_trait_available=False,
        is_biased=True,
        df=empty_df,
        note="No trait data file was found; linking and final dataset output are skipped."
    )