File size: 6,437 Bytes
25a2692
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Allergies"
cohort = "GSE185658"

# Input paths
in_trait_dir = "../DATA/GEO/Allergies"
in_cohort_dir = "../DATA/GEO/Allergies/GSE185658"

# Output paths
out_data_file = "./output/preprocess/3/Allergies/GSE185658.csv"
out_gene_data_file = "./output/preprocess/3/Allergies/gene_data/GSE185658.csv"
out_clinical_data_file = "./output/preprocess/3/Allergies/clinical_data/GSE185658.csv"
json_path = "./output/preprocess/3/Allergies/cohort_info.json"

# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data 
background_info, clinical_data = get_background_and_clinical_data(matrix_file)

# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)

# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")

# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
    print(f"Feature: {feature}")
    print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Based on background info showing microarray data from bronchial brushings
is_gene_available = True

# 2. Variable Availability and Data Type Conversion

# 2.1 Data Availability
# Trait (asthma) data available in row 1 (group)
trait_row = 1
# No age data available
age_row = None  
# No gender data available
gender_row = None

# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
    """Convert asthma status to binary"""
    if not value or ':' not in value:
        return None
    value = value.split(':')[1].strip()
    if 'Healthy' in value:
        return 0
    elif 'Asthma' in value:
        return 1
    return None

def convert_age(value: str) -> float:
    """Convert age to float"""
    return None

def convert_gender(value: str) -> int:
    """Convert gender to binary"""
    return None

# 3. Save Metadata
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=(trait_row is not None)
)

# 4. Clinical Feature Extraction
# Since trait_row is not None, we need to extract clinical features
selected_clinical_df = geo_select_clinical_features(
    clinical_df=clinical_data,
    trait=trait,
    trait_row=trait_row,
    convert_trait=convert_trait,
    age_row=age_row,
    convert_age=convert_age,
    gender_row=gender_row,
    convert_gender=convert_gender
)

# Preview the extracted clinical data
preview_df(selected_clinical_df)

# Save clinical data
selected_clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)

# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])

# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
    lines = []
    for i, line in enumerate(f):
        if "!series_matrix_table_begin" in line:
            # Get the next 5 lines after the marker
            for _ in range(5):
                lines.append(next(f).strip())
            break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
    print(line)
# Based on the pattern of identifiers (7892501, 7892502, etc), these are probe IDs 
# rather than human gene symbols and need to be mapped
requires_gene_mapping = True
# Get file paths using library function
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract gene annotation from SOFT file and get meaningful data 
gene_annotation = get_gene_annotation(soft_file)

# Preview gene annotation data
print("Gene annotation shape:", gene_annotation.shape)
print("\nGene annotation preview:")
print(preview_df(gene_annotation))

print("\nNumber of non-null values in each column:")
print(gene_annotation.count())

# Print example rows showing the mapping columns
print("\nSample mapping columns ('ID' and 'gene_assignment'):")
print(gene_annotation[['ID', 'gene_assignment']].head().to_string())

print("\nNote: Gene mapping will use:")
print("'ID' column: Probe identifiers") 
print("'gene_assignment' column: Gene information")
# Get mapping between probe IDs and gene symbols from annotation data
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment')

# Apply the mapping to convert probe-level measurements to gene-level expression
gene_data = apply_gene_mapping(gene_data, mapping_data)

# Print some summary info about the gene mapping process
print("\nShape after gene mapping:", gene_data.shape)
print("\nFirst few rows of mapped gene expression data:")
print(gene_data.head())
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)

# Save normalized gene data
gene_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data
try:
    clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)
    linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)

    # 3. Handle missing values
    linked_data = handle_missing_values(linked_data, trait)

    # 4. Determine if features are biased
    is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

    # 5. Validate and save cohort info
    is_usable = validate_and_save_cohort_info(
        is_final=True,
        cohort=cohort,
        info_path=json_path,
        is_gene_available=True,
        is_trait_available=True,
        is_biased=is_trait_biased,
        df=linked_data,
        note="Gene expression data successfully mapped and linked with clinical features"
    )

    # 6. Save linked data only if usable AND trait is not biased
    if is_usable and not is_trait_biased:
        linked_data.to_csv(out_data_file)

except Exception as e:
    print(f"Error in data linking and processing: {str(e)}")
    is_usable = validate_and_save_cohort_info(
        is_final=True,
        cohort=cohort,
        info_path=json_path,
        is_gene_available=True,  
        is_trait_available=True,
        is_biased=True,
        df=pd.DataFrame(),
        note=f"Data processing failed: {str(e)}"
    )