File size: 6,339 Bytes
25a2692
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Allergies"
cohort = "GSE192454"

# Input paths
in_trait_dir = "../DATA/GEO/Allergies"
in_cohort_dir = "../DATA/GEO/Allergies/GSE192454"

# Output paths
out_data_file = "./output/preprocess/3/Allergies/GSE192454.csv"
out_gene_data_file = "./output/preprocess/3/Allergies/gene_data/GSE192454.csv"
out_clinical_data_file = "./output/preprocess/3/Allergies/clinical_data/GSE192454.csv"
json_path = "./output/preprocess/3/Allergies/cohort_info.json"

# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data 
background_info, clinical_data = get_background_and_clinical_data(matrix_file)

# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)

# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")

# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
    print(f"Feature: {feature}")
    print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Yes, this is microarray data (array_id mentioned) with whole transcriptome profiling
is_gene_available = True

# 2. Variable Availability and Data Type Conversion
# Trait: Challenge condition can be used as a trait - bacteria vs control 
trait_row = 1

def convert_trait(value):
    if not isinstance(value, str):
        return None
    value = value.split(': ')[1].strip() if ': ' in value else value
    if value == 'Control':
        return 0
    elif value.startswith('S. '):  # Any bacterial challenge
        return 1
    return None

# Age and gender are not available in this in vitro study using reconstructed epidermis
age_row = None
gender_row = None
convert_age = None  
convert_gender = None

# 3. Save metadata
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=trait_row is not None
)

# 4. Clinical Feature Extraction
selected_clinical = geo_select_clinical_features(
    clinical_df=clinical_data,
    trait=trait,
    trait_row=trait_row,
    convert_trait=convert_trait,
    age_row=age_row,
    convert_age=convert_age,
    gender_row=gender_row,
    convert_gender=convert_gender
)

print("Preview of selected clinical features:")
print(preview_df(selected_clinical))

# Save clinical features
selected_clinical.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)

# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])

# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
    lines = []
    for i, line in enumerate(f):
        if "!series_matrix_table_begin" in line:
            # Get the next 5 lines after the marker
            for _ in range(5):
                lines.append(next(f).strip())
            break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
    print(line)
# The gene identifiers appear to be numeric IDs, not standard human gene symbols
# These need to be mapped to proper gene symbols for biological interpretation
requires_gene_mapping = True
# Get file paths using library function
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract gene annotation from SOFT file and get meaningful data 
gene_annotation = get_gene_annotation(soft_file)

# Preview gene annotation data
print("Gene annotation shape:", gene_annotation.shape)
print("\nGene annotation preview:")
print(preview_df(gene_annotation))

print("\nNumber of non-null values in each column:")
print(gene_annotation.count())

# Print example rows showing the mapping columns
print("\nSample mapping columns ('ID' and 'GENE_SYMBOL'):")
print(gene_annotation[['ID', 'GENE_SYMBOL']].head().to_string())

print("\nNote: Gene mapping will use:")
print("'ID' column: Probe identifiers") 
print("'GENE_SYMBOL' column: Gene information")
# Get gene mapping using ID and GENE_SYMBOL columns from annotation data
gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL')

# Apply gene mapping to convert probe-level measurements to gene expression values
gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=gene_mapping)

# Print information about the gene mapping results
print("Original probe count:", len(gene_data))
print("Gene count after mapping:", len(gene_data))
print("\nFirst few mapped genes and their expression values:")
print(gene_data.head())
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)

# Save normalized gene data
gene_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data
try:
    clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)
    linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)

    # 3. Handle missing values
    linked_data = handle_missing_values(linked_data, trait)

    # 4. Determine if features are biased
    is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

    # 5. Validate and save cohort info
    is_usable = validate_and_save_cohort_info(
        is_final=True,
        cohort=cohort,
        info_path=json_path,
        is_gene_available=True,
        is_trait_available=True,
        is_biased=is_trait_biased,
        df=linked_data,
        note="Gene expression data successfully mapped and linked with clinical features"
    )

    # 6. Save linked data only if usable AND trait is not biased
    if is_usable and not is_trait_biased:
        linked_data.to_csv(out_data_file)

except Exception as e:
    print(f"Error in data linking and processing: {str(e)}")
    is_usable = validate_and_save_cohort_info(
        is_final=True,
        cohort=cohort,
        info_path=json_path,
        is_gene_available=True,  
        is_trait_available=True,
        is_biased=True,
        df=pd.DataFrame(),
        note=f"Data processing failed: {str(e)}"
    )